Generic placeholder image

Current Organic Synthesis

Editor-in-Chief

ISSN (Print): 1570-1794
ISSN (Online): 1875-6271

Review Article

Transition Metal-Catalyzed Reactions of Alkynyl Halides

Author(s): Dina Petko, Samuel Koh and William Tam*

Volume 16, Issue 4, 2019

Page: [546 - 582] Pages: 37

DOI: 10.2174/1570179416666190329200616

Abstract

Background: Transition metal-catalyzed reactions of alkynyl halides are a versatile means of synthesizing a wide array of products. Their use is of particular interest in cycloaddition reactions and in constructing new carbon-carbon and carbon-heteroatom bonds. Transition metal-catalyzed reactions of alkynyl halides have successfully been used in [4+2], [2+2], [2+2+2] and [3+2] cycloaddition reactions. Many carbon-carbon coupling reactions take advantage of metal-catalyzed reactions of alkynyl halides, including Cadiot-Chodkiewicz, Suzuki-Miyaura, Stille, Kumada-Corriu and Inverse Sonogashira reactions. All the methods of constructing carbon-nitrogen, carbon-oxygen, carbon-phosphorus, carbon-sulfur, carbon-silicon, carbon-selenium and carbon-tellurium bonds employed alkynyl halides.

Objective: The purpose of this review is to highlight and summarize research conducted in transition metalcatalyzed reactions of alkynyl halides in recent years. The focus will be placed on cycloaddition and coupling reactions, and their scope and applicability to the synthesis of biologically important and industrially relevant compounds will be discussed.

Conclusion: It can be seen from the review that the work done on this topic has employed the use of many different transition metal catalysts to perform various cycloadditions, cyclizations, and couplings using alkynyl halides. The reactions involving alkynyl halides were efficient in generating both carbon-carbon and carbonheteroatom bonds. Proposed mechanisms were included to support the understanding of such reactions. Many of these reactions face retention of the halide moiety, allowing additional functionalization of the products, with some new products being inaccessible using their standard alkyne counterparts.

Keywords: Alkynyl halides, metal-catalyzed, cycloadditions, cyclizations, coupling, transition metal.

