Generic placeholder image

Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1573-4064
ISSN (Online): 1875-6638

Research Article

Design and Synthesis of New Sulfonamides-Based Flt3 Inhibitors

Author(s): Reem F. Abutayeh, Jehad Almaliti and Mutasem O. Taha*

Volume 16, Issue 3, 2020

Page: [403 - 412] Pages: 10

DOI: 10.2174/1573406415666190401144053

Price: $65

Abstract

Background: Flt3 is an oncogenic kinase involved in different leukemias. It is most prominently associated with acute myeloid leukemia (AML). Flt3-specific inhibitors have shown promising results in interfering with AML.

Methods: The crystallographic structures of two inhibitors complexed within Flt3, namely, quizartinib and F6M, were used to guide the synthesis of new sulfonamide-based Flt3 inhibitors.

Results: One of the prepared compounds showed low micromolar anti-Flt3 bioactivity, and interestingly, low micromolar bioactivity against the related oncogenic kinase VEGFR2.

Conclusion: Sulfonamides were successfully used as privileged scaffolds for the synthesis of novel Flt3 inhibitors of micromolar potencies.

Keywords: Flt3, Quizatrinib, F6M, Sulfonamides, VEGFR2, Acute Myeloid Leukemia.

Graphical Abstract

[1]
Döhner, H.; Weisdorf, D.; Bloomfield, C. Acute myeloid leukemia. New. Engl. J. Med., 2015, 373, 1136-1152.
[2]
Davies, R.; Pierce, A.; Forster, C.; Grey, R.; Xu, J.; Arnost, M.; Choquette, D.; Galullo, V.; Tian, S.; Henkel, G.; Chen, G.; Heidary, D.; Ma, J.; Stuver-Moody, C.; Namchuk, M. Design, synthesis, and evaluation of a novel dual fms-like tyrosine kinase 3/stem cell factor receptor (FLT3/c-KIT) inhibitor for the treatment of acute myelogenous leukemia. J. Med. Chem., 2011, 54, 7184-7192.
[3]
Trujillo, A.; McGee, C.; Cogle, C. Angiogenesis in acute myeloid leukemia and opportunities for novel therapies. J. Oncol., 2012, 2012, 1-9.
[4]
Li, Y. Suppression of leukemia expressing wild-type or ITD-mutant FLT3 receptor by a fully human anti-FLT3 neutralizing antibody. Blood, 2004, 104, 1137-1144.
[5]
Gaul, M.D.; Xu, G.; Kirkpatrick, J.; Ott, H.; Baumann, C.A. 4-Amino-6-piperazin-1-yl-pyrimidine-5-carbaldehyde oximes as potent FLT-3 inhibitors. Bioorganic. Med. Chem. Lett., 2007, 17, 4861-4865.
[6]
Stirewalt, D.L.; Radich, J.P. The role of FLT3 in haematopoietic malignancies. Nat. Rev. Cancer, 2003, 3, 650-665.
[7]
Takahashi, S. Downstream molecular pathways of FLT3 in the pathogenesis of acute myeloid leukemia: Biology and therapeutic implications. J. Hematol. Oncol., 2011, 4, 13.
[8]
Grunwald, M.R.; Levis, M.J. FLT3 inhibitors for acute myeloid leukemia: a review of their efficacy and mechanisms of resistance. Int. J. Hematol., 2013, 97, 683-694.
[9]
Ishida, H.; Isami, S.; Matsumura, T.; Umehara, H.; Yamashita, Y.; Kajita, J.; Fuse, E.; Kiyoi, H.; Naoe, T.; Akinaga, S.; Shiotsu, Y.; Arai, H. Novel and orally active 5-(1,3,4-oxadiazol-2-yl)pyrimidine derivatives as selective FLT3 inhibitors. Bioorg. Med. Chem. Lett., 2008, 18, 5472-5477.
[10]
Abutayeh, R.F.; Taha, M.O. Discovery of novel Flt3 inhibitory chemotypes through extensive ligand-based and new structure-based pharmacophore modelling methods. J. Mol. Graphics Modell., 2019, 88, 128-151.
[11]
Li, W.; Wang, X-Y.; Zheng, R.; Yan, H.; Cao, Z.; Zhong, L.; Wang, Z.R.; Ji, P.; Yang, L-L.; Wang, L.J.; Xu, Y.; Liu, J-J.; Yang, J.; Zhang, C-H.; Ma, S.; Feng, S.; Sun, Q-Z.; Wei, Y-Q.; Yang, S. Discovery of the novel potent and selective FLT3 inhibitor 1-5-[7-(3-morpholinopropoxy)quinazolin-4-ylthio]-[1,3, 4]thiadiazol-2-yl-3-p-tolylurea and its anti-acute myeloid leukemia (AML) activities in vitro and in vivo. J. Med. Chem., 2012, 55, 3852-3866.
[12]
El-shami, K.; Stone, R.M.; Smith, B.D. FLT3 Inhibitors in acute myeloid leukemia. Expert Rev. Hematol., 2008, 1, 153-160.
[13]
Kindler, T.; Lipka, D.B.; Fischer, T. FLT3 as a therapeutic target in AML: Still challenging after all these years. Blood, 2010, 116, 5089-5102.
[14]
Pandey, A.; Volkots, D.; Seroogy, J.; Rose, J.; Yu, J.; Lambing, J.; Hutchaleelaha, A.; Hollenbach, S.; Abe, K.; Giese, N.; Scarborough, R. Identification of orally active, potent, and selective 4-piperazinylquinazolines as antagonists of the platelet-derived growth factor receptor tyrosine kinase family. J. Med. Chem., 2002, 45, 3772-3793.
[15]
O’Farrell, A. SU11248 is a novel FLT3 tyrosine kinase inhibitor with potent activity in vitro and in vivo. Blood, 2003, 101, 3597-3605.
[16]
Stone, R. Patients with acute myeloid leukemia and an activating mutation in FLT3 respond to a small-molecule FLT3 tyrosine kinase inhibitor, PKC412. Blood, 2005, 105, 54-60.
[17]
Lin, W.; Hsieh, S.; Yen, S.; Chen, C.; Yeh, T.; Hsu, T.; Lu, C.; Chen, C.; Chen, C.; Chou, L.; Huang, Y.; Cheng, A.; Chang, Y.; Tseng, Y.; Yen, K.; Chao, Y.; Hsu, J.; Jiaang, W. Discovery and evaluation of 3-phenyl-1H-5-pyrazolylamine-based derivatives as potent, selective and efficacious inhibitors of FMS-like tyrosine kinase-3 (FLT3). Bioorg. Med. Chem., 2011, 19, 4173-4182.
[18]
Chao, Q.; Sprankle, K.; Grotzfeld, R.; Lai, A.; Carter, T.; Velasco, A.; Gunawardane, R.; Cramer, M.; Gardner, M.; James, J.; Zarrinkar, P.; Patel, H.; Bhagwat, S. Identification of N-(5-tert-Butyl-isoxazol-3-yl)-N′-4-[7-(2-morpholin-4-yl-ethoxy)imidazo [2,1-b][1,3]benzothiazol-2-yl]phenylurea dihydrochloride (AC2 20), a uniquely potent, selective, and efficacious fms-like tyrosine kinase-3 (FLT3) inhibitor. J. Med. Chem., 2009, 52, 7808-7816.
[19]
Larrosa-Garcia, M.; Baer, M. FLT3 inhibitors in acute myeloid leukemia: current status and future directions. Mol. Cancer Ther., 2017, 16, 991-1001.
[20]
Cortes, J.; Perl, A.E.; Döhner, H.; Kantarjian, H.; Martinelli, G.; Kovacsovics, T.; Rousselot, P.; Steffen, B.; Dombret, H.; Estey, E.; Strickland, S.; Altman, J.K.; Baldus, C.D.; Burnett, A.; Krämer, A.; Russell, N.; Shah, N.P.; Smith, C.C.; Wang, E.S.; Ifrah, N.; Gammon, G.; Trone, D.; Lazzaretto, D.; Levis, M. Quizartinib, an FLT3 inhibitor, as monotherapy in patients with relapsed or refractory acute myeloid leukaemia: an open-label, multicentre, single-arm, phase 2 trial. Lancet, 2018, 19, 889-903.
[21]
Sheikha, G.; Al-Sha’er, M.; Taha, M. Some sulfonamide drugs inhibit ATPase activity of heat shock protein 90: investigation by docking simulation and experimental validation. J. Enzyme Inhib. Med. Chem., 2010, 26, 603-609.
[22]
Khanfar, M.; AbuKhader, M.; Alqtaishat, S.; Taha, M. Pharmacophore modeling, homology modeling, and in silico screening reveal mammalian target of rapamycin inhibitory activities for sotalol, glyburide, metipranolol, sulfamethizole, glipizide, and pioglitazone. J. Mol. Graph. Model., 2013, 42, 39-49.
[23]
Scozzafava, A.; Owa, T.; Mastrolorenzo, A.; Supuran, C. Anticancer and Antiviral Sulfonamides. Curr. Med. Chem., 2003, 10, 925-953.
[24]
Al-Sha’er, M.; Taha, M. Rational exploration of new pyridinium-based HSP90α inhibitors tailored to thiamine structure. Med. Chem. Res., 2011, 21, 487-510.
[25]
Mano, M.; Seo, T.; Imai, K. Anticoccidials. Iv. A Convenient Synthesis Of 2(1h)-Pyrazinone 4-Oxide Derivatives. Chem. Pharm. Bull., 1980, 28, 2720-2733.
[26]
Massolini, G.; Carmellino, M.L.; Baruffini, A. Activity of 4-aroylanilides against plant-pathogenic fungi. Farmaco, Sci., 1988, 43, 507-515.
[27]
Dragostin, O.; Samal, S.; Dash, M.; Lupascu, F.; Pânzariu, A.; Tuchilus, C.; Ghetu, N.; Danciu, M.; Dubruel, P.; Pieptu, D.; Vasile, C.; Tatia, R.; Profire, L. New antimicrobial chitosan derivatives for wound dressing applications. Carbohydr. Polym., 2016, 141, 28-40.
[28]
Gagiu, Fl.; Gyorfi, Z. New and potentially cytostatic compounds. III. 2-[p-(Haloacetamido)phenylsulfonamido]-1,3,4-thiadiazoles. Farmacia, 1969, 17, 525-529.
[29]
Bissinger, E.; Heinke, R.; Spannhoff, A.; Eberlin, A.; Metzger, E.; Cura, V.; Hassenboehler, P.; Cavarelli, J.; Schüle, R.; Bedford, M.; Sippl, W.; Jung, M. Acyl derivatives of p-aminosulfonamides and dapsone as new inhibitors of the arginine methyltransferase hPRMT1. Bioorg. Med. Chem., 2011, 19, 3717-3731.
[30]
Deng, X.; Zhou, W.; Weisberg, E.; Wang, J.; Zhang, J.; Sasaki, T.; Nelson, E.; Griffin, J.; Jänne, P.; Gray, N. An amino-indazole scaffold with spectrum selective kinase inhibition of FLT3, PDGFRα and kit. Bioorg. Med. Chem. Lett., 2012, 22, 4579-4584.
[31]
Gazit, A.; Yee, K.; Uecker, A.; Böhmer, F.; Sjöblom, T.; Östman, A.; Waltenberger, J.; Golomb, G.; Banai, S.; Heinrich, M.; Levitzki, A. tricyclic quinoxalines as potent kinase inhibitors of PDGFR kinase, Flt3 and Kit. Bioorg. Med. Chem., 2003, 11, 2007-2018.
[32]
Warkentin, A.; Lopez, M.; Lasater, E.; Lin, K.; He, B.; Leung, A.; Smith, C.; Shah, N.; Shokat, K. Overcoming myelosuppression due to synthetic lethal toxicity for FLT3-targeted acute myeloid leukemia therapy. eLife, 2014, 3 e03445
[33]
Kampen, K.; ter Elst, A.; de Bont, E. Vascular endothelial growth factor signaling in acute myeloid leukemia. Cell. Mol. Life Sci., 2012, 70, 1307-1317.
[34]
Yang, L.; Li, G.; Ma, S.; Zou, C.; Zhou, S.; Sun, Q.; Cheng, C.; Chen, X.; Wang, L.; Feng, S.; Li, L.; Yang, S. Structure-activity relationship studies of pyrazolo[3,4-d]pyrimidine derivatives leading to the discovery of a novel multikinase inhibitor that potently inhibits FLT3 and VEGFR2 and evaluation of its activity against acute myeloid leukemia in vitro and in vivo. J. Med. Chem., 2013, 56, 1641-1655.
[35]
Yang, J.S.; Park, C.H.; Lee, C.; Kim, H.; Oh, C.; Choi, Y.; Kang, J.S.; Yun, J.; Jeong, J.H.; Kim, M.H.; Han, G. Synthesis and biological evaluation of novel thieno[2,3-d]pyrimidine-based FLT3 inhibitors as anti-leukemic agents. Eur. J. Med. Chem., 2014, 85, 399-407.
[36]
Chen, C.T.; Hsu, J.T.; Lin, W.H.; Lu, C.T.; Yen, S.C.; Hsu, T.; Huang, Y.L.; Song, J.S.; Chen, C.H.; Chou, L.H.; Yen, K.J.; Chen, C.P.; Kuo, P.C.; Huang, C.L.; Liu, H.E.; Chao, Y.S.; Yeh, T.K.; Jiaang, W.T. Identification of a potent 5-phenyl-thiazol-2-ylamine-based inhibitor of FLT3 with activity against drug resistance-conferring point mutations. Eur. J. Med. Chem., 2015, 100, 151-161.
[37]
Galanis, A.; Levis, M. Inhibition of c-Kit by tyrosine kinase inhibitors. Haematologica, 2014, 100, e77-e79.
[38]
Homans, S.W. Water, water everywhere--except where it matters? Drug Discov. Today, 2007, 12, 534-539.
[39]
Walters, W.P.; Namchuk, M. Designing screens: how to make your hits a hit. Nat. Rev. Drug Discov., 2003, 2, 259-266.
[40]
Shoichet, B.K. Interpreting steep dose-response curves in early inhibitor discovery. J. Med. Chem., 2006, 49, 7274-7277.
[41]
Yalkowsky, S.; He, Y.; Jain, P. Handbook of aqueous solubility data; Boca Raton: CRC Press, 2010.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy