[1]
Dalko, P.I.; Moisan, L. In the golden age of organocatalysis. Angew. Chem., 2004, 43, 5138-5175.
[2]
Höfer, R.; Bigorra, J. Green chemistry-a sustainable solution for industrial specialties applications. J. Green Chem, 2007, 9, 203-212.
[3]
List, B. Introduction: Organocatalysis. Chem. Rev., 2007, 107, 5413-5415.
[4]
Yu, J.; Shi, F.; Gong, L.Z. Brønsted-acid-catalyzed asymmetric multicomponent reactions for the facile synthesis of highly enantioenriched structurally diverse nitrogenous heterocycles. Acc. Chem. Res., 2011, 44, 1156-1171.
[5]
Das, B.; Ravikanth, B.; Ramu, R.; Laxminarayana, K.; Rao, B.V. Iodine catalyzed simple and efficient synthesis of 14-aryl or alkyl-14-H-dibenzo[a,j]xanthenes. J. Mol. Catal. A: Chem., 2006, 255, 74-77.
[6]
Karatepe, O.; Yıldız, Y.; Pamuk, H.; Eris, S.; Dasdelen, Z.; Sen, F. Enhanced electrocatalytic activity and durability of highly monodisperse Pt@PPy-PANI nanocomposites as a novel catalyst for the electrooxidation of methanol. RSC Advances, 2016, 6, 50851-50857.
[7]
Göksu, H.; Yıldız, Y.; Yazıcı, M.; Kılbas, B.; Sen, F. Highly Efficient and monodisperse graphene oxide furnished Ru/Pd nanoparticles for the dehalogenation of aryl halides via ammonia borane. ChemistrySelect, 2016, 5, 953-958.
[8]
Wang, Y.; Wang, X.; Antonietti, M. polymeric graphitic carbon nitride as a heterogeneous organocatalyst: from photochemistry to multipurpose catalysis to sustainable chemistry. Angew. Chem. Int. Ed., 2012, 51, 68-89.
[9]
Kristensen, T.E.; Hansen, T. Polymer-supported chiral organocatalysts: syntheticstrategies for the road towards affordable polymeric immobilization. Eur. J. Org. Chem., 2010, 17, 3179-3204.
[10]
Bellomo, A.; Daniellou, R.; Plusquellec, D. Aqueous solutions of facial amphiphilic carbohydrates as sustainable media for organocatalyzed direct aldol reactions. Green Chem., 2012, 14, 281-284.
[11]
Kaplan, D.L. Biopolymers from Renewable Resources; Springer: Berlin, 1998.
[12]
Buisson, P.; Quignard, F. Polysaccharides: natural polymeric supports for aqueous phase catalysts in the allylic substitution reaction. Aust. J. Chem., 2002, 55, 73-78.
[13]
No, H.K.; Park, N.Y.; Lee, S. Ho.; Meyers, S.P. Antibacterial activity of chitosans and chitosan oligomers with different molecular weights. Int. J. Food Microbiol., 2002, 74, 65-72.
[14]
Sashiwa, H.; Aiba, S. Chemically modified chitin and chitosan as biomaterials. Prog. Polym. Sci., 2004, 29, 887-908.
[15]
Kurita, K. Chitin and Chitosan: Functional biopolymers from marine crustaceans. Mar. Biotechnol. , 2006, 8, 203-226.
[16]
Maity, S.; Dutta, A.; Lahiri, S.; Ganguly, J. Selective separation of 152Eu from a mixture of 152Eu and 137Cs using a chitosan based hydrogel. RSC Advances, 2015, 5, 89338-89345.
[17]
Guibal, E. Heterogeneous catalysis on chitosan-based materials: a review. Prog. Polym. Sci., 2005, 30, 71-109.
[18]
Basavaraju, K.C.; Sharma, S.; Singh, A.K. Im, D.J.; Kim, D.-P. Chitosan‐microreactor: A versatile approach for heterogeneous organic synthesis in microfluidics. ChemSusChem, 2014, 7, 1864-1869.
[19]
Rinaudo, M. Chitin and chitosan: Properties and applications. Prog. Polym. Sci., 2006, 31, 603-632.
[20]
Huai-min, G.; Xian-su, C. Study of cobalt (II)-chitosan coordination polymer and its catalytic activity and selectivity forvinyl monomer polymerization. Polym. Adv. Technol., 2004, 15, 89-92.
[21]
Calo’, V.; Nacci, A.; Monopoli, A.; Fornaro, L.; Sabbatini, L.; Cioffi, N.; Ditaranto, N. Heck reaction catalyzed by nanosized palladium on chitosan in ionic liquids. Organometallics, 2004, 23, 5154-5158.
[22]
Quignard, F.; Choplin, A.; Domard, A. Chitosan: A natural polymeric support of catalystsfor the synthesis of fine chemicals. Langmuir, 2000, 16, 9106-9108.
[23]
Sun, W.; Xia, C-G.; Wang, H-W. Efficient heterogeneous catalysts for the cyclopropanation of olefins. New J. Chem., 2002, 26, 755-758.
[24]
Kucherov, A.V.; Kramareva, N.V.; Finashima, E.D.; Koklinand, A.E.; Kustova, L.M. Heterogenized redox catalysts on the basis of the chitosan matrix: 1. Copper complexes. J. Mol. Catal. A: Chem., 2003, 198, 377-389.
[25]
Maity, S.; Parshi, N.; Prodhan, C.; Chaudhuri, K.; Ganguly, J. Characterization of a fluorescent hydrogel synthesized using chitosan, polyvinyl alcohol and 9-anthraldehyde for the selective detection and discrimination of trace Fe3+ and Fe2+ in water for live-cell imaging. Carbohydr. Polym., 2018, 193, 119-128.
[26]
Zhang, H.; Zhao, W.; Zou, J.; Liu, Y.; Li, R.; Cui, Y. Aldol reaction catalyzed by a hydrophilic catalyst in aqueous micelle as an enzyme mimic system. Chirality, 2009, 21, 492-496.
[27]
Pestova, A.V.; Privara, Y.O.; Modina, E.B.; Ustinova, A.Y.; Bratskayaa, S.Y. Granulated catalytic materials based on chitosan and its derivatives. Polym. Sci. Ser. B, 2016, 58(6), 730-735.
[28]
Qin, C.; Li, H.; Xiao, Q.; Liu, Y.; Zhu, J.; Du, Y. Water solubility of chitosan and its antimicrobial activity. Carbohydr. Polym., 2006, 63, 367-374.
[29]
Il’ina, A.V.; Varlamov, V.P. Effect of the degree of acetylation of chitosan on its enzymatic hydrolysis with the preparation celloviridin G20kh. Appl. Biochem. Microbiol., 2003, 39, 239-243.
[30]
Shchipunov, Y.; Sarin, S.; Kim, Il.; Ha, C-S. Hydrogels formed through regulated self-organization of graduallycharging chitosan in solution of xanthan. Green Chem., 2010, 12, 1187-1195.
[31]
Ricci, A.; Bernardi, L.; Gioia, C.; Vierucci, S.; Robitzerb, M.; Quignard, F. Chitosan aerogel: arecyclable, heterogeneous organocatalyst for the asymmetric direct aldol reaction in water. Chem. Commun. , 2010, 46, 6288-6290.
[32]
Kühbeck, D.; Saidulu, G.; Reddy, K.R.; Díaz, D. Critical assessment of the efficiency of chitosanbiohydrogel beads as recyclable and heterogeneous organocatalyst for C-C bond formation. Green Chem., 2012, 14, 378-392.
[33]
Qin, Y.; Zhao, W.; Yang, L.; Zhang, X.; Cui, Y. Chitosan-Based heterogeneous catalysts for enantioselective michael reaction. Chirality, 2012, 24, 640-645.
[34]
Sahu, P.K.; Sahu, P.K.; Gupta, S.K.; Agarwal, D.D. Chitosan: An efficient, reusable, and biodegradable catalyst for green synthesis of heterocycles. Ind. Eng. Chem. Res., 2014, 53, 2085-2091.
[35]
Bommarius, A.S.; Riebel, B.R. Biocatalysis: Fundamentals and Applications; Wiley-VCH: Weinheim, Germany, 2004.
[36]
Reddy, K. Rajender; Rajgopal, K.; Maheswari, C.U.; Kantam, M.L. A green and recyclable biopolymer catalyst for aldol and Knoevenagel reactions. New J. Chem., 2006, 30, 1549-1552.
[37]
Roberts, G.A.F.; Taylo, K.E. Chitosan gels, The formation of gels by reaction of chitosan with glutaraldehyde. Makromol. Chem., 1989, 190, 951-960.
[38]
Wei, Y.C.; Hudson, S.M.; Mayer, J.M.; Kaplan, D.L.J. The crosslinking of chitosan fibers. Polym. Sci. Part A, 1992, 30, 2187-2193.
[39]
Zeng, X.; Ruckenstein, E. Trypsin purification by p-aminobenzamidine immobilized on macroporous chitosan membranes. Ind. Eng. Chem. Res., 1998, 37, 159-165.
[40]
Quignard, F.; Valentin, R.; Renzo, F.D. Aerogel material from marine polysaccharides. New J. Chem., 2008, 32, 1300-1310.
[41]
Quignard, F.; Choplin, A.; Domard, A. Chitosan: A natural polymeric support of catalysts for the synthesis of fine chemicals. Langmuir, 2000, 16, 9106-9108.
[42]
Hardy, J.J.E.; Hubert, S.; Macquarrie, D.J.; Wilson, A.J. Chitosan-based heterogeneous catalysts for Suzuki and Heck reactions. Green Chem., 2004, 6, 53-56.
[43]
Varma, A.J.; Deshpande, S.V.; Kennedy, J.F. Metal complexation by chitosan and its derivatives: a review. Carbohydr. Polym., 2004, 55(1), 77-93.
[44]
Choplin, A.; Quignard, F. From supported homogeneous catalysts to heterogeneous molecular catalysts. Coord. Chem. Rev., 1998, 1679, 178-180.
[45]
Arhancet, J.P.; Davis, M.E.; Merola, J.S.; Hanson, B.E. Hydroformylation by Rhodium supported catalyst. Nature, 1989, 339, 454-455.
[46]
Whitfield, D.M.; Stojkovski, S.; Sarkar, B. Metal coordination to carbohydrates. Structures and function. Coord. Chem. Rev., 1993, 122, 171-225.
[47]
Patwardhan, A.; Cowan, J.A. Influence of charge and structure on the coordination chemistry of copper aminoglycosides. Dalton Trans., 2011, 40, 1795-1801.
[48]
Corma, A.; Concepcin, P.; Domnguez, I.; Fornes, V.; Sabater, M.J. Gold supported on a biopolymer (chitosan) catalyzes the regioselective hydroamination of alkynes. J. Catal., 2007, 251, 39-47.
[49]
Jian, J.X.; Liu, Q.; Li, Z.J.; Wang, F.; Li, X.B.; Li, C.B.; Liu, B.; Meng, Q.Y.; Chen, B.; Feng, K.C.; Tung, H.; Wu, L.Z. Chitosan confinement enhances hydrogen photogeneration from a mimic of the diiron subsite of [FeFe]-hydrogenase. Nat. Commun., 2013, 4, 1-9.
[50]
Wei, D.; Qian, W. Facile synthesis of Ag and Au nanoparticles utilizing chitosan as a mediator agent. Colloids Surf. B , 2008, 62, 136-142.
[51]
Hall, S.R.; Collins, A.M.; Wood, N.J.; Ogasawara, W.; Morad, M. Mied- ziak, P.J.; Sankar, M.; Knight, D.W.; Hutching, G.J. Biotemplated synthesis of catalytic Au-Pd nanoparticles. RSC Advances, 2012, 2, 2217-2220.
[52]
Yang, Y.; Wang, S.; Wang, Y.; Wang, X.; Wang, Q.; Chen, M. Advances in self-assembled chitosan nanomaterials for drug delivery. Biotechnol. Adv., 2014, 32, 1301-1316.
[53]
Krajewska, B. Application of chitin and chitosan-based materials for enzyme immobilizations: a review. Enzyme Microb. Technol., 2004, 35, 126-139.
[54]
Gupta, C.; Sutara, A.K.; Linb, C.C. Polymer-supported Schiff base complexes in oxidation reactions. Coord. Chem. Rev., 2009, 253, 1926-1946.
[55]
Chtchigrovsky, M.; Primo, A.; Gonzalez, P.; Molvinger, K.; Robitzer, M.; Quignard, F.; Taran, F. Functionalized chitosan as a green, recyclable, biopolymer-supported catalyst for the [3+2] Huisgen cycloaddition. Angew. Chem. Int. Ed., 2009, 48, 5916-5920.
[56]
Alves, N.M.; Mano, J.F. Chitosan derivatives obtained by chemical modifications for biomedical and environmental applications. Int. J. Biol. Macromol., 2008, 43, 401-414.
[57]
Petit, C.; Reynaud, S.; Desbrieres, J. Amphiphilic derivatives of chitosan using microwave irradiation. Toward an eco-friendly process to chitosan derivatives. Carbohydr. Polym., 2015, 116, 26-33.
[58]
Peng, X.; Zhang, L. Surface fabrication of hollow microspheres from N-Methylated chitosan cross-linked with gultaraldehyde. Langmuir, 2007, 23, 10493-10498.
[59]
Chen, Y.; Shi, W.; Hui, Y.; Sun, X.; Xu, L.; Feng, L.; Xie, Z. A new highly selective fluorescent turn-on chemosensor for cyanide anion. Talanta, 2015, 137, 38-42.
[60]
Co´ rdova, A.; Zou, W.; Dziedzic, P.; Ibrahem, I.; Reyes, E.; Xu, Y. Direct asymmetric intermolecular aldol reactions catalyzed by amino acids and small peptides. Chem.-Eur. J , 2006, 12, 5383-5397.
[61]
Brogan, A.P.; Dickerson, T.J.; Janda, K.D. Enamine-based aldol organocatalysis in water: are they really “all wet”? Angew. Chem. Int. Ed., 2006, 45, 8100-8102.
[62]
Quignard, F.; Valentin, R.; Renzo, F. Diaerogel materials from marine polysaccharides. New J. Chem., 2008, 32, 1300-1310.
[63]
Mase, N.; Noshiro, N.; Moyuka, A.; Takabe, K. Effect of long chain fatty acids on organocatalytic aqueous direct aldol reactions. Adv. Synth. Catal., 2009, 351, 2791-2796.
[64]
MacMillan, D.W.C. The advent and development of organocatalysis. Nature, 2008, 455, 304-308.
[65]
Ramasastry, S.S.V.; Zhang, H.; Tanaka, F.; Barbas III, C.F. Direct catalytic asymmetric synthesis of anti-1,2-Amino alcohols and syn-1,2-diols through organocatalytic anti-mannich and syn-aldol reactions. J. Am. Chem. Soc., 2007, 129, 288-289.
[66]
Gioia, C.; Ricci, A.; Bernardi, L.; Bourahla, K.; Tanchoux, N.; Robitzer, M.; Quignard, F. Chitosan aerogel beads as a heterogeneous organocatalyst for the asymmetric aldol reaction in the presence of water: An assessment of the effect of additives. Eur. J. Org. Chem., 2013, 2013, 588-594.
[67]
Raj, M.; Singh, V.K. Organocatalytic reactions in water. Chem. Commun. , 2009, 0, 6687-6703.
[68]
Deng, D.S.; Cai, J. Stereoselective aldol reactions catalyzed by acyclic amino acids in aqueous micelles. Helv. Chim. Acta, 2007, 90, 114-120.
[69]
Gryko, D.; Zimnicka, M.; Lipinski, R. Brønsted acids as additives for the direct asymmetric aldol reaction catalyzed by l-prolinethioamides. direct evidence for enamine-iminium catalysis. J. Org. Chem., 2007, 72, 964-970.
[70]
Shields, K.M.; Smock, N.; McQueen, C.E.; Bryant, P.J. Chitosan for weight loss and cholesterol management. Am. J. Health Syst. Pharm., 2003, 60, 1310-1312.
[71]
Serjeant, E.P.; Dempsey, B., Eds.; Ionisation constants of organic acids in aqueous solution; Pergamon Press: New York, 1979.
[73]
Zhao, W.; Qu, C.; Yang, L.; Cui, Y. Chitosan‐supported cinchonine as an efficient organocatalyst fordirect asymmetric aldol reaction in water. Chin. J. Catal., 2015, 36, 367-371.
[74]
Dong, H.; Liu, J.; Ma, L.; Ouyang, L. Chitosan aerogel catalyzed asymmetric aldol reaction in water: highly enantioselective construction of 3-Substituted-3-hydroxy-2-oxindoles. Catalysts, 2016, 6, 186-194.
[75]
Tanimura, Y.; Yasunaga, K.; Ishimaru, K. Asymmetric aldol reaction using a very simple primary amine catalyst: divergent stereoselectivity by using 2,6-difluorophenyl moiety. Tetrahedron, 2014, 70, 2816-2821.
[76]
Heckel, T.; Konieczna, D.D.; Wilhelm, R. An ionic liquid solution of chitosan as organocatalyst. Catalysts, 2013, 3, 914-921.
[77]
Khan, S.S.; Shah, J.; Liebscher, J. Ionic-liquid tagged prolines as recycable organocatalysts for enantioselective α-aminoxylations of carbonyl compounds. Tetrahedron, 2011, 67, 1812-1820.
[78]
Jurčík, V.; Wilhelm, R. The preparation of new enantiopure imidazolinium salts and their evaluation as catalysts and shift reagents. Tetrahedron, 2006, 17, 801-810.
[79]
Hollóczki, O.; Gerhard, D.; Massone, K.; Szarvas, L.; Németh, B.; Veszprémi, T.; Nyulászi, L. Carbenes in ionic liquids. Carbenes in ionic liquids. New J. Chem., 2010, 34, 3004-3009.
[80]
Hollóczki, O.; Nyulászi, L. Neutral species from “non-protic” N-heterocyclic ionic liquids. Org. Biomol. Chem., 2011, 9, 2634-2640.
[81]
Kelemen, Z.; Hollóczki, O.; Nagy, J.; Nyulászi, L. An organocatalytic ionic liquid. Org. Biomol. Chem., 2011, 9, 5362-5364.
[82]
Valentin, R.; Molvinger, K.; Quignard, F.; Brune, D. Supercritical CO2 dried chitosan: an efficient intrinsic heterogeneous catalyst in fine chemistry. New J. Chem., 2003, 27, 1690-1692.
[83]
Waddell, T.G.; Leyden, D.E.; DeBello, M.T. The nature of organosilane to silica-surface bonding. J. Am. Chem. Soc., 1981, 103, 5303-5307.
[84]
Molvinger, K.; Quignard, F.; Brunel, D.; Boissie’re, M.; Devoisselle, J-M. Porous chitosan-silica hybrid microspheres as a potential catalyst. Chem. Mater., 2004, 16(17), 3367-3372.
[85]
Payne, L.S. European Patent, 0392579 A2 unilever. 1990.
[86]
Sudheesh, N.; Sharma, S.K.; Shukla, R.S. Chitosan as an eco-friendly solid base catalyst for the solvent-free synthesis of jasminaldehyde. J. Mol. Catal. A: Chemical., 2010, 321, 77-82.
[87]
Climent, M.J.; Corma, A.; Fornes, V.; Guil-Lopez, R.; Ibora, S. Aldol condensations on solid catalysts: a cooperative effect between weak acid and base sites. Adv. Synth. Catal., 2002, 344, 1090-1096.
[88]
Climent, M.J.; Corma, A.; Garcia, H.; Guil-Lopez, R.; Ibora, S.; Fornes, V. Acid-base bifunctional catalysts for the preparation of fine chemicals: synthesis of jasminaldehyde. J. Catal., 2001, 197, 385-393.
[89]
Abenhaem, D.; Son, C.P.N.; