Review Article

细胞周期蛋白依赖性激酶8抑制剂的发现和发展。

卷 27, 期 32, 2020

页: [5429 - 5443] 页: 15

弟呕挨: 10.2174/0929867326666190402110528

价格: $65

摘要

依赖细胞周期蛋白的激酶8(CDK8)是CDKs家族的一员,由于近年来对其在转录和肿瘤发生中的关键作用的研究而受到广泛关注。 CDK8及其旁系CDK19的选择性抑制为某些癌症的治疗提供了一种新颖的治疗策略。 到目前为止,尽管已经发现了许多针对CDK8的小分子,但由于选择性低和理化性质差,大多数在临床前试验中已被中止。 本文综述了具有不同化学骨架的选择性CDK8抑制剂的设计策略,旨在提高其抑制活性,选择性,代谢稳定性和溶解性。 还审查了它们相应的结构-活性关系(SAR)。 在此综述的讨论基础上,我们希望在不久的将来开发出更有效,更具选择性和类似药物的CDK8抑制剂,并证明其治疗价值。

关键词: CDK8,CDK19,选择性抑制剂,设计,构效关系,代谢稳定性,细胞周期蛋白依赖性激酶,CDK8抑制剂。

[1]
Lim, S.; Kaldis, P. Cdks, cyclins and CKIs: roles beyond cell cycle regulation. Development, 2013, 140(15), 3079-3093.
[http://dx.doi.org/10.1242/dev.091744] [PMID: 23861057]
[2]
Asghar, U.; Witkiewicz, A.K.; Turner, N.Cl.; Knudsen, E.S. The history and future of targeting cyclin-dependent kinases in cancer therapy. Nat. Rev. Drug Discov., 2015, 14(2), 130-146.
[http://dx.doi.org/10.1038/nrd4504] [PMID: 25633797]
[3]
Rickert, P.; Seghezzi, W.; Shanahan, F.; Cho, H.; Lees, E. Cyclin C/CDK8 is a novel CTD kinase associated with RNA polymerase II. Oncogene, 1996, 12(12), 2631-2640.
[PMID: 8700522]
[4]
Bancerek, J.; Poss, Z.C.; Steinparzer, I.; Sedlyarov, V.; Pfaffenwimmer, T.; Mikulic, I.; Dölken, L.; Strobl, B.; Müller, M.; Taatjes, D.J.; Kovarik, P. CDK8 kinase phosphorylates transcription factor STAT1 to selectively regulate the interferon response. Immunity, 2013, 38(2), 250-262.
[http://dx.doi.org/10.1016/j.immuni.2012.10.017] [PMID: 23352233]
[5]
Galbraith, M.D.; Donner, A.J.; Espinosa, J.M. CDK8: a positive regulator of transcription. Transcription, 2010, 1(1), 4-12.
[http://dx.doi.org/10.4161/trns.1.1.12373] [PMID: 21327159]
[6]
Tsutsui, T.; Fukasawa, R.; Tanaka, A.; Hirose, Y.; Ohkuma, Y. Identification of target genes for the CDK subunits of the Mediator complex. Genes Cells, 2011, 16(12), 1208-1218.
[http://dx.doi.org/10.1111/j.1365-2443.2011.01565.x] [PMID: 22117896]
[7]
Allen, B.L.; Taatjes, D.J. The Mediator complex: a central integrator of transcription. Nat. Rev. Mol. Cell Biol., 2015, 16(3), 155-166.
[http://dx.doi.org/10.1038/nrm3951] [PMID: 25693131]
[8]
Kim, S.; Xu, X.; Hecht, A.; Boyer, T.G. Mediator is a transducer of Wnt/β-catenin signaling. J. Biol. Chem., 2006, 281(20), 14066-14075.
[http://dx.doi.org/10.1074/jbc.M602696200] [PMID: 16565090]
[9]
Rzymski, T.; Mikula, M.; Wiklik, K.; Brzózka, K. CDK8 kinase--An emerging target in targeted cancer therapy. Biochim. Biophys. Acta, 2015, 1854(10 Pt B), 1617-1629.
[http://dx.doi.org/10.1016/j.bbapap.2015.05.011] [PMID: 26006748]
[10]
Xi, M.; Chen, T.; Wu, C.; Gao, X.; Wu, Y.; Luo, X.; Du, K.; Yu, L.; Cai, T.; Shen, R.; Sun, H. CDK8 as a therapeutic target for cancers and recent developments in discovery of CDK8 inhibitors. Eur. J. Med. Chem., 2019, 164(164), 77-91.
[http://dx.doi.org/10.1016/j.ejmech.2018.11.076] [PMID: 30594029]
[11]
Alarcón, C.; Zaromytidou, A.I.; Xi, Q.; Gao, S.; Yu, J.; Fujisawa, S.; Barlas, A.; Miller, A.N.; Manova-Todorova, K.; Macias, M.J.; Sapkota, G.; Pan, D.; Massagué, J. Nuclear CDKs drive Smad transcriptional activation and turnover in BMP and TGF-beta pathways. Cell, 2009, 139(4), 757-769.
[http://dx.doi.org/10.1016/j.cell.2009.09.035] [PMID: 19914168]
[12]
Donner, A.J.; Szostek, S.; Hoover, J.M.; Espinosa, J.M. CDK8 is a stimulus-specific positive coregulator of p53 target genes. Mol. Cell, 2007, 27(1), 121-133.
[http://dx.doi.org/10.1016/j.molcel.2007.05.026] [PMID: 17612495]
[13]
Kim, M.Y.; Han, S.I.; Lim, S.C. Roles of cyclin-dependent kinase 8 and β-catenin in the oncogenesis and progression of gastric adenocarcinoma. Int. J. Oncol., 2011, 38(5), 1375-1383.
[PMID: 21344156]
[14]
Firestein, R.; Bass, A.J.; Kim, S.Y.; Dunn, I.F.; Silver, S.J.; Guney, I.; Freed, E.; Ligon, A.H.; Vena, N.; Ogino, S.; Chheda, M.G.; Tamayo, P.; Finn, S.; Shrestha, Y.; Boehm, J.S.; Jain, S.; Bojarski, E.; Mermel, C.; Barretina, J.; Chan, J.A.; Baselga, J.; Tabernero, J.; Root, D.E.; Fuchs, C.S.; Loda, M.; Shivdasani, R.A.; Meyerson, M.; Hahn, W.C. CDK8 is a colorectal cancer oncogene that regulates beta-catenin activity. Nature, 2008, 455(7212), 547-551.
[http://dx.doi.org/10.1038/nature07179] [PMID: 18794900]
[15]
Morris, E.J.; Ji, J.Y.; Yang, F.; Di Stefano, L.; Herr, A.; Moon, N.S.; Kwon, E.J.; Haigis, K.M.; Näär, A.M.; Dyson, N.J. E2F1 represses β-catenin transcription and is antagonized by both pRB and CDK8. Nature, 2008, 455(7212), 552-556.
[http://dx.doi.org/10.1038/nature07310] [PMID: 18794899]
[16]
Fryer, C.J.; White, J.B.; Jones, K.A. Mastermind recruits CycC:CDK8 to phosphorylate the Notch ICD and coordinate activation with turnover. Mol. Cell, 2004, 16(4), 509-520.
[http://dx.doi.org/10.1016/j.molcel.2004.10.014] [PMID: 15546612]
[17]
Sánchez-Martínez, C.; Lallena, M.J.; Sanfeliciano, S.G.; de Dios, A. Cyclin dependent kinase (CDK) inhibitors as anticancer drugs: recent advances (2015-2019). Bioorg. Med. Chem. Lett., 2019, 29(20)126637
[http://dx.doi.org/10.1016/j.bmcl.2019.126637] [PMID: 31477350]
[18]
Sato, S.; Tomomori-Sato, C.; Parmely, T.J.; Florens, L.; Zybailov, B.; Swanson, S.K.; Banks, C.A.S.; Jin, J.; Cai, Y.; Washburn, M.P.; Conaway, J.W.; Conaway, R.C. A set of consensus mammalian mediator subunits identified by multidimensional protein identification technology. Mol. Cell, 2004, 14(5), 685-691.
[http://dx.doi.org/10.1016/j.molcel.2004.05.006] [PMID: 15175163]
[19]
Pelish, H.E.; Liau, B.B.; Nitulescu, I.I.; Tangpeerachaikul, A.; Poss, Z.C.; Da Silva, D.H.; Caruso, B.T.; Arefolov, A.; Fadeyi, O.; Christie, A.L.; Du, K.; Banka, D.; Schneider, E.V.; Jestel, A.; Zou, G.; Si, C.; Ebmeier, C.C.; Bronson, R.T.; Krivtsov, A.V.; Myers, A.G.; Kohl, N.E.; Kung, A.L.; Armstrong, S.A.; Lemieux, M.E.; Taatjes, D.J.; Shair, M.D. Mediator kinase inhibition further activates super-enhancer-associated genes in AML. Nature, 2015, 526(7572), 273-276.
