[1]
Armellini, R.; Peinado, I.; Pittia, P.; Scampicchio, M.; Heredia, A.; Andres, A. Effect of Saffron (Crocus sativus L.) enrichment on antioxidant and sensorial properties of wheat flour pasta. Food Chem., 2018, 254, 55-63.
[2]
Chillo, S.; Laverse, J.; Falcone, P.M.; Protopapa, A.; Del Nobile, M.A. Influence of the addition of buckwheat flour and durum wheat bran on spaghetti quality. J. Cereal Sci., 2008, 47(2), 144-152.
[3]
Hirawan, R.; Ser, W.Y.; Arntfield, S.D.; Beta, T. Antioxidant properties of commercial, regular- and whole-wheat spaghetti. Food Chem., 2010, 119(1), 258-264.
[4]
Tian, J.; Liiu, Y.; Liu, Y.; Chen, K.; Lyu, S. Cellular and molecular mechanisms of diabetic atherosclerosis: Herbal medicines as a potential therapeutic approach. Oxid. Med. Cell. Longev., 2017, 20179080869
[5]
Liu, Q.; Li, J.; Hartstone-Rose, A.; Wang, J.; Li, J.; Janicki, J.S.; Fan, D. Chinese herbal compounds for the prevention and treatment of atherosclerosis: Experimental evidence and mechanisms. Evidence-based Complement. Altern. Med., 2015, 2015752610
[6]
Cheng, Y-C.; Sheen, J-M.; Hu, W.L.; Hung, Y-C. Polyphenols and oxidative stress in atherosclerosis-related ischemic heart disease and stroke. Oxid. Med. Cell. Longev., 2017, 20178526438
[7]
Pollio, A.; Zarrelli, A.; Romanucci, V.; Mauro, A.D.; Barra, F.; Pinto, G.; Crescenzi, E.; Roscetto, E.; Palumbo, G. Polyphenolic profile and targeted bioactivity of methanolic extracts from Mediterranean ethnomedicinal plants on human cancer cell lines. Molecules, 2016, 21(4), art. no 395.
[8]
Di Fabio, G.; Romanucci, V.; Di Marino, C.; Pisanti, A. Gymnema sylvestre R. Br., an Indian medicinal herb: Traditional uses, chemical composition, and biological activity. Curr. Pharm. Biotechnol., 2015, 16(6), 506-516.
[9]
Di Fabio, G.; Romanucci, V.; Zarrelli, M.; Giordano, M.; Zarrelli, A. C-4 gem-dimethylated oleanes of Gymnema sylvestre and their pharmacological activities. Molecules, 2013, 18(12), 14892-14919.
[10]
Li, M.; Zhu, K-X.; Guo, X-N.; Brijs, K.; Zhou, H-M. Natural additives in wheat-based pasta and noodle products: Opportunities for enhanced nutritional and functional properties. Compr. Rev. Food Sci. Food Saf., 2014, 13(4), 347-357.
[11]
Pasqualone, A.; Punzi, R.; Trani, A.; Summo, C.; Paradiso, V.M.; Caponio, F.; Gambacorta, G. Enrichment of fresh pasta with antioxidant extracts obtained from artichoke canning by-products by ultrasound-assisted technology and quality characterisation of the end product. Int. J. Food Sci. Technol., 2017, 52(9), 2078-2087.
[12]
Sant’Anna, V.; Christiano, F.D.P.; Marczak, L.D.F.; Tessaro, I.C.; Thys, R.C.S. The effect of the incorporation of grape marc powder in Fettuccini pasta properties. LWT - Food Sci. Technol., 2014, 58(2), 497-501.
[13]
Rodríguez De Marco, E.; Steffolani, M.E.; Martínez, C.S.; León, A.E. Effects of spirulina biomass on the technological and nutritional quality of bread wheat pasta. LWT - Food Sci. Technol., 2014, 58(1), 102-108.
[14]
Jan, K.N.; Zarafshan, K.; Singh, S. Stinging nettle(Urtica dioica L.): A reservoir of nutrition and bioactive components with great functional potential. J. Food Meas. Charact., 2017, 11(2), 423-433.
[15]
Gabrieli, C.N.; Kefalas, P.G.; Kokkalou, E.L. Antioxidant activity of flavonoids from Sideritis raeseri. J. Ethnopharmacol., 2005, 96(3), 423-428.
[16]
Güvenç, A.; Okada, Y.; Akkol, E.K.; Duman, H.; Okuyama, T.; Çaliş, I. Investigations of anti-inflammatory, antinociceptive, antioxidant and aldose reductase inhibitory activities of phenolic compounds from Sideritis brevibracteata. Food Chem., 2010, 118(3), 686-692.
[17]
Gergis, V.; Spiliotis, V.; Poulos, C. Antimicrobial activity of essential oils from greek sideritis species. Pharmazie, 1990, 45(1), 70.
[18]
Ferrer-Gallego, P.P.; Laguna, E.; Crespo, M.B. Typification of six linnaean names in Cistus L.(Cistaceae). Taxon, 2013, 62(5), 1046-1049.
[19]
Omur Demirezer, L.; Guvenalp, Z.; Kuruuzum-Uz, A.; Kazaz, C. Labdane-type diterpenes from Cistus creticus. Chem. Nat. Compd., 2012, 48(2), 337-338.
[20]
Sultana, B.; Anwar, F.; Ashraf, M. Effect of extraction solvent/technique on the antioxidant activity of selected medicinal plant extracts. Molecules, 2009, 14(6), 2167-2180.
[21]
Singleton, V.L.; Rossi, J.A. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic., 1965, 16, 144-158.
[22]
Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med., 1999, 26(9-10), 1231-1237.
[23]
Apak, R.; Güçlü, K.; Özyürek, M.; Karademir, S.E. Novel total antioxidant capacity index for dietary polyphenols and vitamins c and e, using their cupric ion reducing capability in the presence of neocuproine: CUPRAC Method. J. Agric. Food Chem., 2004, 52(26), 7970-7981.
[24]
Karantonis, H.C.; Antonopoulou, S.; Perrea, D.N.; Sokolis, D.P.; Theocharis, S.E.; Kavantzas, N.; Iliopoulos, D.G.; Demopoulos, C.A. In vivo antiatherogenic properties of olive oil and its constituent lipid classes in hyperlipidemic rabbits. Nutr. Metab. Cardiovasc. Dis., 2006, 16(3), 174-185.
[25]
Schnitzer, E.; Pinchuk, I.; Bor, A.; Fainaru, M.; Samuni, A.M.; Lichtenberg, D. Lipid oxidation in unfractionated serum and plasma. Chem. Phys. Lipids, 1998, 92(2), 151-170.
[26]
Vinholes, J.; Grosso, C.; Andrade, P.B.; Gil-Izquierdo, A.; Valentão, P.; Pinho, P.G.D.; Ferreres, F. In vitro studies to assess the antidiabetic, anti-cholinesterase and antioxidant potential of Spergularia rubra. Food Chem., 2011, 129(2), 454-462.
[27]
Kavtaradze, N.S.; Alaniya, M.D. Anthocyan glucosides from Urtica dioica. Chem. Nat. Compd., 2003, 39(3), 315.
[28]
Obertreis, B.; Giller, K.; Teucher, T.; Behnke, B.; Schmitz, H. Antiphlogistic effects of Urtica dioica folia extract in comparison to caffeic malic acid antiphlogistische effekte von extractum Urticae dioicae Foliorum im Vergleich zu kaffeoylapfelsaure. Arzneimittel-Forschung. Drug Res., 1996, 46(1), 52-56.
[29]
Sajfrtová, M.; Sovová, H.; Opletal, L.; Bártlová, M. Near-critical extraction of β-sitosterol and scopoletin from stinging nettle roots. J. Supercrit. Fluids, 2005, 35(2), 111-118.
[30]
Toldy, A.; Stadler, K.; Sasvári, M.; Jakus, J.; Jung, K.J.; Chung, H.Y.; Berkes, I.; Nyakas, C.; Radák, Z. The effect of exercise and nettle supplementation on oxidative stress markers in the rat brain. Brain Res. Bull., 2005, 65(6), 487-493.
[31]
Kataki, M.S.; Murugamani, V.; Rajkumari, A.; Mehra, P.S.; Awasthi, D.; Yadav, R.S. Antioxidant, hepatoprotective, and anthelmintic activities of methanol extract of Urtica dioica L. leaves. Pharm. Crop., 2012, 3(6), 38-46.
[32]
Güder, A.; Korkmaz, H. Evaluation of in-vitro antioxidant properties of hydroalcoholic solution extracts Urtica dioica L., Malva neglecta Wallr. and their mixture. Iran. J. Pharm. Res., 2012, 11(3), 913-923.
[33]
Baeuerle, P.A.; Henkel, T. Function and Activation of NF-KB in the Immune System. Annu. Rev. Immunol., 1994, 12, 141-179.
[34]
Roschek, Jr B.; Fink, R.C.; McMichael, M.; Alberte, R.S. Nettle extract (Urtica dioica) affects key receptors and enzymes associated with allergic rhinitis. Phyther. Res., 2009, 23(7), 920-926.
[35]
Stavric, B. Quercetin in our diet: From potent mutagen to probable anticarcinogen. Clin. Biochem., 1994, 27(4), 245-248.
[36]
Simões-Pires, C.A.; Hmicha, B.; Marston, A.; Hostettmann, K. A TLC bioautographic method for the detection of α- and β-glucosidase inhibitors in plant extracts. Phytochem. Anal., 2009, 20(6), 511-515.
[37]
Das, M.; Sarma, B.P.; Khan, A.K.A.; Mosihuzzaman, M.; Nahar, N.; Ali, L.; Bhoumik, A.; Rokeya, B. The antidiabetic and antilipidemic activity of aqueous extract of Urtica dioica L. on type2 diabetic model rats. J. Biosci., 2009, 17(1), 1-6.
[38]
Farzami, B.; Ahmadvand, D.; Vardasbi, S.; Majin, F.J.; Khaghani, S. Induction of insulin secretion by a component of urtica dioica leave extract in perifused islets of langerhans and its in vivo effects in normal and streptozotocin diabetic rats. J. Ethnopharmacol., 2003, 89(1), 47-53.
[39]
Triantaphyllou, K.; Blekas, G.; Boskou, D. Antioxidative properties of water extracts obtained from herbs of the species Lamiaceae. Int. J. Food Sci. Nutr., 2001, 52(4), 313-317.
[40]
Tunalier, Z.; Kosar, M.; Ozturk, N.; Baser, K.H.C.; Duman, H.; Kirimer, N. Antioxidant properties and phenolic composition of sideritis species. Chem. Nat. Compd., 2004, 40(3), 206-210.
[41]
Danesi, F.; Saha, S.; Kroon, P.A.; Glibetić, M.; Konić-Ristić, A.; D’Antuono, L.F.; Bordoni, A. Bioactive-rich sideritis scardica tea (mountain tea) is as potent as Camellia sinensis tea at inducing cellular antioxidant defences and preventing oxidative stress. J. Sci. Food Agric., 2013, 93(14), 3558-3564.
[42]
Charami, M-T.; Lazari, D.; Karioti, A.; Skaltsa, H.; Hadjipavlou-Litina, D.; Souleies, C. Antioxidant and antiinflammatory activities of sideritis perfoliata subsp. Perfoliata (Lamiaceae). Phyther. Res., 2008, 22(4), 450-454.
[43]
Romanucci, V.; Di Fabio, G.; D’Alonzo, D.; Guaragna, A.; Scapagnini, G.; Zarrelli, A. Traditional uses, chemical composition and biological activities of sideritis Raeseri boiss. Heldr. J. Sci. Food Agric., 2017, 97(2), 373-383.
[44]
Stagos, D.; Portesis, N.; Spanou, C.; Mossialos, D.; Aligiannis, N.; Chaita, E.; Panagoulis, C.; Reri, E.; Skaltsounis, L.; Tsatsakis, A.M.; Kouretas, D. Correlation of total polyphenolic content with antioxidant and antibacterial activity of 24 extracts from greek domestic Lamiaceae species. Food Chem. Toxicol., 2012, 50(11), 4115-4124.
[45]
Shen, C.; Zhang, Y. Antimicrobial resistance of commensal bacteria from the environment. In: Food Microbiology Laboratory for the Food Science Student; Publishing: Cham, 2017; pp. 87-89.
[46]
Karantonis, H.C.; Zabetakis, I.; Nomikos, T.; Demopoulos, C.A. Antiatherogenic properties of lipid minor constituents from seed oils. J. Sci. Food Agric., 2003, 83(12), 1192-1204.
[47]
González-Burgos, E.; Carretero, M.E.; Gómez-Serranillos, M.P. Nrf2-dependent neuroprotective activity of diterpenoids isolated from Sideritis spp. J. Ethnopharmacol., 2013, 147(3), 645-652.
[48]
González-Burgos, E.; Carretero, M.E.; Gómez-Serranillos, M.P. Kaurane diterpenes from sideritis spp. exert a cytoprotective effect against oxidative injury that is associated with modulation of the Nrf2 system. Phytochemistry, 2013, 93, 116-123.
[49]
Scapagnini, G.; Sonya, V.; Nader, A.G.; Calogero, C.; Zella, D.; Fabio, G. Modulation of Nrf2/ARE pathway by food polyphenols: a nutritional neuroprotective strategy for cognitive and neurodegenerative disorders. Mol. Neurobiol., 2011, 44(2), 192-201.
[50]
Harrison, D.G.; Gongora, M.C. Oxidative stress and hypertension. Med. Clin. North Am., 2009, 93(3), 621-635.
[51]
Strobel, N.A.; Fassett, R.G.; Marsh, S.A.; Coombes, J.S. Oxidative stress biomarkers as predictors of cardiovascular disease. Int. J. Cardiol., 2011, 147(2), 191-201.
[52]
Demetzos, C.; Mitaku, S.; Hottellier, F.; Harvala, A. Polyphenolic glycosides from Cistus creticus L. leaves. Ann. Pharm. Fr., 1989, 47(5), 314-318.
[53]
Vogt, T.; Proksch, P.; Gülz, P-G. Epicuticular flavonoid aglycones in the genus cistus, Cistaceae. J. Plant Physiol., 1987, 131(1-2), 25-36.
[54]
Demetzos, C.; Katerinopoulos, H.; Kouvarakis, A.; Stratigakis, N.; Loukis, A.; Ekonomakis, C.; Spiliotis, V.; Tsaknis, J. Composition and antimicrobial activity of the essential oil of Cistus creticus Subsp. Eriocephalus. Planta Med., 1997, 63(5), 477-479.
[55]
Rauwald, H.W.; Hutschenreuther, A.; Birkemeyer, C.; Grötzinger, K.; Straubinger, R.K. Growth inhibiting activity of volatile oil from Cistus creticus L. against Borrelia burgdorferi s.s. in vitro. Pharmazie, 2010, 65(4), 290-295.
[56]
Atsalakis, E.; Chinou, I.; Makropoulou, M.; Karabournioti, S.; Graikou, K. Evaluation of phenolic compounds in Cistus creticus bee pollen from Greece. Antioxidant and antimicrobial properties. Nat. Prod. Commun., 2017, 12(11), 1813-1816.
[57]
Skorić, M.; Todorović, S.; Gligorijević, N.; Janković, R.; Živković, S.; Ristić, M.; Radulović, S. Cytotoxic activity of ethanol extracts of in vitro grown Cistus creticus Subsp. Creticus L. on human cancer cell lines. Ind. Crops Prod., 2012, 38(1), 153-159.
[58]
Feliciano, R.; Istas, G.; Heiss, C.; Rodriguez-Mateos, A. Plasma and urinary phenolic profiles after acute and repetitive intake of wild blueberry. Molecules, 2016, 21, 1120.
[59]
Bonetti, G.; Tedeschi, P.; Meca, G.; Bertelli, D.; Mañes, J.; Brandolini, V.; Maietti, A. In vitro bioaccessibility, transepithelial transport and antioxidant activity of Urtica dioica L. phenolic compounds in nettle based food products. Food Funct., 2016, 7(10), 4222-4230.
[60]
Stanoeva, J.P.; Bagashovska, D.; Stefova, M. Characterization of urinary bioactive phenolic metabolites excreted after consumption of a cup of mountain tea (Sideritis scardica) using liquid chromatography - tandem mass spectrometry. Macedonian J. Chemic. Engin., 2012, 31(2), 229-243.