Graphical Abstract

[1]
Nakamura, I.; Yamamoto, Y. Transition-metal-catalyzed reactions in heterocyclic synthesis. Chem. Rev., 2004, 104, 2127-2198.
[2]
Hartwig, J.F. Evolution of C-H bond functionalization from methane to methodology. J. Am. Chem. Soc., 2016, 138, 2-24.
[3]
Wu, W.; Jiang, H. Haloalkynes: A powerful and versatile building block in organic synthesis. Acc. Chem. Res., 2014, 47, 2483-2504.
[4]
Kasai, K.; Liu, Y.; Hara, R.; Takahashi, T. Zirconocene-catalysed cyclobutene formation by reaction of alkynyl halides with EtMgBr. Chem. Commun. , 1998, 1989-1990.
[5]
Allen, A.; Villeneuve, K.; Cockburn, N.; Fatila, E.; Riddell, N.; Tam, W. Alkynyl halides in ruthenium(II)-catalyzed [2+2] cycloadditions of bicyclic alkenes. Eur. J. Org. Chem., 2008, 2008(24), 4178-4192.
[6]
Lautens, M.; Klute, W.; Tam, W. Transition metal-mediated cycloaddition reactions. Chem. Rev., 1996, 96, 49-92.
[7]
Villeneuve, K.; Riddell, N.; Jordan, R.W.; Tsui, G.C.; Tam, W. Ruthenium-Catalyzed [2+2] Cycloadditions between Bicyclic Alkenes and Alkynyl Halides. Org. Lett., 2004, 6, 4543-4546.
[8]
Liu, Y.; Liu, X.; Jiang, H.; Liu, B.; Chen, Z.; Zhou, P. Palladium-catalyzed bromoalkynylation of C - C double bonds: Ring-structure-dependent synthesis of 7-alkynyl norbornanes and cyclobutenyl halides. Angew. Chem. Int. Ed., 2011, 50, 6341-6345.
[9]
Kuijpers, B.H.M.; Dijkmans, G.C.T.; Groothuys, S.; Quaedflieg, P.J.L.M.; Blaauw, R.H.; van Delft, F.L.; Rutjes, P.J.T. Copper (I)-mediated synthesis of trisubstituted 1,2,3-triazoles. Synlett, 2005, 20, 3059-3062.
[10]
Brotherton, W.S.; Clark, R.J.; Zhu, L. Synthesis of 5-Iodo-1,4-disubstituted-1,2,3-triazoles mediated by in Situ generated copper(I) catalyst and electrophilic triiodide ion. J. Org. Chem., 2012, 77, 6443-6455.
[11]
Wang, D.; Chen, S.; Chen, B. ‘Green’ synthesis of 1,4-disubstituted 5-iodo-1,2,3-triazoles under neat conditions, and an efficient approach of construction of 1,4,5-trisubstituted 1,2,3-triazoles in one pot. Tetrahedron Lett., 2014, 55, 7026-7028.
[12]
Pérez, J.M.; Crosbie, P.; Lal, S.; Díez-González, S. Copper (I)-phosphinite complexes in click cycloadditions: Three-component reactions and preparation of 5- iodotriazoles. ChemCatChem, 2016, 8, 2222-2226.
[13]
Banday, A.H.; Hruby, V.J. Cu(I)-Pd(II)-catalyzed cycloaddition–fusion of 1-iodoalkynes and azides: One-pot synthesis of fused tricyclic heterosystems. Synlett, 2014, 25, 2463-2466.
[14]
Schulman, J.M.; Friedman, A.A. Panteleev. J.; Lautens, M. Synthesis of 1,2,3-triazole-fused heterocycles via Pd-catalyzed cyclization of 5-iodotriazoles. Chem. Commun. , 2012, 48, 55-57.
[15]
Wang, W.; Wei, F.; Ma, Y.; Tung, C-H.; Xu, Z. Copper(I)-catalyzed three-component click/alkynylation: One-pot synthesis of 5-alkynyl-1,2,3-triazoles. Org. Lett., 2016, 18, 4158-4161.
[16]
Li, Y.; Zhao, J.; Chen, H.; Liu, B.; Jiang, H. Pd-catalyzed and CsF-promoted reaction of bromoalkynes with isocyanides: regioselective synthesis of substituted 5-iminopyrrolones. Chem. Commun. , 2012, 48, 3545-3547.
[17]
Huang, P.; Yang, Q.; Chen, Z.; Ding, Q.; Xu, J.; Peng, Y. Metal cocatalyzed tandem alkynylative cyclization reaction of in situ formed N- iminoisoquinolinium ylides with bromoalkynes via C−H bond activation. J. Org. Chem., 2012, 77, 8092-8098.
[18]
gao, y.; yin, m.; wu, w.; huang, h.; jiang, h. copper-catalyzed intermolecular oxidative cyclization of haloalkynes: Synthesis of 2-halo-substituted imidazo[1,2-a]pyridines, imidazo[1,2-a]pyrazines and imidazo[1,2-a]pyrimidines. Adv. Synth. Catal., 2013, 355, 2263-2273.
[19]
Peng, J.; Shang, G.; Chen, C.; Miao, Z.; Li, B. Nucleophilic addition of benzimidazoles to alkynyl bromides/palladium-catalyzed intramolecular C−H vinylation: Synthesis of benzo[4,5]imidazo[2,1-a]isoquinolines. J. Org. Chem., 2013, 78, 1242-1248.
[20]
Arcadi, A.; Cacchi, S.; Fabrizi, G.; Marinelli, F.; Parisi, L.M. Palladium-catalyzed reaction of o-alkynyltrifluoroacetanilides with 1-bromoalkynes. an approach to 2-substituted 3-alkynylindoles and 2-substituted 3-acylindoles. J. Org. Chem., 2005, 70, 6213-6217.
[21]
Miura, T.; Iwasawa, N. Reactions of iodinated vinylidene complexes generated from 1-iodo-1-alkynes and W(CO)5(thf). J. Am. Chem. Soc., 2002, 124, 518-519.
[22]
Han, W.J.; Wang, Y.R.; Zhang, J.W.; Chen, F.; Zhou, B.; Han, B. Cu-catalyzed oxyalkynylation and aminoalkynylation of unactivated alkenes: Synthesis of alkynyl-featured isoxazolines and cyclic nitrones. Org. Lett., 2018, 20, 2960-2963.
[23]
Yoo, W.J.; Allen, A.; Villeneuve, K.; Tam, W. Rhodium-catalyzed intramolecular [4+2] cycloadditions of alkynyl halides. Org. Lett., 2005, 7, 5853-5856.
[24]
Tigchelaar, A.; Tam, W. Iridium-catalyzed intramolecular [4+2] cycloaddition of alkynyl halides. Beilstein J. Org. Chem., 2012, 8, 1765-1770.
[25]
Yamamoto, Y.; Hattori, K.; Nishiyama, H. Synthesis of bicyclic p-diiodobenzenes via silver-catalyzed C sp-H iodination and ruthenium-catalyzed cycloaddition. J. Am. Chem. Soc., 2006, 128, 8336-8340.
[26]
Yamamoto, Y.; Hattori, K. Synthesis of multiply functionalized benzenes via ruthenium-catalyzed cycloaddition of diiododiynes. Tetrahedron, 2008, 64, 847-855.
[27]
Yamamoto, Y.; Hashimoto, T.; Hattori, K.; Kikuchi, M. Synthesis of spirocyclic C-arylribosides via cyclotrimerization. Org. Lett., 2006, 8, 3565-3568.
[28]
Yamamoto, Y.; Yamashita, K.; Hotta, T.; Hashimoto, T.; Kikuchi, M.; Nishiyama, H. Synthesis of spirocyclic C -arylglycosides and -ribosides by ruthenium-catalyzed cycloaddition. Chem. Asian J., 2007, 2, 1388-1399.
[29]
Chen, C. NiCl2/CrCl2-mediated coupling reaction of ketones with alkenyl (or Alkynyl, Aryl) halides accomplished in the presence of a bipyridyl-type ligand. Synlett, 1998, 1998, 1311-1312.
[30]
Kawano, T.; Matsuyama, N.; Hirano, K.; Satoh, T.; Miura, M. Room temperature direct alkynylation of 1,2,4-oxadiazoles with alkynyl bromides under copper catalysis. J. Org. Chem., 2010, 75, 1764-1766.
[31]
Sun, N.; Li, Y.; Yin, G.; Jiang, S. Palladium-catalyzed alkynylative lactonization of unsaturated bicyclic carboxylic acids: Synthesis of fused polycyclic γ-lactone compounds. Eur. J. Org. Chem., 2013, 2541-2544.
[32]
Rong, Z.; Echavarren, A.M. Broad scope gold(I)-catalysed polyenyne cyclisations for the formation of up to four carbon-carbon bonds. Org. Biomol. Chem., 2017, 15, 2163-2167.
[33]
Liu, W.; Li, L.; Li, C-J. Empowering a transition-metal-free coupling between alkyne and alkyl iodide with light in water. Nat. Commun., 2015, 6, 6526.
[34]
Chen, Z.; Jiang, H.; Wang, A.; Yang, S. Transition-metal-free homocoupling of 1-haloalkynes: A facile synthesis of symmetrical 1,3-diynes. J. Org. Chem., 2010, 75, 6700-6703.
[35]
Sun, C-L.; Shi, Z-J. Transition-metal-free coupling reactions. Chem. Rev., 2014, 114, 9219-9280.
[36]
Nicolaou, K.C.; Tang, Y.; Wang, J. Total Synthesis of Sporolide B. Angew. Chem. Int. Ed., 2009, 48, 3449-3453.
[37]
Nicolaou, K.C.; Wang, J.; Tang, Y.; Botta, L. Total synthesis of sporolide B and 9- epi -sporolide B. J. Am. Chem. Soc., 2010, 132, 11350-11363.
[38]
Yamamoto, Y.; Yamashita, K.; Harada, Y. Systematic evaluation of substituted cyclopentadienyl ruthenium complexes, [(η5-C5MenH5-n)RuCl(cod), for catalytic cycloaditions of diynes. Chem. Asian J., 2010, 5, 946-952.
[39]
Iannazzo, L.; Kotera, N.; Malacria, M.; Aubert, C.; Gandon, V. Co(I)-versus Ru(II)-Catalyzed [2+2+2] cycloadditions involving alkynyl halides. J. Organomet. Chem., 2011, 696, 3906-3908.
[40]
Truong, J.; Caze, V.; Akhani, R.K.; Joshi, G.K.; Kakalis, L.; Schnatter, W.F.K. Halogenated catechols from cycloaddition reactions of g 4-(2-ethoxyvinylketene) iron(0) complexes with 1-haloalkynes. Tetrahedron Lett., 2010, 51, 921-923.
[41]
Speck, K.; Karaghioso, K.; Magauer, T. Sequential O−H/C−H bond insertion of phenols initiated by the gold(I)-catalyzed cyclization of 1-bromo-1,5-enynes. J. Mol. Catal. Chem., 2015, 17, 1982-1985.
[42]
Mader, S.; Molinari, L.; Rudolph, M.; Rominger, F.; Hashmi, A.S.K. Dual gold-catalyzed head-to-tail coupling of iodoalkynes. Chemistry Eur. J., 2015, 21, 3910-3913.
[43]
Xie, J.; Shi, S.; Zhang, T.; Mehrkens, N.; Rudolph, M.; Hashmi, A.S.K. A highly efficient gold-catalyzed photoredox α-C(sp3)-H alkynylation of tertiary aliphatic amines with sunlight. Angew. Chem. Int. Ed., 2015, 54, 6046-6050.
[44]
Corpet, M.; Bai, X.; Gosmini, C. Cobalt-catalyzed cross-coupling of organozinc halides with bromoalkynes. Adv. Synth. Catal., 2014, 356, 2937-2942.
[45]
Takai, K.; Kuroda, T.; Nakatsukasa, S.; Oshima, K.; Nozak, H. Aldehyde-selective addition of alynylchromium compounds prepared by reduction of alkynyl halides with chromium(II) reagent. Tetrahedron Lett., 1985, 26, 5585-5588.
[46]
Namba, K.; Kishi, Y. New catalytic cycle for couplings of aldehydes with organochromium reagents. Org. Lett., 2004, 6, 5031-5033.
[47]
Namba, K.; Wang, J.; Cui, S.; Kishi, Y. Surprisingly efficient catalytic Cr-mediated coupling reactions. Org. Lett., 2005, 7, 5421-5424.
[48]
Usanov, D.L.; Yamamoto, H. Enantioselective alkynylation of aldehydes with 1-haloalkynes catalyzed by tethered Bis(8-quinolinato) chromium complex. J. Am. Chem. Soc., 2011, 133, 1286-1289.
[49]
Sindhu, K.S.; Thankachan, A.P.; Sajitha, P.S.; Anilkumar, G. Recent developments and applications of the Cadiot-Chodkiewicz reaction. Org. Biomol. Chem., 2015, 13, 6891-6905.
[50]
Kuilya, T.K.; Goswami, R.K. Total synthesis of cananginone C and structural revision of debilisone A. Org. Biomol. Chem., 2016, 14, 8789-8799.
[51]
Schmidt, B.; Audorsch, S. Stereoselective Total Syntheses of Polyacetylene Plant Metabolites via Ester-Tethered Ring Closing Metathesis. J. Org. Chem., 2017, 82, 1743-1760.
[52]
Hong, B.; Nimje, R.Y.; Yang, C. The organocatalytic direct self-trimerization of acrolein: Application to the total synthesis of montiporyne F. Tetrahedron Lett., 2007, 48, 1121-1125.
[53]
Nie, X.; Wang, G. Synthesis and self-assembling properties of diacetylene-containing glycolipids. J. Org. Chem., 2006, 71, 4734-4741.
[54]
Listunov, D.; Saffon-merceron, N.; Joly, E.; Fabing, I. Ethynylogation approach in pharmacophore design : from alkynyl-to butadiynyl-carbinols vs antitumoral cytotoxicity. Terahedron, 2016, 72, 6697-6704.
[55]
Miyakoshi, N.; Aburano, D.; Mukai, C. Total syntheses of naturally occurring diacetylenic spiroacetal enol ethers. J. Org. Chem., 2005, 70, 6045-6052.
[56]
Besselievre, F.; Piguel, S. Copper as a powerful catalyst in the direct alkynylation of azoles. Angew. Chem. Int. Ed., 2009, 48, 9553-9556.
[57]
Wang, S.; Wang, M.; Wang, L.; Wang, B.; Li, P.; Yang, J. CuI-catalyzed Suzuki coupling reaction of organoboronic acids with alkynyl bromides. Tetrahedron, 2011, 67, 4800-4806.
[58]
Ahammed, S.; Kundu, D.; Ranu, B.C. Cu-Catalyzed Fe-Driven Csp−Csp and Csp−Csp2 Cross-Coupling: An access to 1,3-diynes and 1,3-enynes. J. Org. Chem., 2014, 79, 7391-7398.
[59]
Zine, K.; Petrignet, J.; Delaye, P.; Carcenac, Y.; Parrain, J. Copper-catalyzed cross-coupling of fluorinated vinylstannanes with organic halides. ChemistrySelect, 2016, 2, 272-276.
[60]
Cai, M.; Fang, X.; Dai, R.; Zha, L. A one-pot, stereoselective synthesisof 2-ethoxycarbonyl-substituted1,3-dienesand 1,3-enynes by hydrostannylation-Stille tandem reaction of tributyltinhydride with alkynyl esters and alkenyl or alkynyl halide. Appl. Organomet. Chem., 2009, 23, 229-234.
[61]
Lefrancq, M.; Riant, O. Copper-catalyzed cross-coupling of vinylsiloxanes with bromoalkynes: Synthesis of enynes. Org. Lett., 2014, 16, 3024-3027.
[62]
Morishita, T.; Yoshida, H.; Ohshita, J. Copper-catalysed bromoalkynylation of arynes. Chem. Commun. , 2010, 46, 640-642.
[63]
Liu, C.; Yang, F.; Jin, Y.; Ma, X.; Cheng, D.; Li, N. Catalytic regioselective synthesis of structurally diverse indene derivatives from N-benzylic sulfonamides and disubstituted alkynes. Org. Lett., 2010, 12, 3832-3835.
[64]
Kobayashi, K.; Arisawa, M.; Yamaguchi, M. GaCl3-Catalyzed Ortho-Ethynylation of Phenols. J. Am. Chem. Soc., 2002, 124, 8528-8529.
[65]
Amemiya, R.; Fujii, A.; Yamaguchi, M. GaCl3-Catalyzed ortho-ethynylation reaction of N-benzylanilines. Tetrahedron Lett., 2004, 45, 4333-4335.
[66]
Huguenot, F.; Palmier, S.; Uziel, J.; Auge, J. Ferrier-type alkynylation reaction mediated by indium. Org. Lett., 2007, 9, 3679-3682.
[67]
Tsuji, H.; Fujimoto, T.; Endo, K.; Nakamura, M.; Nakamura, E. Stereoselective synthesis of trisubstituted E-iodoalkenes by indium-catalyzed syn-addition of carbonyl compounds to 1-iodoalkynes. Org. Lett., 2008, 10, 1219-1221.
[68]
Auge, J.; Lubin-Germain, N.; Seghrouchni, L. Indium-mediated carbonyl alkynylation. Tetrahedron Lett., 2002, 43, 5255-5256.
[69]
Auge, J.; Lubin-Germain, N.; Seghrouchni, L. Indium-mediated formation of propargyl ketones from aldehydes or acyl chlorides. Tetrahedron Lett., 2003, 44, 819-821.
[70]
Ruan, Z.; Sauermann, N.; Manoni, E.; Ackermann, L. Manganese-catalyzed C-H alkynylation: Expedient peptide synthesis and modification. Angew. Chem. Int. Ed., 2017, 56, 3172-3176.
[71]
Matsuyama, N.; Hirano, K.; Satoh, T.; Miura, M. Nickel-catalyzed direct alkynylation of azoles with alkynyl bromides. Org. Lett., 2009, 11, 4156-4159.
[72]
Khake, S.M.; Jain, S.; Patel, U.N.; Gonnade, R.G.; Vanka, K.; Punji, B. Mechanism of nickel(II)-catalyzed C(2)-H alkynylation of indoles with alkynyl bromide. Organometallics, 2018, 37, 2037-2045.
[73]
Tobisu, M.; Ano, Y.; Chatani, N. Palladium-catalyzed direct alkynylation of C-H bonds in benzenes. Org. Lett., 2009, 11, 3250-3252.
[74]
Shi, W.; Luo, Y.; Luo, X.; Chao, L.; Zhang, H.; Wang, J.; Lei, A. Investigation of an efficient palladium-catalyzed C(sp)-C(sp) cross-coupling reaction using phosphine-olefin ligand: Application and mechanistic aspects. J. Am. Chem. Soc., 2008, 130, 14713-14720.
[75]
Rodriguez, A.; Fennessy, R.V.; Moran, W.J. Palladium-catalysed direct alkenylation of sydnones. Tetrahedron Lett., 2009, 50, 3942-3944.
[76]
Guan, M.; Chen, C.; Zhang, J.; Zeng, R.; Zhao, Y. Palladium-catalyzed oxalyl amide assisted direct ortho-alkynylation of arylalkylamine derivatives at delta and epsilon positions. Chem. Commun. , 2015, 51, 12103-12106.
[77]
Kim, S.H.; Chang, S. Highly Efficient and versatile Pd-catalyzed direct alkynylation of both azoles and azolines. Org. Lett., 2010, 12, 1868-1871.
[78]
Brachet, E.; Belmont, P. Palladium-catalyzed regioselective alkynylation of pyrroles and azoles under mild conditions: Application to the synthesis of a dopamine d-4 receptor agonist. J. Org. Chem., 2015, 80, 7519-7529.
[79]
Wen, Y.; Wang, A.; Jiang, H.; Zhu, S.; Huang, L. Highly regio- and stereoselective synthesis of 1,3-enynes from unactivated ethylenes via palladium-catalyzed cross-coupling. Tetrahedron Lett., 2011, 52, 5736-5739.
[80]
Chen, D.; Chen, X.; Lu, Z.; Cai, H.; Shen, J.; Zhu, G. Palladium-catalyzed dienylation of haloalkynes using 2,3-butadienyl acetates: A facile access to (1Z)-1,2-dihalo3-vinyl-1,3-dienes. Adv. Synth. Catal., 2011, 353, 1474-1478.
[81]
Chen, D.; Cao, Y.; Yuan, Z.; Cai, H.; Zheng, R.; Kong, L.; Zhu, G. Synthesis of cis-1,2-dihaloalkenes featuring palladium-catalyzed coupling of haloalkynes and α,β-unsaturated carbonyls. J. Org. Chem., 2011, 76, 4071-4074.
[82]
Chen, X.; Chen, D.; Lu, Z.; Kong, L.; Zhu, G. Palladium-catalyzed coupling of haloalkynes with allyl acetate: A Regio- and stereoselective synthesis of (Z)-β-haloenol acetates. J. Org. Chem., 2011, 76, 6338-6343.
[83]
Zhu, G.; Chen, D.; Wang, Y.; Zheng, R. Highly stereoselective synthesis of (Z)-1,2-dihaloalkenes by a Pd-catalyzed hydrohalogenation of alkynyl halides. Chem. Commun. , 2012, 48, 5796-5798.
[84]
Zhang, M.; Gong, J.; Song, R.; Li, J. Synthesis of internal alkynes by Pd(PPh3)4/TMEDA-catalyzed kumada cross-coupling of alkynyl halides with grignard reagents. Eur. J. Org. Chem., 2014, 6769-6773.
[85]
Gerard, J.; Hevesi, L. Transformation of β-chalcogeno alkenylboranes into tetrasubstituted olefins. Tetrahedron, 2004, 60, 367-381.
[86]
Tang, J-S.; Tian, M.; Sheng, W.; Guo, C. Efficient palladium-catalyzed cross-coupling reaction of alkynyl halides with organoboronic acids under aerobic conditions. Synthesis, 2012, 44, 541-546.
[87]
He, L.; Schulz-senft, M.; Thiedemann, B.; Linshoeft, J.; Gates, P.J.; Staubitz, A. Nucleophile-selective cross-coupling reactions with vinyl and alkynyl bromides on a dinucleophilic aromatic substrate. Eur. J. Org. Chem., 2015, 2015, 2498-2502.
[88]
Tang, J.; Guo, C. Palladium-catalysed Hiyama cross-coupling reaction of alkynyl halides with arytrialkoxysilanes under aerobic conditions. J. Chem. Res., 2014, 38, 123-127.
[89]
Nicolai, S.; Sedigh-zadeh, R.; Waser, J. Pd(0)-catalyzed alkene oxy- and aminoalkynylation with aliphatic bromoacetylenes. J. Org. Chem., 2013, 78, 3783-3801.
[90]
Li, J.; Yang, S.; Jiang, H.; Wu, W.; Zhao, J. Palladium-catalyzed coupling of alkynes with unactivated alkenes in ionic liquids: A regio- and stereoselective synthesis of functionalized 1,6-dienes and their analogues. J. Org. Chem., 2013, 78, 12477-12486.
[91]
Li, J.; Yang, W.; Yang, S.; Huang, L.; Wu, W.; Sun, Y.; Jiang, H. Palladium-catalyzed cascade annulation to construct functionalized β and γ-lactones in ionic liquids. Angew. Chem. Int. Ed., 2014, 53, 7219-7222.
[92]
Seregin, I.V.; Ryabova, V.; Gevorgyan, V. Direct palladium-catalyzed alkynylation of N-fused heterocycles. J. Am. Chem. Soc., 2007, 129, 7742-7743.
[93]
Gu, Y.; Wang, X. Direct palladium-catalyzed C-3 alkynylation of indoles. Tetrahedron Lett., 2009, 50, 763-766.
[94]
Christensen, M.A.; Rimmen, M.; Nielsen, M.B. Unsymmetrical coupling of 1-chloroalkynes and terminal alkynes under experimental sonogashira conditions. Synlett, 2013, 24, 2715-2719.
[95]
Tan, H.; Li, H.; Ji, W.; Wang, L. Sunlight-driven decarboxylative alkynylation of α-keto acids with bromoacetylenes by hypervalent iodine reagent catalysis: A facile approach to ynones. Angew. Chem. Int. Ed., 2015, 54, 8374-8377.
[96]
Kunishima, M.; Nakata, D.; Tanaka, S.; Hioki, K.; Tani, S. Generation and reactions of alkynylsamariums. Terahedron, 2000, 56, 9927-9935.
[97]
De Araujo, M.A.; Raminelli, C.; Comasseto, J.V. Vinylic tellurides as precursors in a stereoselective and convergent route to Z-enynes and Z-trisubstituted enediynes. J. Braz. Chem. Soc., 2004, 15, 358-365.
[98]
Averbuj, C.; Kaftanov, J.; Marek, I. First synthesis of metallated titanacyclopropenes. Synlett, 1999, 12, 1939-1941.
[99]
Campos, C.A.; Gianino, J.B.; Pinkerton, D.M.; Ashfeld, B.L. Aryl aldehydes as traceless dielectrophiles in bifunctional titanocene-catalyzed propargylic C - X activations. Org. Lett., 2011, 13, 5680-5683.
[100]
Gianino, J.B.; Ashfeld, B.L. Titanocene-catalyzed multicomponent coupling approach to diarylethynyl methanes. J. Chem. Res., 2012, 134, 18217-18220.
[101]
Lepore, A.J.; Pinkerton, D.M.; Ashfeld, B.L. Relay redox and lewis acid catalysis in the titanocene-catalyzed muliticomponent assembly of 1,5-enynes. Adv. Synth. Catal., 2013, 355, 1500-1504.
[102]
Kerrigan, M.H.; Jeon, S.; Chen, Y.K.; Salvi, L.; Carroll, P.J.; Walsh, P.J. One-pot multicomponent coupling methods for the synthesis of diastereo- and enantioenriched (Z)-trisubstituted allylic alcohols. J. Am. Chem. Soc., 2009, 131, 8434-8445.
[103]
Jeon, S.; Fisher, E.L.; Carroll, P.J.; Walsh, P.J. Direct, stereospecific generation of (Z)-disubstituted allylic alcohols. J. Am. Chem. Soc., 2006, 128, 9618-9619.
[104]
Wilson, E.E.; Oliver, A.G.; Hughes, R.P.; Ashfeld, B.L. Synthesis of phosphine-ligated zinc acetylide dimers: Enhanced reactivity in carbonyl additions. Organometallics, 2011, 30, 5214-5221.
[105]
Srihari, P.; Singh, V.K.; Bhunia, D.C.; Yadav, J.S. Zinc-mediated alkynylation of carbonyl compounds with iodoalkynes: a facile synthesis of propargyl alcohols. Tetrahedron Lett., 2008, 49, 7132-7134.
[106]
Murali, R.V.N.S.; Rao, N.N.; Cha, J.K. C-Alkynylation of cyclopropanols. Org. Lett., 2015, 17, 3854-3856.
[107]
Singh, V.K.; Upadhyay, A.; Krishna, R.; Singh, P. Zinc-mediated synthesis of 3-alkynyl-3-hydroxyindolin-2-ones by addition of iodoalkynes to isatins. Tetrahedron Lett., 2017, 58, 156-158.
[108]
Ichitsuka, T.; Takanohashi, T.; Fujita, T.; Ichikawa, J. A versatile difluorovinylation method : Cross-coupling reactions of the 2,2-difluorovinylzinc-TMEDA complex with alkenyl, alkynyl, allyl, and benzyl halides. J. Fluor. Chem., 2015, 170, 29-37.
[109]
Ijsselstijn, M.; Kaiser, J.; Van Delft, F.L.; Schoemaker, H.E.; Rutjes, F.P.J.T. Synthesis of novel acetylene-containing amino acids. Amino Acids, 2003, 24, 263-266.
[110]
Lui, Y.; Zhong, Z.; Nakajima, K.; Takahashi, T. Alkynylzirconation of alkynes and application to one-pot bisalkynylation of alkynes. J. Org. Chem., 2002, 67, 7451-7456.
[111]
Liu, Y.; Xi, C.; Hara, R.; Nakajima, K.; Yamazaki, A.; Kotora, M.; Takahashi, T. Preparation of diynes via selective bisalkynylation of zirconacycles. J. Org. Chem., 2000, 65, 6951-6957.
[112]
Liu, Y.; Song, F.; Cong, L. A facile Zr-mediated approach to (Z)-enynols and its application to regio- and stereoselective synthesis of fully substituted dihydrofurans. J. Org. Chem., 2005, 70, 6999-7002.
[113]
Wang, H.; Tsai, F-Y.; Takahashi, T. Nickel-catalyzed coupling reaction of zirconacyclopentadienes with two alkynyl halides: Formation of multi-substituted arylalkynes. Chem. Lett., 2000, 29, 1410-1411.
[114]
Zhang, J.; Meng, L.; Li, P.; Wang, L. The sequential reactions of tetrazoles with bromoalkynes for the synthesis of (Z)-N-(2-bromo-1vinyl)-N-arylcyanamides and 2-arylindoles. RSC Advances, 2013, 3, 6807-6812.
[115]
Frederick, M.O.; Mulder, J.A.; Tracey, M.R.; Hsung, R.P.; Huang, J.; Kurtz, K.C.M.; Shen, L.; Douglas, C.J. A copper-catalyzed C-N bond formation involving sp-hybridized carbons. A direct entry to chiral ynamides via N-alkynylation of amides. J. Am. Chem. Soc., 2003, 125, 2368-2369.
[116]
Dunetz, J.R.; Danheiser, R.L. Copper-mediated N-alkynylation of carbamates, ureas, and sulfonamides. A general method for the synthesis of ynamides. Org. Lett., 2003, 5, 4011-4014.
[117]
Harkat, H.; Borghese, S.; De Nigris, M.; Kiselev, S.; Beneteau, V.; Pale, P. Zeo-click synthesis: Copper-zeolite-catalyzed synthesis of ynamides. Adv. Synth. Catal., 2014, 356, 3842-3848.
[118]
Zhang, Y.; Hsung, R.P.; Tracey, M.R.; Kurtz, K.C.M.; Vera, E.L. Copper sulfate-pentahydrate-1,10-phenonthroline catalyzed amidations of alkynyl bromides. synthesis of heteroaromatic amine substituted ynamides. Org. Lett., 2004, 6, 1151-1154.
[119]
Dekorver, K.A.; Walton, M.C.; North, T.D.; Hsung, R.P. Introducing a new class of N-phosphoryl ynamides via Cu(I)-catalyzed amidations of alkynyl bromides. Org. Lett., 2011, 13, 4862-4865.
[120]
Hirano, S.; Tanaka, R.; Urabe, H.; Sato, F. Practical preparation of N-(1-alkynyl) sulfonamides and their remote diastereoselective addition to aldehydes via titanation. Org. Lett., 2004, 6, 727-729.
[121]
Hirano, S.; Fukudome, Y.; Tanaka, R.; Sato, F.; Urabe, H. Practical preparation of N-(1-alkynyl) sulfonamides and their synthetic utility in titanium alkoxide-mediated coupling reactions. Tetrahedron, 2006, 62, 3896-3916.
[122]
Laroche, C.; Li, J.; Freyer, M.W.; Kerwin, S.M. Coupling reactions of bromoalkynes with imidazoles mediated by copper salts: Synthesis of novel N-alkynylimidazoles. J. Org. Chem., 2008, 73, 6462-6465.
[123]
Anselmi, E.; Le, N.T.; Bouvet, S.; Diter, P.; Pégot, B.; Magnier, E. Synthesis of N-alkenyl and N-alkynyl S -perfluoroalkylated sulfoximines by copper catalysis. Eur. J. Org. Chem., 2016, 2016, 4423-4428.
[124]
Yao, B.; Liang, Z.; Niu, T.; Zhang, Y. Iron-catalyzed amidation of alkynyl bromides: A facile route for the preparation of ynamides a facile route to obtain ynamides. J. Org. Chem., 2009, 74, 4630-4633.
[125]
Chen, Z.; Li, J.; Jiang, H.; Zhu, S.; Li, Y.; Qi, C. Silver-catalyzed difunctionalization of terminal alkynes: Highly regio- and stereoselective synthesis of (Z)-β-haloenol acetates. Org. Lett., 2010, 12, 3262-3265.
[126]
González-Liste, P.J.; León, F.; Arribas, I.; Rubio, M.; García-Garrido, S.E.; Cadierno, V.; Pizzano, A. Highly stereoselective synthesis and hydrogenation of (Z)-1-alkyl-2-arylvinyl acetates: A wide scope procedure for the preparation of chiral homobenzylic esters. ACS Catal., 2016, 6, 13056-13060.
[127]
Gonzalez-Liste, P.J.; Francos, J.; Garcia-Garrido, S.E.; Cadierno, V. Gold-catalyzed regio- and stereoselective addition of carboxylic acids to iodoalkynes: Access to (Z)-β-iodoenol esters and 1,4-disubstituted (Z)- enynyl esters. J. Org. Chem., 2017, 82, 1507-1516.
[128]
Xie, L.; Wu, Y.; Yi, W.; Zhu, L.; Xiang, J.; He, W. Gold-catalyzed hydration of haloalkynes to α- halomethyl ketones. J. Org. Chem., 2013, 78, 9190-9195.
[129]
Zou, H.; Jiang, J.; Yi, N.; Fu, W.; Deng, W.; Xiang, J. Highly efficient synthesis of α -halomethylketones via Ce(SO4)2/acid co-catalyzed hydration of alkynes. Chin. J. Chem., 2016, 34, 1251-1254.
[130]
Bernoud, E.; Veillard, R.; Alayrac, C.; Gaumont, A.C. Stoichiometric and catalytic synthesis of alkynylphosphines. Molecules, 2012, 17, 14573-14587.
[131]
Jiang, G.; Zhu, C.; Li, J.; Wu, W.; Jiang, H. Silver-catalyzed regio- and stereoselective thiocyanation of haloalkynes: access to (Z)-vinyl thiocyanates. Adv. Synth. Catal., 2017, 359, 1208-1212.
[132]
Rajesh, N.; Prajapati, D. Indium(III) catalysed regio- and stereoselective hydrothiolation of bromoalkynes. RSC Advances, 2014, 4, 32108-32112.
[133]
Clark, T.B.; Woerpel, K.A. Silver-catalyzed silacyclopropenation of 1-heteroatom-substituted alkynes and subsequent rearrangement reactions. Organometallics, 2005, 24, 6212-6219.
[134]
Okoronkwob, A.E.; Godoia, B.; Schumachera, R.F.; Netoa, J.S.S.; Luchesea, C.; Prigola, M.; Nogueiraa, C.W.; Zeni, G. Csp3-tellurium copper cross-coupling: synthesis of alkynyl tellurides a novel class of antidepressive-like compounds. Tetrahedron Lett., 2009, 50, 909-915.
[135]
Ahammed, S.; Bhadra, S.; Kundu, D.; Sreedhar, B.; Ranu, B.C. An efficient and general procedure for the synthesis of alkynyl chalcogenides (selenides and tellurides) by alumina-supported Cu(II)-catalyzed reaction of alkynyl bromides and diphenyl dichalcogenides. Tetrahedron, 2012, 68, 10542-10549.

© 2025 Bentham Science Publishers | Privacy Policy