[http://dx.doi.org/10.1038/nature14904] [PMID: 26416749]
[20]
Fant, C.B.; Taatjes, D.J. Regulatory functions of the Mediator kinases CDK8 and CDK19. Transcription, 2019, 10(2), 76-90.
[http://dx.doi.org/10.1080/21541264.2018.1556915] [PMID: 30585107]
[21]
Study of BCD-115 in women with ER(+) HER2(−) local advanced and metastatic breast cancer. Available at: https://clinicaltrials.gov/ct2/show/NCT03065010
[22]
Zhou, J.; Zhang, S.; Chen, X.; Zheng, X.; Yao, Y.; Lu, G.; Zhou, J. Palbociclib, a selective CDK4/6 inhibitor, enhances the effect of selumetinib in RAS-driven non-small cell lung cancer. Cancer Lett., 2017, 408, 130-137.
[http://dx.doi.org/10.1016/j.canlet.2017.08.031] [PMID: 28866094]
[23]
Chohan, T.A.; Qayyum, A.; Rehman, K.; Tariq, M.; Akash, M.S.H. An insight into the emerging role of cyclin-dependent kinase inhibitors as potential therapeutic agents for the treatment of advanced cancers. Biomed. Pharmacother., 2018, 107, 1326-1341.
[http://dx.doi.org/10.1016/j.biopha.2018.08.116] [PMID: 30257348]
[24]
Malumbres, M.; Barbacid, M. To cycle or not to cycle: a critical decision in cancer. Nat. Rev. Cancer, 2001, 1(3), 222-231.
[http://dx.doi.org/10.1038/35106065] [PMID: 11902577]
[25]
Cheung, Z.H.; Ip, N.Y. Cdk5: a multifaceted kinase in neurodegenerative diseases. Trends Cell Biol., 2012, 22(3), 169-175.
[http://dx.doi.org/10.1016/j.tcb.2011.11.003] [PMID: 22189166]
[26]
Larochelle, S.; Amat, R.; Glover-Cutter, K.; Sansó, M.; Zhang, C.; Allen, J.J.; Shokat, K.M.; Bentley, D.L.; Fisher, R.P. Cyclin-dependent kinase control of the initiation-to-elongation switch of RNA polymerase II. Nat. Struct. Mol. Biol., 2012, 19(11), 1108-1115.
[http://dx.doi.org/10.1038/nsmb.2399] [PMID: 23064645]
[27]
Guen, V.J.; Gamble, C.; Flajolet, M.; Unger, S.; Thollet, A.; Ferandin, Y.; Superti-Furga, A.; Cohen, P.A.; Meijer, L.; Colas, P. CDK10/cyclin M is a protein kinase that controls ETS2 degradation and is deficient in STAR syndrome. Proc. Natl. Acad. Sci. USA, 2013, 110(48), 19525-19530.
[http://dx.doi.org/10.1073/pnas.1306814110] [PMID: 24218572]
[28]
Drogat, J.; Migeot, V.; Mommaerts, E.; Mullier, C.; Dieu, M.; van Bakel, H.; Hermand, D. Cdk11-cyclinL controls the assembly of the RNA polymerase II mediator complex. Cell Rep., 2012, 2(5), 1068-1076.
[http://dx.doi.org/10.1016/j.celrep.2012.09.027] [PMID: 23122962]
[29]
Malumbres, M. Cyclin-dependent kinases. Genome Biol., 2014, 15(6), 122.
[http://dx.doi.org/10.1186/gb4184] [PMID: 25180339]
[30]
Galbraith, M.D.; Andrysik, Z.; Pandey, A.; Hoh, M.; Bonner, E.A.; Hill, A.A.; Sullivan, K.D.; Espinosa, J.M. CDK8 kinase activity promotes glycolysis. Cell Rep., 2017, 21(6), 1495-1506.
[http://dx.doi.org/10.1016/j.celrep.2017.10.058] [PMID: 29117556]
[31]
Fisher, R.P. Taking aim at Glycolysis with CDK8 inhibitors. Trends Endocrinol. Metab., 2018, 29(5), 281-282.
[http://dx.doi.org/10.1016/j.tem.2018.02.005] [PMID: 29475579]
[32]
Nakayama, K.; Nagahama, H.; Minamishima, Y.A.; Miyake, S.; Ishida, N.; Hatakeyama, S.; Kitagawa, M.; Iemura, S.; Natsume, T.; Nakayama, K.I. Skp2-mediated degradation of p27 regulates progression into mitosis. Dev. Cell, 2004, 6(5), 661-672.
[http://dx.doi.org/10.1016/S1534-5807(04)00131-5] [PMID: 15130491]
[33]
Putz, E.M.; Gotthardt, D.; Hoermann, G.; Csiszar, A.; Wirth, S.; Berger, A.; Straka, E.; Rigler, D.; Wallner, B.; Jamieson, A.M.; Pickl, W.F.; Zebedin-Brandl, E.M.; Müller, M.; Decker, T.; Sexl, V. CDK8-mediated STAT1-S727 phosphorylation restrains NK cell cytotoxicity and tumor surveillance. Cell Rep., 2013, 4(3), 437-444.
[http://dx.doi.org/10.1016/j.celrep.2013.07.012] [PMID: 23933255]
[34]
Dale, T.; Clarke, P.A.; Esdar, C.; Waalboer, D.; Adeniji-Popoola, O.; Ortiz-Ruiz, M.J.; Mallinger, A.; Samant, R.S.; Czodrowski, P.; Musil, D.; Schwarz, D.; Schneider, K.; Stubbs, M.; Ewan, K.; Fraser, E.; TePoele, R.; Court, W.; Box, G.; Valenti, M.; de Haven Brandon, A.; Gowan, S.; Rohdich, F.; Raynaud, F.; Schneider, R.; Poeschke, O.; Blaukat, A.; Workman, P.; Schiemann, K.; Eccles, S.A.; Wienke, D.; Blagg, J. A selective chemical probe for exploring the role of CDK8 and CDK19 in human disease. Nat. Chem. Biol., 2015, 11(12), 973-980.
[http://dx.doi.org/10.1038/nchembio.1952] [PMID: 26502155]
[35]
Rzymski, T.; Mikula, M.; Żyłkiewicz, E.; Dreas, A.; Wiklik, K.; Gołas, A.; Wójcik, K.; Masiejczyk, M.; Wróbel, A.; Dolata, I.; Kitlińska, A.; Statkiewicz, M.; Kuklinska, U.; Goryca, K.; Sapała, Ł.; Grochowska, A.; Cabaj, A.; Szajewska-Skuta, M.; Gabor-Worwa, E.; Kucwaj, K.; Białas, A.; Radzimierski, A.; Combik, M.; Woyciechowski, J.; Mikulski, M.; Windak, R.; Ostrowski, J.; Brzózka, K. SEL120-34A is a novel CDK8 inhibitor active in AML cells with high levels of serine phosphorylation of STAT1 and STAT5 transactivation domains. Oncotarget, 2017, 8(20), 33779-33795.
[http://dx.doi.org/10.18632/oncotarget.16810] [PMID: 28422713]
[36]
Cee, V.J.; Chen, D.Y.K.; Lee, M.R.; Nicolaou, K.C. Cortistatin A is a high-affinity ligand of protein kinases ROCK, CDK8, and CDK11. Angew. Chem. Int. Ed. Engl., 2009, 48(47), 8952-8957.
[http://dx.doi.org/10.1002/anie.200904778] [PMID: 19844931]
[37]
Porter, D.C.; Farmaki, E.; Altilia, S.; Schools, G.P.; West, D.K.; Chen, M.; Chang, B.D.; Puzyrev, A.T.; Lim, C.U.; Rokow-Kittell, R.; Friedhoff, L.T.; Papavassiliou, A.G.; Kalurupalle, S.; Hurteau, G.; Shi, J.; Baran, P.S.; Gyorffy, B.; Wentland, M.P.; Broude, E.V.; Kiaris, H.; Roninson, I.B. Cyclin-dependent kinase 8 mediates chemotherapy-induced tumor-promoting paracrine activities. Proc. Natl. Acad. Sci. USA, 2012, 109(34), 13799-13804.
[http://dx.doi.org/10.1073/pnas.1206906109] [PMID: 22869755]
[38]
Han, X.; Jiang, M.; Zhou, C.; Zhou, Z.; Xu, Z.; Wang, L.; Mayweg, A.V.; Niu, R.; Jin, T.G.; Yang, S. Discovery of potent and selective CDK8 inhibitors through FBDD approach. Bioorg. Med. Chem. Lett., 2017, 27(18), 4488-4492.
[http://dx.doi.org/10.1016/j.bmcl.2017.07.080] [PMID: 28802632]
[39]
Han, X.; Jiang, M.; Mayweg, A.V.; Wang, L.; Yang, S. Novel pyrrole derivatives for the treatment of cancer W.O. Patent 2014154723A1, 2014.
[40]
Fujimoto, J.; Hirayama, T.; Hirata, Y.; Hikichi, Y.; Murai, S.; Hasegawa, M.; Hasegawa, Y.; Yonemori, K.; Hata, A.; Aoyama, K.; Cary, D.R. Studies of CDK 8/19 inhibitors: Discovery of novel and selective CDK8/19 dual inhibitors and elimination of their CYP3A4 time-dependent inhibition potential. Bioorg. Med. Chem., 2017, 25(12), 3018-3033.
[http://dx.doi.org/10.1016/j.bmc.2017.03.049] [PMID: 28392276]
[41]
Mallinger, A.; Crumpler, S.; Pichowicz, M.; Waalboer, D.; Stubbs, M.; Adeniji-Popoola, O.; Wood, B.; Smith, E.; Thai, C.; Henley, A.T.; Georgi, K.; Court, W.; Hobbs, S.; Box, G.; Ortiz-Ruiz, M.J.; Valenti, M.; De Haven Brandon, A.; TePoele, R.; Leuthner, B.; Workman, P.; Aherne, W.; Poeschke, O.; Dale, T.; Wienke, D.; Esdar, C.; Rohdich, F.; Raynaud, F.; Clarke, P.A.; Eccles, S.A.; Stieber, F.; Schiemann, K.; Blagg, J. Discovery of potent, orally bioavailable, small-molecule inhibitors of WNT signaling from a cell-based pathway screen. J. Med. Chem., 2015, 58(4), 1717-1735.
[http://dx.doi.org/10.1021/jm501436m] [PMID: 25680029]
[42]
Mallinger, A.; Schiemann, K.; Rink, C.; Stieber, F.; Calderini, M.; Crumpler, S.; Stubbs, M.; Adeniji-Popoola, O.; Poeschke, O.; Busch, M.; Czodrowski, P.; Musil, D.; Schwarz, D.; Ortiz-Ruiz, M.J.; Schneider, R.; Thai, C.; Valenti, M.; de Haven Brandon, A.; Burke, R.; Workman, P.; Dale, T.; Wienke, D.; Clarke, P.A.; Esdar, C.; Raynaud, F.I.; Eccles, S.A.; Rohdich, F.; Blagg, J. Discovery of potent, selective, and orally bioavailable small-molecule modulators of the mediator complex-associated kinases CDK8 and CDK19. J. Med. Chem., 2016, 59(3), 1078-1101.
[http://dx.doi.org/10.1021/acs.jmedchem.5b01685] [PMID: 26796641]
[43]
Czodrowski, P.; Mallinger, A.; Wienke, D.; Esdar, C.; Pöschke, O.; Busch, M.; Rohdich, F.; Eccles, S.A.; Ortiz-Ruiz, M.J.; Schneider, R.; Raynaud, F.I.; Clarke, P.A.; Musil, D.; Schwarz, D.; Dale, T.; Urbahns, K.; Blagg, J.; Schiemann, K. Raynaud. F.I.; Clarke, P.A.; Musil, D.; Schwarz, D.; Dale, T.; Urbahns, K.; Blagg, J.; Schiemann, K. Structure-based optimization of potent, selective, and orally bioavailable CDK8 inhibitors discovered by high-throughput screening. J. Med. Chem., 2016, 59(20), 9337-9349.
[http://dx.doi.org/10.1021/acs.jmedchem.6b00597] [PMID: 27490956]
[44]
Baker, N.A. Improving implicit solvent simulations: a poisson-centric view. Curr. Opin. Struct. Biol., 2005, 15(2), 137-143.
[http://dx.doi.org/10.1016/j.sbi.2005.02.001] [PMID: 15837170]
[45]
Koehl, P. Electrostatics calculations: latest methodological advances. Curr. Opin. Struct. Biol., 2006, 16(2), 142-151.
[http://dx.doi.org/10.1016/j.sbi.2006.03.001] [PMID: 16540310]
[46]
Schiemann, K.; Mallinger, A.; Wienke, D.; Esdar, C.; Poeschke, O.; Busch, M.; Rohdich, F.; Eccles, S.A.; Schneider, R.; Raynaud, F.I.; Czodrowski, P.; Musil, D.; Schwarz, D.; Urbahns, K.; Blagg, J. Discovery of potent and selective CDK8 inhibitors from an HSP90 pharmacophore. Bioorg. Med. Chem. Lett., 2016, 26(5), 1443-1451.
[http://dx.doi.org/10.1016/j.bmcl.2016.01.062] [PMID: 26852363]
[47]
Engelhardt, H.; Arnhof, H.; Carotta, S.; Hofmann, M.H.; Kerenyi, M.; Scharn, D. New phenylpyrazolylacetamide compounds and derivatives as CDK8/CDK19 inhibitors. W.O. Patent 2017202719A1, 2017.
[48]
Mallinger, A.; Schiemann, K.; Rink, C.; Sejberg, J.; Honey, M.A.; Czodrowski, P.; Stubbs, M.; Poeschke, O.; Busch, M.; Schneider, R.; Schwarz, D.; Musil, D.; Burke, R.; Urbahns, K.; Workman, P.; Wienke, D.; Clarke, P.A.; Raynaud, F.I.; Eccles, S.A.; Esdar, C.; Rohdich, F.; Blagg, J. 2,8-Disubstituted-1,6-Naphthyridines and 4,6-Disubstituted-Isoquinolines with potent, selective affinity for CDK8/19. ACS Med. Chem. Lett., 2016, 7(6), 573-578.
[http://dx.doi.org/10.1021/acsmedchemlett.6b00022] [PMID: 27326329]
[49]
Pryde, D.C.; Dalvie, D.; Hu, Q.; Jones, P.; Obach, R.S.; Tran, T.D. Aldehyde oxidase: an enzyme of emerging importance in drug discovery. J. Med. Chem., 2010, 53(24), 8441-8460.
[http://dx.doi.org/10.1021/jm100888d] [PMID: 20853847]
[50]
George, D.; Friedman, M.; Allen, H.; Argiriadi, M.; Barberis, C.; Bischoff, A.; Clabbers, A.; Cusack, K.; Dixon, R.; Fix-Stenzel, S.; Gordon, T.; Janssen, B.; Jia, Y.; Moskey, M.; Quinn, C.; Salmeron, J.A.; Wishart, N.; Woller, K.; Yu, Z. Discovery of thieno[2,3-c]pyridines as potent COT inhibitors. Bioorg. Med. Chem. Lett., 2008, 18(18), 4952-4955.
[http://dx.doi.org/10.1016/j.bmcl.2008.08.037] [PMID: 18755587]
[51]
Cusack, K.; Allen, H.; Bischoff, A.; Clabbers, A.; Dixon, R. Fix- Stenzel, S.; Friedman, M.; Gaumont, Y.; George, D.; Gordon, T.; Gronsgard, P.; Janssen, B.; Jia, Y.; Moskey, M.; Quinn, C.; Salmeron, A.; Thomas, C.; Wallace, G.; Wishart, N.; Yu, Z. Identification of a selective thieno[2,3-c]Pyridine inhibitor of COT kinase and TNFAlpha Production. Bioorg. Med. Chem. Lett., 2009, 19, 1722-1725.
[http://dx.doi.org/10.1016/j.bmcl.2009.01.088] [PMID: 19217782]
[52]
Koehler, M.F.T.; Bergeron, P.; Blackwood, E.M.; Bowman, K.; Clark, K.R.; Firestein, R.; Kiefer, J.R.; Maskos, K.; McCleland, M.L.; Orren, L.; Salphati, L.; Schmidt, S.; Schneider, E.V.; Wu, J.; Beresini, M.H. Development of a potent, specific CDK8 kinase inhibitor which phenocopies CDK8/19 knockout cells. ACS Med. Chem. Lett., 2016, 7(3), 223-228.
[http://dx.doi.org/10.1021/acsmedchemlett.5b00278] [PMID: 26985305]
[53]
Ono, K.; Banno, H.; Okaniwa, M.; Hirayama, T.; Iwamura, N.; Hikichi, Y.; Murai, S.; Hasegawa, M.; Hasegawa, Y.; Yonemori, K.; Hata, A.; Aoyama, K.; Cary, D.R. Design and synthesis of selective CDK8/19 dual inhibitors: discovery of 4,5-dihydrothieno[3′,4′:3,4]benzo[1,2-d]isothiazole derivatives. Bioorg. Med. Chem., 2017, 25(8), 2336-2350.
[http://dx.doi.org/10.1016/j.bmc.2017.02.038] [PMID: 28302507]
[54]
Johannessen, L.; Sundberg, T.B.; O’Connell, D.J.; Kolde, R.; Berstler, J.; Billings, K.J.; Khor, B.; Seashore-Ludlow, B.; Fassl, A.; Russell, C.N.; Latorre, I.J.; Jiang, B.; Graham, D.B.; Perez, J.R.; Sicinski, P.; Phillips, A.J.; Schreiber, S.L.; Gray, N.S.; Shamji, A.F.; Xavier, R.J. Small-molecule studies identify CDK8 as a regulator of IL-10 in myeloid cells. Nat. Chem. Biol., 2017, 13(10), 1102-1108.
[http://dx.doi.org/10.1038/nchembio.2458] [PMID: 28805801]
[55]
Bergeron, P.; Koehler, M.F.T.; Blackwood, E.M.; Bowman, K.; Clark, K.; Firestein, R.; Kiefer, J.R.; Maskos, K.; McCleland, M.L.; Orren, L.; Ramaswamy, S.; Salphati, L.; Schmidt, S.; Schneider, E.V.; Wu, J.; Beresini, M. Design and development of a series of potent and selective type II inhibitors of CDK8. ACS Med. Chem. Lett., 2016, 7(6), 595-600.
[http://dx.doi.org/10.1021/acsmedchemlett.6b00044] [PMID: 27326333]
[56]
Schneider, E.V.; Böttcher, J.; Huber, R.; Maskos, K.; Neumann, L.; Maskos, K. Structure-kinetic relationship study of CDK8/CycC specific compounds. Proc. Natl. Acad. Sci. USA, 2013, 110(20), 8081-8086.
[http://dx.doi.org/10.1073/pnas.1305378110] [PMID: 23630251]
[57]
Feng, J.A.; Aliagas, I.; Bergeron, P.; Blaney, J.M.; Bradley, E.K.; Koehler, M.F.T.; Lee, M.L.; Ortwine, D.F.; Tsui, V.; Wu, J.; Gobbi, A. An integrated suite of modeling tools that empower scientists in structure- and property-based drug design. J. Comput. Aided Mol. Des., 2015, 29(6), 511-523.
[http://dx.doi.org/10.1007/s10822-015-9845-4] [PMID: 25921252]
[58]
Wang, T.; Yang, Z.; Zhang, Y.; Yan, W.; Wang, F.; He, L.; Zhou, Y.; Chen, L. Discovery of novel CDK8 inhibitors using multiple crystal structures in docking-based virtual screening. Eur. J. Med. Chem., 2017, 129, 275-286.
[http://dx.doi.org/10.1016/j.ejmech.2017.02.020] [PMID: 28231524]
[59]
Callegari, D.; Lodola, A.; Pala, D.; Rivara, S.; Mor, M.; Rizzi, A.; Capelli, A.M. Metadynamics simulations distinguish short- and long-residence-time inhibitors of cyclin-dependent kinase 8. J. Chem. Inf. Model., 2017, 57(2), 159-169.
[http://dx.doi.org/10.1021/acs.jcim.6b00679] [PMID: 28080056]
[60]
Cholko, T.; Chen, W.; Tang, Z.; Chang, C.A. A molecular dynamics investigation of CDK8/CycC and ligand binding: conformational flexibility and implication in drug discovery. J. Comput. Aided Mol. Des., 2018, 32(6), 671-685.
[http://dx.doi.org/10.1007/s10822-018-0120-3] [PMID: 29737445]
[61]
Hatcher, J.M.; Wang, E.S.; Johannessen, L.; Kwiatkowski, N.; Sim, T.; Gray, N.S. Development of highly potent and selective steroidal inhibitors and degraders of CDK8. ACS Med. Chem. Lett., 2018, 9(6), 540-545.
[http://dx.doi.org/10.1021/acsmedchemlett.8b00011] [PMID: 29937979]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy