[1]
Atanasov, A.G.; Waltenberger, B.; Pferschy-Wenzig, E.M.; Linder, T.; Wawrosch, C.; Uhrin, P.; Temml, V.; Wang, L.; Schwaiger, S.; Heiss, E.H. Discovery and resupply of pharmacologically active plant-derived natural products: A review. Biotechnol. Adv., 2015, 33(8), 1582-1614.
[2]
Stratton, C.F.; Newman, D.J.; Tan, D.S. Cheminformatic comparison of approved drugs from natural product versussynthetic origins. Bioorg. Med. Chem. Lett., 2015, 25(21), 4802-4807.
[3]
Evans, B.E.; Rittle, K.E.; Bock, M.G.; Dipardo, R.M.; Freidinger, R.M.; Whitter, W.L.; Lundell, G.F.; Veber, D.F.; Anderson, P.S.; Chang, R.S.L. Methods for drug discovery: Development of potent, selective, orally effective cholecystokinin antagonists. ChemInform, 1988, 31(12), 2235.
[4]
Molinari, G. Natural Products in Drug Discovery: Present Status and Perspectives; Springer New York, 2009, pp. 13-27.
[5]
Koehn, F.E.; Carter, G.T. The evolving role of natural products in drug discovery. Nat. Rev. Drug Discov., 2005, 4(3), 206-220.
[6]
Harvey, A.L. Natural products in drug discovery. Drug Discov. Today, 2008, 13(19), 894-901.
[7]
Patridge, E.; Gareiss, P.; Kinch, M.S.; Hoyer, D. An analysis of FDA-approved drugs: Natural products and their derivatives. Drug Discov. Today, 2016, 21(2), 204-207.
[8]
Newman, D.J.; Cragg, G.M. Natural products as sources of new drugs from 1981 to 2014. J. Nat. Prod., 2016, 79(3), 629.
[9]
Harvey, A.L.; Edradaebel, R.; Quinn, R.J. The re-emergence of natural products for drug discovery in the genomics era. Nat. Rev. Drug Discov., 2015, 14(2), 111.
[10]
Li, H.J.; Yan, J.; Ping, L. Chemistry, bioactivity and geographical diversity of steroidal alkaloids from the Liliaceae family. ChemInform, 2007, 38(5), 735-752.
[11]
Chen, Y.; De, C.B.K.; Kirchmair, J. Data resources for the computer-guided discovery of bioactive natural products. J. Chem. Inf. Model., 2017, 57(9), 2099.
[12]
Rodrigues, T.; Reker, D.; Schneider, P.; Schneider, G. Counting on natural products for drug design. Nat. Chem., 2016, 8(6), 531.
[13]
Shen, J.; Xu, X.; Cheng, F.; Liu, H.; Luo, X.; Shen, J.; Chen, K.; Zhao, W.; Shen, X.; Jiang, H. Virtual screening on natural products for discovering active compounds and target information. Curr. Med. Chem., 2003, 10(21), 2327-2342.
[14]
Yang, J.; Chu, P.; Xiong, Y.H.; Wang, R.; Tang, Y.P.; Duan, J.A. Computer-aided drug design using in the modernization of traditional Chinese medicine. World Clin. Drugs, 2009, 3(1), 1-16.
[15]
Wong, Y.H.; Chiu, C.C.; Lin, C.L.; Chen, T.S.; Jheng, B.R.; Lee, Y.C.; Chen, J.; Chen, B.S. A new era for cancer target therapies: Applying systems biology and computer-aided drug design to cancer therapies. Curr. Pharm. Biotechnol., 2010, 17(14), 1246-1267.
[16]
Yue, Q.; Cao, Z.; Guan, S.; Liu, X.; Tao, L.; Wu, W.; Li, Y.; Yang, P.; Liu, X.; Guo, D. Proteomics characterization of the cytotoxicity mechanism of ganoderic acid D and computer-automated estimation of the possible drug target network. Mol. Cell. Proteomics, 2008, 7(5), 949-961.
[17]
Hatherley, R.; Brown, D.K.; Musyoka, T.M.; Penkler, D.L.; Faya, N.; Lobb, K.A.; Bishop, Ö.T. SANCDB: A South African natural compound database. J. Cheminform., 2015, 7(1), 29.
[18]
Ntie-Kang, F.; Telukunta, K.K.; Döring, K.; Simoben, C.V.; Moumbock, A.F.A.; Malange, Y.I.; Njume, L.E.; Yong, J.N.; Sippl, W.; Günther, S. In NANPDB: A web-accessible and downloadable resource for natural products from Northern African sources European Workshop on Drug Design, 2017.
[19]
Ntiekang, F.; Nwodo, J.N.; Ibezim, A.; Simoben, C.V.; Karaman, B.; Ngwa, V.F.; Sippl, W.; Adikwu, M.U.; Mbaze, L.M. Molecular modeling of potential anticancer agents from African medicinal plants. J. Chem. Inf. Model., 2014, 54(9), 2433-2450.
[20]
Banerjee, P.; Erehman, J.; Gohlke, B.O.; Wilhelm, T.; Preissner, R.; Dunkel, M. Super natural II-a database of natural products. Nucleic Acids Res., 2015, 43(D1), D935-D939.
[21]
Sterling, T.; Irwin, J.J. ZINC 15 - ligand discovery for everyone. J. Chem. Inf. Model., 2015, 55(11), 2324-2337.
[24]
Afendi, F.M.; Okada, T.; Yamazaki, M.; Hirai-Morita, A.; Nakamura, Y.; Nakamura, K.; Ikeda, S.; Takahashi, H.; Altaf-Ul-Amin, M.; Darusman, L.K.; Saito, K.; Kanaya, S. KNApSAcK family databases: Integrated metabolite-plant species databases for multifaceted plant research. Plant Cell Physiol., 2012, 53(2), e1.
[25]
Ohtana, Y.; Abdullah, A.A.; Altaf-Ul-Amin, M.; Huang, M.; Ono, N.; Sato, T.; Sugiura, T.; Horai, H.; Nakamura, Y.; Morita, A.; Lange, K.W.; Kibinge, N.K.; Katsuragi, T.; Shirai, T.; Kanaya, S. Clustering of 3D-structure similarity based network of secondary metabolites reveals their relationships with biological activities. Mol. Inform., 2014, 33(11-12), 790-801.
[26]
Marti, G.; Erb, M.; Boccard, J.; Glauser, G.; Doyen, G.R.; Villard, N.; Robert, C.A.; Turlings, T.C.; Rudaz, S.; Wolfender, J.L. Metabolomics reveals herbivore-induced metabolites of resistance and susceptibility in maize leaves and roots. Plant Cell Environ., 2013, 36(3), 621-639.
[28]
Lazarev, V.F.; Sverchinsky, D.V.; Mikhaylova, E.R.; Semenyuk, P.I.; Komarova, E.Y.; Niskanen, S.A.; Nikotina, A.D.; Burakov, A.V.; Kartsev, V.G.; Guzhova, I.V. Sensitizing tumor cells to conventional drugs: HSP70 chaperone inhibitors, their selection and application in cancer models. Cell Death Dis., 2018, 9(2), 41.
[29]
Hozumi, I.; Inuzuka, T.; Hiraiwa, M.; Uchida, Y.; Anezaki, T.; Ishiguro, H.; Kobayashi, H.; Uda, Y.; Miyatake, T.; Tsuji, S. Changes of growth inhibitory factor after stab wounds in rat brain. Brain Res., 1995, 688(1-2), 143-148.
[30]
Yamada, M.; Hayashi, S.; Hozumi, I.; Inuzuka, T.; Tsuji, S.; Takahashi, H. Subcellular localization of growth inhibitory factor in rat brain: light and electron microscopic immunohistochemical studies. Brain Res., 1996, 735(2), 257.
[31]
Roy, S.; Kumar, A.; Baig, M.H.; Masařík, M.; Provazník, I. Virtual screening, ADMET profiling, molecular docking and dynamics approaches to search for potent selective natural molecules based inhibitors against metallothionein-III to study Alzheimer’s disease. Methods, 2015, 83, 105-110.
[33]
Jouda, J.B.; Mawabo, I.K.; Notedji, A.; Mbazoa, C.D.; Nkenfou, J.; Wandji, J.; Nkenfou, C.N. Anti-mycobacterial activity of polyketides from Penicillium sp. endophyte isolated from Garcinia nobilis against Mycobacterium smegmatis. Int. J. Mycobacteriol., 2016, 5(2), 192.
[34]
Lee, H.H.; Molla, M.N.; Cantor, C.R.; Collins, J.J. Bacterial charity work leads to population-wide resistance. Nature, 2010, 467(7311), 82-85.
[35]
Elena, C.; Marisela, T.; Jianni, X.; Sucha, S.; Johnson, D.E. Interactions between traditional Chinese medicines and Western therapeutics. Curr. Opin. Drug Discov. Devel., 2010, 13(1), 50-65.
[36]
Xue, R.; Fang, Z.; Zhang, M.; Yi, Z.; Wen, C.; Shi, T. TCMID: Traditional Chinese medicine integrative database for herb molecular mechanism analysis. Nucleic Acids Res., 2013, 41(Database issue), D1089.
[37]
Huang, L.; Xie, D.; Yu, Y.; Liu, H.; Shi, Y.; Shi, T.; Wen, C. TCMID 2.0: A comprehensive resource for TCM. Nucleic Acids Res., 2018, 46(Database issue), D1117-D1120.
[38]
Xie, D.; Huang, L.; Zhao, G.; Yu, Y.; Gao, J.; Li, H.; Wen, C. Dissecting the underlying pharmaceutical mechanism of Chinese traditional medicine Yun-Pi-Yi-Shen-Tong-Du-Tang acting on ankylosing spondylitis through systems biology approaches. Sci. Rep., 2017, 7(1), 13436.
[39]
Tsai, T.Y.; Chang, K.W.; Chen, Y.C. iScreen: World’s first cloud-computing web server for virtual screening and de novo drug design based on TCM database@Taiwan. J. Comput. Aided Mol. Des., 2011, 25(6), 525-531.
[40]
Yang, S.C.; Chang, S.S.; Chen, Y.C. Identifying HER2 inhibitors from natural products database. PLoS One, 2011, 6(12), e28793.
[41]
Graham, J.E.; Lees, S.; Marcis, F.L.; Faye, S.L.; Lorway, R.R.; Ronse, M.; Abramowitz, S.; Grietens, K.P. Prepared for the ‘unexpected’? Lessons from the 2014-2016 Ebola epidemic in West Africa on integrating emergent theory designs into outbreak response. BMJ Glob. Health, 2018, 3(4), 1-3.
[42]
Dixon, M.G.; Schafer, I.J. Ebola viral disease outbreak--West Africa, 2014. Ann. Emerg. Med., 2015, 65(1), 114-115.
[43]
Organization, W.H. Ebola data and statistics., 2014.
[44]
Karthick, V.; Nagasundaram, N.; Doss, C.G.P.; Chakraborty, C.; Siva, R.; Lu, A.; Zhang, G.; Zhu, H. Virtual screening of the inhibitors targeting at the viral protein 40 of Ebola virus. Infect. Dis. Poverty, 2016, 5(1), 12.
[45]
Kaczorowski, G.J.; Garcia, M.L. Pharmacology of voltage-gated and calcium-activated potassium channels. Curr. Opin. Chem. Biol., 1999, 3(4), 448-458.
[46]
Pires, D.E.V.; Blundell, T.L.; Ascher, D.B. pkCSM: Predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures. J. Med. Chem., 2015, 58(9), 4066-4072.
[47]
Bhattaram, V.A.; Graefe, U.; Kohlert, C.; Veit, M.; Derendorf, H. Pharmacokinetics and bioavailability of herbal medicinal products. Phytomedicine, 2002, 9(Suppl. 3), 1-33.
[48]
Dongyue, C.; Junmei, W.; Rui, Z.; Youyong, L.; Huidong, Y.; Tingjun, H. ADMET evaluation in drug discovery. 11. PharmacoKinetics Knowledge Base (PKKB): A comprehensive database of pharmacokinetic and toxic properties for drugs. J. Chem. Inf. Model., 2012, 52(5), 1132-1137.
[49]
Obach, R.; Lombardo, F.; Waters, N.J. Trend analysis of a database of intravenous pharmacokinetic parameters in humans for 670 drug compounds. Drug Metab. Dispos., 2008, 36(7), 1385-1405.
[50]
Matthews, E.J.; Kruhlak, N.L.R.; Daniel, B.; Contrera, J.F. Assessment of the health effects of chemicals in humans: I. QSAR estimation of the maximum recommended therapeutic dose (MRTD) and no effect level (NOEL) of organic chemicals based on clinical trial data. Curr. Drug Discov. Technol., 2004, 1(1), 61-76.
[51]
Yan, A.; Liang, H.; Chong, Y.; Nie, X.; Yu, C. In-silico prediction of blood-brain barrier permeability. SAR QSAR Environ. Res., 2013, 24(1), 61-74.
[52]
Vivian, L.; Craig, K.; Yannick, D.; Tim, J.; An Chi, G.; Yifeng, L.; Adam, M.; David, A.; Michael, W.; Vanessa, N. DrugBank 4.0: shedding new light on drug metabolism. Nucleic Acids Res., 2014, 42(Database issue), 1091-1097.
[53]
Breiman, L. Random forests, machine learning 45. J. Clin. Microbiol., 2001, 2, 199-228.
[54]
Fact SheetTOXNET®: Toxicology Data Network.
[55]
Zeng, X.; Zhang, P.; He, W.; Qin, C.; Chen, S.; Tao, L.; Wang, Y.; Tan, Y.; Gao, D.; Wang, B. NPASS: Natural product activity and species source database for natural product research, discovery and tool development. Nucleic Acids Res., 2018, 46(Database issue), D1217-D1222.
[56]
Han, V.D.W.; Eric, G. ADMET in silico modelling: Towards prediction paradise? Nat. Rev. Drug Discov., 2003, 2(3), 192-204.
[57]
Matias, M.; Fortuna, A.; Bicker, J.; Silvestre, S.; Falcão, A.; Alves, G. Screening of pharmacokinetic properties of fifty dihydropyrimidin(thi)ones derivatives using a combo of in vitro and in silico assays. Eur. J. Pharm. Sci., 2017, 109, 334-346.
[58]
Zhao, J.; Wang, G.; Del Mundo, I.M.; Mckinney, J.A.; Lu, X.; Bacolla, A.; Boulware, S.B.; Zhang, C.; Zhang, H.; Ren, P. Distinct mechanisms of nuclease-directed DNA-structure-induced genetic instability in cancer genomes. Cell Reports, 2018, 22(5), 1200-1210.
[59]
Suzuki, H.I.; Young, R.A.; Sharp, P.A. Super-enhancer-mediated RNA processing revealed by integrative microRNA network analysis. Cell, 2017, 168(6), 1000-1014.
[60]
Nucera, S.; Giustacchini, A.; Boccalatte, F.; Calabria, A.; Fanciullo, C.; Plati, T.; Ranghetti, A.; Garcia-Manteiga, J.; Cittaro, D.; Benedicenti, F. miRNA-126 orchestrates an oncogenic program in B cell precursor acute lymphoblastic Leukemia. Cancer Cell, 2016, 29(6), 905-921.
[61]
Lagardère, L.; Jolly, L.H.; Lipparini, F.; Aviat, F.; Stamm, B.; Jing, Z.F.; Harger, M.; Torabifard, H.; Cisneros, G.A.; Schnieders, M.J. Tinker-HP: A massively parallel molecular dynamics package for multiscale simulations of large complex systems with advanced point dipole polarizable force fields. Chem. Sci., 2017, 9(4), 956-972.
[62]
Zhang, L.; Ai, H.X.; Li, S.M.; Qi, M.Y.; Zhao, J.; Zhao, Q.; Liu, H.S. Virtual screening approach to identifying influenza virus neuraminidase inhibitors using molecular docking combined with machine-learning-based scoring function. Oncotarget, 2017, 8(47), 83142.