Generic placeholder image

Current Organocatalysis

Editor-in-Chief

ISSN (Print): 2213-3372
ISSN (Online): 2213-3380

Review Article

Assessment of Chitosan Based Catalyst and their Mode of Action

Author(s): Dipika Pan and Jhuma Ganguly*

Volume 6, Issue 2, 2019

Page: [106 - 138] Pages: 33

DOI: 10.2174/2213337206666190327174103

Abstract

Introduction: The popularity of chitosan is increasing among the researchers due to its environment friendly nature, high activity and easy approachability. Chitosan based catalysts are not only the most active and selective in catalytic reaction, but their “green” accessibility also makes them promising in organic catalysis. Chitosan is commonly extracted from chitin by alkaline deacetylation and it is the second abundant biopolymer in nature after cellulose. Chitosan based catalysts are advantageous by means of non-metallic activation as it involves small organic molecules. The robustness, nontoxicity, the lack of metal leaching possibility, inertness towards moisture and oxygen, easy handling and storage are the main advantages of organocatalysts. Traditional drawbacks associated with the metal-based heterogeneous catalysts, like longer reaction times during any synthesis, metal-leaching after every reaction and structural instability of the catalyst for prolonged recycling experiments are also very negligible for chitosan based catalysts. Besides, these catalysts can contribute more in catalysis due to their reusability and these special features increase their demand as the functionalized and profitable catalysts.

Objectives: The thorough description about the preparation of organocatalysts from chitosan and their uniqueness and novel activities in various famous reactions includes as the main aim of this review. Reusable and recycle nature of chitosan based organocatalysts gain the advantages over traditional and conventional catalyst which is further discussed over here.

Methods and Discussions: In this article only those reactions are discussed where chitosan has been used both as support in heterogeneous catalysts or used as a catalyst itself without any co-catalyst for some reactions. Owing to its high biodegradability, nontoxicity, and antimicrobial properties, chitosan is widely-used as a green and sustainable polymeric catalyst in vast number of the reactions. Most of the preparations of catalyst have been achieved by exploring the complexation properties of chitosan with metal ions in heterogeneous molecular catalysis. Organocatalysis with chitosan is primarily discussed for carbon-carbon bond-forming reactions, carbon dioxide fixation through cyclo- addition reaction, condensation reaction and fine chemical synthesis reactions. Furthermore, its application as an enantioselective catalyst is also considered here for the chiral, helical organization of the chitosan skeleton. Moreover, another advantage of this polymeric catalyst is its easy recovery and reusability for several times under solvent-free conditions which is also explored in the current article.

Conclusion: Important organocatalyzed reactions with either native chitosan or functionalized chitosan as catalysts have attracted great attention in the recent past. Also, chitosan has been widely used as a very promising support for the immobilization of catalytic metals for many reactions. In this review, various reactions have been discussed which show the potentiality of chitosan as catalyst or catalyst support.

Keywords: Activity, biocompatibility, chitosan, enantioselectivity, organocatalyst, recyclability.

Next »
Graphical Abstract

[1]
Dalko, P.I.; Moisan, L. In the golden age of organocatalysis. Angew. Chem., 2004, 43, 5138-5175.
[2]
Höfer, R.; Bigorra, J. Green chemistry-a sustainable solution for industrial specialties applications. J. Green Chem, 2007, 9, 203-212.
[3]
List, B. Introduction: Organocatalysis. Chem. Rev., 2007, 107, 5413-5415.
[4]
Yu, J.; Shi, F.; Gong, L.Z. Brønsted-acid-catalyzed asymmetric multicomponent reactions for the facile synthesis of highly enantioenriched structurally diverse nitrogenous heterocycles. Acc. Chem. Res., 2011, 44, 1156-1171.
[5]
Das, B.; Ravikanth, B.; Ramu, R.; Laxminarayana, K.; Rao, B.V. Iodine catalyzed simple and efficient synthesis of 14-aryl or alkyl-14-H-dibenzo[a,j]xanthenes. J. Mol. Catal. A: Chem., 2006, 255, 74-77.
[6]
Karatepe, O.; Yıldız, Y.; Pamuk, H.; Eris, S.; Dasdelen, Z.; Sen, F. Enhanced electrocatalytic activity and durability of highly monodisperse Pt@PPy-PANI nanocomposites as a novel catalyst for the electrooxidation of methanol. RSC Advances, 2016, 6, 50851-50857.
[7]
Göksu, H.; Yıldız, Y.; Yazıcı, M.; Kılbas, B.; Sen, F. Highly Efficient and monodisperse graphene oxide furnished Ru/Pd nanoparticles for the dehalogenation of aryl halides via ammonia borane. ChemistrySelect, 2016, 5, 953-958.
[8]
Wang, Y.; Wang, X.; Antonietti, M. polymeric graphitic carbon nitride as a heterogeneous organocatalyst: from photochemistry to multipurpose catalysis to sustainable chemistry. Angew. Chem. Int. Ed., 2012, 51, 68-89.
[9]
Kristensen, T.E.; Hansen, T. Polymer-supported chiral organocatalysts: syntheticstrategies for the road towards affordable polymeric immobilization. Eur. J. Org. Chem., 2010, 17, 3179-3204.
[10]
Bellomo, A.; Daniellou, R.; Plusquellec, D. Aqueous solutions of facial amphiphilic carbohydrates as sustainable media for organocatalyzed direct aldol reactions. Green Chem., 2012, 14, 281-284.
[11]
Kaplan, D.L. Biopolymers from Renewable Resources; Springer: Berlin, 1998.
[12]
Buisson, P.; Quignard, F. Polysaccharides: natural polymeric supports for aqueous phase catalysts in the allylic substitution reaction. Aust. J. Chem., 2002, 55, 73-78.
[13]
No, H.K.; Park, N.Y.; Lee, S. Ho.; Meyers, S.P. Antibacterial activity of chitosans and chitosan oligomers with different molecular weights. Int. J. Food Microbiol., 2002, 74, 65-72.
[14]
Sashiwa, H.; Aiba, S. Chemically modified chitin and chitosan as biomaterials. Prog. Polym. Sci., 2004, 29, 887-908.
[15]
Kurita, K. Chitin and Chitosan: Functional biopolymers from marine crustaceans. Mar. Biotechnol. , 2006, 8, 203-226.
[16]
Maity, S.; Dutta, A.; Lahiri, S.; Ganguly, J. Selective separation of 152Eu from a mixture of 152Eu and 137Cs using a chitosan based hydrogel. RSC Advances, 2015, 5, 89338-89345.
[17]
Guibal, E. Heterogeneous catalysis on chitosan-based materials: a review. Prog. Polym. Sci., 2005, 30, 71-109.
[18]
Basavaraju, K.C.; Sharma, S.; Singh, A.K. Im, D.J.; Kim, D.-P. Chitosan‐microreactor: A versatile approach for heterogeneous organic synthesis in microfluidics. ChemSusChem, 2014, 7, 1864-1869.
[19]
Rinaudo, M. Chitin and chitosan: Properties and applications. Prog. Polym. Sci., 2006, 31, 603-632.
[20]
Huai-min, G.; Xian-su, C. Study of cobalt (II)-chitosan coordination polymer and its catalytic activity and selectivity forvinyl monomer polymerization. Polym. Adv. Technol., 2004, 15, 89-92.
[21]
Calo’, V.; Nacci, A.; Monopoli, A.; Fornaro, L.; Sabbatini, L.; Cioffi, N.; Ditaranto, N. Heck reaction catalyzed by nanosized palladium on chitosan in ionic liquids. Organometallics, 2004, 23, 5154-5158.
[22]
Quignard, F.; Choplin, A.; Domard, A. Chitosan: A natural polymeric support of catalystsfor the synthesis of fine chemicals. Langmuir, 2000, 16, 9106-9108.
[23]
Sun, W.; Xia, C-G.; Wang, H-W. Efficient heterogeneous catalysts for the cyclopropanation of olefins. New J. Chem., 2002, 26, 755-758.
[24]
Kucherov, A.V.; Kramareva, N.V.; Finashima, E.D.; Koklinand, A.E.; Kustova, L.M. Heterogenized redox catalysts on the basis of the chitosan matrix: 1. Copper complexes. J. Mol. Catal. A: Chem., 2003, 198, 377-389.
[25]
Maity, S.; Parshi, N.; Prodhan, C.; Chaudhuri, K.; Ganguly, J. Characterization of a fluorescent hydrogel synthesized using chitosan, polyvinyl alcohol and 9-anthraldehyde for the selective detection and discrimination of trace Fe3+ and Fe2+ in water for live-cell imaging. Carbohydr. Polym., 2018, 193, 119-128.
[26]
Zhang, H.; Zhao, W.; Zou, J.; Liu, Y.; Li, R.; Cui, Y. Aldol reaction catalyzed by a hydrophilic catalyst in aqueous micelle as an enzyme mimic system. Chirality, 2009, 21, 492-496.
[27]
Pestova, A.V.; Privara, Y.O.; Modina, E.B.; Ustinova, A.Y.; Bratskayaa, S.Y. Granulated catalytic materials based on chitosan and its derivatives. Polym. Sci. Ser. B, 2016, 58(6), 730-735.
[28]
Qin, C.; Li, H.; Xiao, Q.; Liu, Y.; Zhu, J.; Du, Y. Water solubility of chitosan and its antimicrobial activity. Carbohydr. Polym., 2006, 63, 367-374.
[29]
Il’ina, A.V.; Varlamov, V.P. Effect of the degree of acetylation of chitosan on its enzymatic hydrolysis with the preparation celloviridin G20kh. Appl. Biochem. Microbiol., 2003, 39, 239-243.
[30]
Shchipunov, Y.; Sarin, S.; Kim, Il.; Ha, C-S. Hydrogels formed through regulated self-organization of graduallycharging chitosan in solution of xanthan. Green Chem., 2010, 12, 1187-1195.
[31]
Ricci, A.; Bernardi, L.; Gioia, C.; Vierucci, S.; Robitzerb, M.; Quignard, F. Chitosan aerogel: arecyclable, heterogeneous organocatalyst for the asymmetric direct aldol reaction in water. Chem. Commun. , 2010, 46, 6288-6290.
[32]
Kühbeck, D.; Saidulu, G.; Reddy, K.R.; Díaz, D. Critical assessment of the efficiency of chitosanbiohydrogel beads as recyclable and heterogeneous organocatalyst for C-C bond formation. Green Chem., 2012, 14, 378-392.
[33]
Qin, Y.; Zhao, W.; Yang, L.; Zhang, X.; Cui, Y. Chitosan-Based heterogeneous catalysts for enantioselective michael reaction. Chirality, 2012, 24, 640-645.
[34]
Sahu, P.K.; Sahu, P.K.; Gupta, S.K.; Agarwal, D.D. Chitosan: An efficient, reusable, and biodegradable catalyst for green synthesis of heterocycles. Ind. Eng. Chem. Res., 2014, 53, 2085-2091.
[35]
Bommarius, A.S.; Riebel, B.R. Biocatalysis: Fundamentals and Applications; Wiley-VCH: Weinheim, Germany, 2004.
[36]
Reddy, K. Rajender; Rajgopal, K.; Maheswari, C.U.; Kantam, M.L. A green and recyclable biopolymer catalyst for aldol and Knoevenagel reactions. New J. Chem., 2006, 30, 1549-1552.
[37]
Roberts, G.A.F.; Taylo, K.E. Chitosan gels, The formation of gels by reaction of chitosan with glutaraldehyde. Makromol. Chem., 1989, 190, 951-960.
[38]
Wei, Y.C.; Hudson, S.M.; Mayer, J.M.; Kaplan, D.L.J. The crosslinking of chitosan fibers. Polym. Sci. Part A, 1992, 30, 2187-2193.
[39]
Zeng, X.; Ruckenstein, E. Trypsin purification by p-aminobenzamidine immobilized on macroporous chitosan membranes. Ind. Eng. Chem. Res., 1998, 37, 159-165.
[40]
Quignard, F.; Valentin, R.; Renzo, F.D. Aerogel material from marine polysaccharides. New J. Chem., 2008, 32, 1300-1310.
[41]
Quignard, F.; Choplin, A.; Domard, A. Chitosan: A natural polymeric support of catalysts for the synthesis of fine chemicals. Langmuir, 2000, 16, 9106-9108.
[42]
Hardy, J.J.E.; Hubert, S.; Macquarrie, D.J.; Wilson, A.J. Chitosan-based heterogeneous catalysts for Suzuki and Heck reactions. Green Chem., 2004, 6, 53-56.
[43]
Varma, A.J.; Deshpande, S.V.; Kennedy, J.F. Metal complexation by chitosan and its derivatives: a review. Carbohydr. Polym., 2004, 55(1), 77-93.
[44]
Choplin, A.; Quignard, F. From supported homogeneous catalysts to heterogeneous molecular catalysts. Coord. Chem. Rev., 1998, 1679, 178-180.
[45]
Arhancet, J.P.; Davis, M.E.; Merola, J.S.; Hanson, B.E. Hydroformylation by Rhodium supported catalyst. Nature, 1989, 339, 454-455.
[46]
Whitfield, D.M.; Stojkovski, S.; Sarkar, B. Metal coordination to carbohydrates. Structures and function. Coord. Chem. Rev., 1993, 122, 171-225.
[47]
Patwardhan, A.; Cowan, J.A. Influence of charge and structure on the coordination chemistry of copper aminoglycosides. Dalton Trans., 2011, 40, 1795-1801.
[48]
Corma, A.; Concepcin, P.; Domnguez, I.; Fornes, V.; Sabater, M.J. Gold supported on a biopolymer (chitosan) catalyzes the regioselective hydroamination of alkynes. J. Catal., 2007, 251, 39-47.
[49]
Jian, J.X.; Liu, Q.; Li, Z.J.; Wang, F.; Li, X.B.; Li, C.B.; Liu, B.; Meng, Q.Y.; Chen, B.; Feng, K.C.; Tung, H.; Wu, L.Z. Chitosan confinement enhances hydrogen photogeneration from a mimic of the diiron subsite of [FeFe]-hydrogenase. Nat. Commun., 2013, 4, 1-9.
[50]
Wei, D.; Qian, W. Facile synthesis of Ag and Au nanoparticles utilizing chitosan as a mediator agent. Colloids Surf. B , 2008, 62, 136-142.
[51]
Hall, S.R.; Collins, A.M.; Wood, N.J.; Ogasawara, W.; Morad, M. Mied- ziak, P.J.; Sankar, M.; Knight, D.W.; Hutching, G.J. Biotemplated synthesis of catalytic Au-Pd nanoparticles. RSC Advances, 2012, 2, 2217-2220.
[52]
Yang, Y.; Wang, S.; Wang, Y.; Wang, X.; Wang, Q.; Chen, M. Advances in self-assembled chitosan nanomaterials for drug delivery. Biotechnol. Adv., 2014, 32, 1301-1316.
[53]
Krajewska, B. Application of chitin and chitosan-based materials for enzyme immobilizations: a review. Enzyme Microb. Technol., 2004, 35, 126-139.
[54]
Gupta, C.; Sutara, A.K.; Linb, C.C. Polymer-supported Schiff base complexes in oxidation reactions. Coord. Chem. Rev., 2009, 253, 1926-1946.
[55]
Chtchigrovsky, M.; Primo, A.; Gonzalez, P.; Molvinger, K.; Robitzer, M.; Quignard, F.; Taran, F. Functionalized chitosan as a green, recyclable, biopolymer-supported catalyst for the [3+2] Huisgen cycloaddition. Angew. Chem. Int. Ed., 2009, 48, 5916-5920.
[56]
Alves, N.M.; Mano, J.F. Chitosan derivatives obtained by chemical modifications for biomedical and environmental applications. Int. J. Biol. Macromol., 2008, 43, 401-414.
[57]
Petit, C.; Reynaud, S.; Desbrieres, J. Amphiphilic derivatives of chitosan using microwave irradiation. Toward an eco-friendly process to chitosan derivatives. Carbohydr. Polym., 2015, 116, 26-33.
[58]
Peng, X.; Zhang, L. Surface fabrication of hollow microspheres from N-Methylated chitosan cross-linked with gultaraldehyde. Langmuir, 2007, 23, 10493-10498.
[59]
Chen, Y.; Shi, W.; Hui, Y.; Sun, X.; Xu, L.; Feng, L.; Xie, Z. A new highly selective fluorescent turn-on chemosensor for cyanide anion. Talanta, 2015, 137, 38-42.
[60]
Co´ rdova, A.; Zou, W.; Dziedzic, P.; Ibrahem, I.; Reyes, E.; Xu, Y. Direct asymmetric intermolecular aldol reactions catalyzed by amino acids and small peptides. Chem.-Eur. J , 2006, 12, 5383-5397.
[61]
Brogan, A.P.; Dickerson, T.J.; Janda, K.D. Enamine-based aldol organocatalysis in water: are they really “all wet”? Angew. Chem. Int. Ed., 2006, 45, 8100-8102.
[62]
Quignard, F.; Valentin, R.; Renzo, F. Diaerogel materials from marine polysaccharides. New J. Chem., 2008, 32, 1300-1310.
[63]
Mase, N.; Noshiro, N.; Moyuka, A.; Takabe, K. Effect of long chain fatty acids on organocatalytic aqueous direct aldol reactions. Adv. Synth. Catal., 2009, 351, 2791-2796.
[64]
MacMillan, D.W.C. The advent and development of organocatalysis. Nature, 2008, 455, 304-308.
[65]
Ramasastry, S.S.V.; Zhang, H.; Tanaka, F.; Barbas III, C.F. Direct catalytic asymmetric synthesis of anti-1,2-Amino alcohols and syn-1,2-diols through organocatalytic anti-mannich and syn-aldol reactions. J. Am. Chem. Soc., 2007, 129, 288-289.
[66]
Gioia, C.; Ricci, A.; Bernardi, L.; Bourahla, K.; Tanchoux, N.; Robitzer, M.; Quignard, F. Chitosan aerogel beads as a heterogeneous organocatalyst for the asymmetric aldol reaction in the presence of water: An assessment of the effect of additives. Eur. J. Org. Chem., 2013, 2013, 588-594.
[67]
Raj, M.; Singh, V.K. Organocatalytic reactions in water. Chem. Commun. , 2009, 0, 6687-6703.
[68]
Deng, D.S.; Cai, J. Stereoselective aldol reactions catalyzed by acyclic amino acids in aqueous micelles. Helv. Chim. Acta, 2007, 90, 114-120.
[69]
Gryko, D.; Zimnicka, M.; Lipinski, R. Brønsted acids as additives for the direct asymmetric aldol reaction catalyzed by l-prolinethioamides. direct evidence for enamine-iminium catalysis. J. Org. Chem., 2007, 72, 964-970.
[70]
Shields, K.M.; Smock, N.; McQueen, C.E.; Bryant, P.J. Chitosan for weight loss and cholesterol management. Am. J. Health Syst. Pharm., 2003, 60, 1310-1312.
[71]
Serjeant, E.P.; Dempsey, B., Eds.; Ionisation constants of organic acids in aqueous solution; Pergamon Press: New York, 1979.
[72]
Website of the Hazardous Substance Databank http://toxnet. nlm.nih.gov/cgi-bin/sis/search/f?/temp/~JpWelR:1.
[73]
Zhao, W.; Qu, C.; Yang, L.; Cui, Y. Chitosan‐supported cinchonine as an efficient organocatalyst fordirect asymmetric aldol reaction in water. Chin. J. Catal., 2015, 36, 367-371.
[74]
Dong, H.; Liu, J.; Ma, L.; Ouyang, L. Chitosan aerogel catalyzed asymmetric aldol reaction in water: highly enantioselective construction of 3-Substituted-3-hydroxy-2-oxindoles. Catalysts, 2016, 6, 186-194.
[75]
Tanimura, Y.; Yasunaga, K.; Ishimaru, K. Asymmetric aldol reaction using a very simple primary amine catalyst: divergent stereoselectivity by using 2,6-difluorophenyl moiety. Tetrahedron, 2014, 70, 2816-2821.
[76]
Heckel, T.; Konieczna, D.D.; Wilhelm, R. An ionic liquid solution of chitosan as organocatalyst. Catalysts, 2013, 3, 914-921.
[77]
Khan, S.S.; Shah, J.; Liebscher, J. Ionic-liquid tagged prolines as recycable organocatalysts for enantioselective α-aminoxylations of carbonyl compounds. Tetrahedron, 2011, 67, 1812-1820.
[78]
Jurčík, V.; Wilhelm, R. The preparation of new enantiopure imidazolinium salts and their evaluation as catalysts and shift reagents. Tetrahedron, 2006, 17, 801-810.
[79]
Hollóczki, O.; Gerhard, D.; Massone, K.; Szarvas, L.; Németh, B.; Veszprémi, T.; Nyulászi, L. Carbenes in ionic liquids. Carbenes in ionic liquids. New J. Chem., 2010, 34, 3004-3009.
[80]
Hollóczki, O.; Nyulászi, L. Neutral species from “non-protic” N-heterocyclic ionic liquids. Org. Biomol. Chem., 2011, 9, 2634-2640.
[81]
Kelemen, Z.; Hollóczki, O.; Nagy, J.; Nyulászi, L. An organocatalytic ionic liquid. Org. Biomol. Chem., 2011, 9, 5362-5364.
[82]
Valentin, R.; Molvinger, K.; Quignard, F.; Brune, D. Supercritical CO2 dried chitosan: an efficient intrinsic heterogeneous catalyst in fine chemistry. New J. Chem., 2003, 27, 1690-1692.
[83]
Waddell, T.G.; Leyden, D.E.; DeBello, M.T. The nature of organosilane to silica-surface bonding. J. Am. Chem. Soc., 1981, 103, 5303-5307.
[84]
Molvinger, K.; Quignard, F.; Brunel, D.; Boissie’re, M.; Devoisselle, J-M. Porous chitosan-silica hybrid microspheres as a potential catalyst. Chem. Mater., 2004, 16(17), 3367-3372.
[85]
Payne, L.S. European Patent, 0392579 A2 unilever. 1990.
[86]
Sudheesh, N.; Sharma, S.K.; Shukla, R.S. Chitosan as an eco-friendly solid base catalyst for the solvent-free synthesis of jasminaldehyde. J. Mol. Catal. A: Chemical., 2010, 321, 77-82.
[87]
Climent, M.J.; Corma, A.; Fornes, V.; Guil-Lopez, R.; Ibora, S. Aldol condensations on solid catalysts: a cooperative effect between weak acid and base sites. Adv. Synth. Catal., 2002, 344, 1090-1096.
[88]
Climent, M.J.; Corma, A.; Garcia, H.; Guil-Lopez, R.; Ibora, S.; Fornes, V. Acid-base bifunctional catalysts for the preparation of fine chemicals: synthesis of jasminaldehyde. J. Catal., 2001, 197, 385-393.
[89]
Abenhaem, D.; Son, C.P.N.; Loupy, A.; Heip, N.B. Synthesis of jasminaldehyde by solid-liquid phase transfer catalysis without solvent, under microwave irradiation. Synth. Commun., 1994, 24, 1199-1205.
[90]
Patil, M.V.; Sharma, S.K.; Jasra, R.V. Solvent-free synthesis of jasminaldehyde using double metal cyanide based solid acid catalysts. Indian J. Chem., 2013, 52A, 1564-1569.
[91]
Sharma, S.K.; Parikh, P.A.; Jasra, R.V. Solvent free aldol condensation of propanal to 2-methylpentenal using solid base catalysts. J. Mol. Catal. A: Chem., 2008, 286, 55-62.
[92]
Adwani, J.H.; Khan, N.H.; Shukla, R.S. An elegant synthesis of chitosan grafted hydrotalcite nano-bio composite material and its effective catalysis for solvent-free synthesis of jasminaldehyde. RSC Advances, 2015, 5, 94562-94570.
[93]
Kadib, A.E.; Molvinger, K.; Bousmina, M.; Brunel, D. Improving catalytic activity by synergic effect between base and acid pairs in hierarchically porous chitosan@titania nanoreactors. Org. Lett., 2010, 12(5), 948-951.
[94]
Khalil, K.D.; Al-Matar, H.M. Chitosan based heterogeneous catalyses: Chitosan-grafted-poly(4-vinylpyridne) as an efficient catalyst for michael additions and alkylpyridazinylcarbonitrile oxidation. Molecules, 2013, 18, 5288-5305.
[95]
Mahrwald, R. Modern Aldol Reactions; Wiley-VCH: Weinheim, 2004.
[96]
Calo’, V.; Nacci, A.; Monopoli, A.; Fornaro, L.; Sabbatini, L.; Cioffi, N.; Ditaranto, N. Heck reaction catalyzed by nanosized palladium on chitosan in ionic liquids. Organometallics, 2004, 23, 5154-5158.
[97]
Hayashi, Y. In water or in the presence of water? Angew. Chem. Int. Ed., 2006, 45, 8103-8104.
[98]
Mase, N.; Noshiro, N.; Moyuka, A.; Takabe, K. Effect of long chain fatty acids on organocatalytic aqueous direct aldol reactions. Adv. Synth. Catal., 2009, 351, 2791-2796.
[99]
Mase, N.; Nakai, Y.; Ohara, N.; Yoda, H.; Takabe, K.; Tanaka, F.; Barbas III, C.F. Organocatalytic direct asymmetric aldol reactions in water. J. Am. Chem. Soc., 2006, 128, 734-735.
[100]
Raj, M.; Veerasamy, N.; Singh, V.K. Highly enantioselective synthesis of 3-cycloalkanone-3-hydroxy-2-oxindoles, potential anticonvulsants. Tetrahedron Lett., 2010, 51, 2157-2159.
[101]
Ramasastry, S.S.V.; Zhang, H.; Tanaka, F.; Barbas III, C.F. Direct catalytic asymmetric synthesis of anti-1,2-amino alcohols and syn-1,2-diols through organocatalytic anti-mannich and syn-aldol reactions. J. Am. Chem. Soc., 2007, 129, 288-289.
[102]
Safari, J.; Javadian, L. Chitosan decorated Fe3O4 nanoparticles as a magnetic catalyst in the synthesis of phenytoin derivatives. RSC Advances, 2014, 4, 48973-48979.
[103]
Al-Matar, H.M.; Khalil, K.D.; Meier, H.; Kolshorn, H.; Elnagdi, M.H. Chitosan as heterogeneous catalyst in michael additions: the reaction of cinnamonitriles with active methylene moieties and phenols. ARKIVOC, 2008, 16, 288-301.
[104]
Qin, Y.; Zhao, W.; Yang, L.I.; Zhang, X.; Cui, Y. Chitosan-based heterogeneous catalysts for enantioselective michael reaction. Chirality, 2012, 24, 640-645.
[105]
Cucinotta, C.S.; Kosa, M.; Melchiorre, P.; Cavalli, A.; Gervasio, F.L. Bifunctional catalysis by natural cinchona alkaloids: a mechanism explained. Chem Eur J , 2009, 15, 7913-7921.
[106]
Tsuji, J. Palladium Reagents and Catalysts, 2nd ed; Wiley: New York, 2004.
[107]
Garrett, C.E.; Prasad, K. The art of meeting palladium specifications in active pharmaceutical ingredients produced by Pd- catalyzed reactions. Adv. Synth. Catal., 2004, 346, 889-900.
[108]
Cole-Hamilton, D.J.; Tooze, R.P. Homogeneous catalysis advantages and problems in Catalyst Separation, Recovery and Recycling Chemistry and Process Design; Springer: Dordrecht, Germany; , 2006.
[109]
Thomas, J.M.; Thomas, W.J. Principles and Practice of Heterogeneous Catalysis; Wiley-VCH: Weinheim, Germany, 1996.
[110]
Zeng, M. Qi, Chenze; Yang, J.; Wang, B.; Zhang, X.-M., A highly efficient and stable palladium catalyst entrapped within the cross-linked chitosan membrane for heck reactions. Eng. Chem. Res, 2014, 53, 10041-10050.
[111]
Guibal, E. Heterogeneous catalysis on chitosan-based materials: a review. Prog. Polym. Sci., 2005, 30, 71-109.
[112]
Macquarrie, D.J.; Hardy, J.J.E. Applications of functionalized chitosan in catalysis. Ind. Eng. Chem. Res., 2005, 44, 8499-8520.
[113]
Guibal, E. Interactions of metal ions with chitosan-based sorbents: a review. Separ. Purif. Tech., 2004, 38, 43-74.
[114]
Calo, V.; Nacci, A.; Monopoli, A.; Fornaro, A.; Sabbatini, L.; Cioffi, N.; Ditaranto, N. Heck reaction catalyzed by nanosized palladium on chitosan in ionic liquids. Organometallics, 2004, 23, 5154-5158.
[115]
Cotugno, P.; Casiello, M.; Nacci, A.; Mastrorilli, P.; Dell’Anna, M.M.; Monopoli, A. Suzuki coupling of iodo and bromoarenes catalyzed by chitosan-supported Pd-nanoparticles in ionic liquids. J. Organomet. Chem., 2014, 752, 1-5.
[116]
Qi, C.Z.; Sun, X.D.; Lu, C.Y.; Yang, J.Z.; Du, Y.J.; Wu, H.J.; Zhang, X-M. Palladium catalyzed reductive homocoupling reactions of aromatic halides in dimethyl sulfoxide (DMSO) solution. J. Organomet. Chem., 2009, 694, 2912-2916.
[117]
Zeng, M.F.; Du, Y.J.; Qi, C.Z.; Zuo, S.F.; Li, X.D.; Shao, L.J.; Zhang, X-M. An efficient and recyclable heterogeneous palladium catalyst utilizing naturally abundant pearl shell waste. Green Chem., 2011, 13, 350-356.
[118]
Zeng, M.F.; Du, Y.J.; Shao, L.J.; Qi, C.Z.; Zhang, X-M. Palladium-catalyzed reductive homocoupling of aromatic halides and oxidation of alcohols. J. Org. Chem., 2010, 75, 2556-2563.
[119]
Mukhopadhyay, S.; Rothenberg, G.; Gitis, D.; Wiener, H.; Sasson, Y. Kinetics and mechanism of heterogeneous palladium- catalyzed coupling reactions of chloroaryls in water. J. Chem. Soc., Perkin Trans. 2, 1999, 0, 2481-2484.
[120]
Calo, V.; Nacci, A.; Monopoli, A.; Damascelli, A.; Ieva, E.; Cioffi, N. Palladium-nanoparticles catalyzed hydrodehalogenation of aryl chlorides in ionic liquids. J. Organomet. Chem., 2007, 692, 4397-4401.
[121]
Shaughnessy, K.H. In Metal-Catalyzed Reactions in Water; Dixneuf, P.H.; Cadierno, V., Eds.; Wiley-VCH: Weinheim, Germany, 2013.
[122]
Gholinejad, M.; Jeddi, N.; Pullithadathil, B. Agarose functionalized phosphorus ligand for stabiliza- tion of small-sized palladium and copper nanoparticles: efficient heterogeneous catalyst for Sonogashira reaction. Tetrahedron, 2016, 72, 2491-2500.
[123]
Chinchilla, R.; Nájera, C. The Sonogashira reaction: a booming methodology in synthetic organic chemistry. Chem. Rev., 2007, 107, 874-922.
[124]
Sarmah, M.; Dewan, A.; Thakur, A.J.; Bora, U. Urea as mild and efficient additive for palladium catalyzed Sonogashira cross coupling reaction. Tetrahedron Lett., 2016, 57, 914-916.
[125]
Frindy, S.; Primo, A.; Lahcini, M.; Bousmina, M.; Garcia, H.; El Kadib, A. Pd embedded in chitosan microspheres as tunable soft-materials for Sonogashira cross-coupling in water-ethanol mixture. Green Chem., 2015, 17, 1893-1898.
[126]
Bao, Y.S.; Wang, L.; Jia, M.; Xu, A.; Agula, B.; Baiyin, M.; Zhaorigetu, B. Heterogeneous recycla- ble nano-palladium catalyzed amidation of esters using formamides as amine sources. Green Chem., 2016, 18, 3808-3814.
[127]
Yang, F.; Feng, A.; Wang, C.; Dong, S.; Chi, C.; Jia, X.; Li, Y. Graphene oxide/carbon nanotubes-Fe3O4 supported Pd nanoparticles for hydrogenation of nitroarenes and C-H activation. RSC Advances, 2016, 6, 16911-16916.
[128]
Yuan, T.; Gong, H.; Kailasam, K.; Zhao, Y.; Thomas, A.; Zhu, J. Controlling hydrogenation selectiv- ity with Pd catalysts on carbon nitrides functionalized silica. J. Catal., 2015, 326, 38-42.
[129]
Costantino, F.; Vivani, R.; Bastianini, M.; Ortolani, L.; Piermatti, O.; Nocchetti, M.; Vaccaro, L. Accessing stable zirconium carboxy-aminophosphonate nanosheets as support for highly active Pd na- noparticles. Chem. Commun., 2015, 51, 15990-15993.
[130]
Qing, C.; Hong, Z.; Guangsheng, L.; Jianhong, X. An efficient chitosan/silica composite core-shell microspheres-supported Pd catalyst for aryl iodides sonogashira coupling reactions. Ind. Eng. Chem. Res., 2017, 56(1), 143-152.
[131]
Sakakura, T.; Choi, J.C.; Yasuda, H. Transformation of carbon dioxide. Chem. Rev., 2007, 107, 2365-2387.
[132]
North, M.; Pasquale, R.; Young, C. Synthesis of cyclic carbonates from epoxides and CO2. Green Chem., 2010, 12, 1514-1539.
[133]
Barkakaty, B.; Morino, K.; Sudo, A.; Endo, T. Amidine-mediated delivery of CO2 from gas phase to reaction system for highly efficient synthesis of cyclic carbonates from epoxides. Green Chem., 2010, 12, 42-44.
[134]
Xiao, L.F.; Li, F.W.; Peng, J.J.; Xia, C.G. Immobilized ionic liquid/zinc chloride: Heterogeneous catalyst for synthesis of cyclic carbonates from carbon dioxide and epoxides. J. Mol. Catal. A: Chem., 2006, 253, 265-269.
[135]
Zhao, Y.; Tian, J.S.; Qi, X.H.; Han, Z.N.; Zhuang, Y.Y.; He, L.N. Quaternary ammonium salt-functionalized chitosan: An easily recyclable catalyst for efficient synthesis of cyclic carbonates from epoxides and carbon dioxide. J. Mol. Catal. A: Chem, 2007, 271, 284-289.
[136]
Sun, J.; Wang, J.; Cheng, W.; Zhang, J.; Li, X.; Zhang, S.; Sheb, Y. Chitosan functionalized ionic liquid as a recyclable biopolymer-supported catalyst for cycloaddition of CO2. Green Chem., 2012, 14, 654-660.
[137]
Han, L.N.; Choi, H.J.; Choi, S.J.; Liu, B.Y.; Park, D.W. Ionic liquids containing carboxyl acid moieties grafted onto silica: Synthesis and application as heterogeneous catalysts for cycloaddition reactions of epoxide and carbon dioxide. Green Chem., 2011, 13, 1023-1028.
[138]
Sun, J.; Cheng, W.G.; Fan, W.; Wang, Y.H.; Meng, Z.Y.; Zhang, S. Quaternary ammonium salt-functionalized chitosan: An easily recyclable catalyst for efficient synthesis of cyclic carbonates from epoxides and carbon dioxide. J. Catal. Today, 2009, 148, 361-367.
[139]
Tsang, C.W.; Baharloo, B.; Riendl, D.; Yam, M.; Gates, D.P. Radical copolymerization of a phosphaalkene with styrene: New phosphine-containing macromolecules and their use in polymer-supported catalysis. Angew. Chem. Int. Ed., 2004, 43, 5682-5685.
[140]
Zhao, Y.; Tian, J.S.; Qi, X.H.; Han, Z.N.; Zhuang, Y.Y.; He, L.N. Quarternary ammonium salt-functionalized chitosan: An easily recyclable catalyst for efficient synthesis of cyclic carbonates from epoxides and carbon dioxide. J. Mol. Catal. A: Chem., 2007, 271, 284-289.
[141]
Takahashi, T.; Watahiki, T.; Kitazume, S.; Yasuda, H.; Sakakura, T. Synergistic hybrid catalyst for cyclic carbonate synthesis: Remarkable acceleration caused by immobilization of homogeneous catalyst on silica. Chem. Commun., 2006, 0, 1664-1666.
[142]
Franconetti, A.; Domínguez-Rodríguez, P.; Lara-Garcíaa, D.; Prado-Gotor, R.; Cabrera-Escribanoa, F. Native and modified chitosan-based hydrogels as green heterogeneous organocatalysts for imine-mediated Knoevenagel condensation. Appl. Catal. A Gen., 2016, 517, 176-186.
[143]
Qin, Y.; Zhao, W.; Yang, L.; Zhang, X.; Cui, Y. Chitosan-based heterogeneous catalysts for enantioselective Michael reaction. Chirality, 2012, 24, 640-645.
[144]
Chen, Y.; Shi, W.; Hui, Y.; Sun, X.; Xu, L.; Feng, L.; Xie, Z. A new highly selective fluorescent turn-on chemosensor for cyanide anion. Talanta, 2015, 137, 38-42.
[145]
GoodnowJr, R.A.; Huby, N.J.S.; Kong, N.; McDermott, L. A; Moliterni, J.A.; Zhang, Z. Substituted hydantoins. US 7371869 B2, 2008.
[146]
Mahmoodi, N.O.; Khodaee, Z. Evaluating the one-pot synthesis of hydantoins. ARKIVOC, 2007, 3, 29-36.

© 2024 Bentham Science Publishers | Privacy Policy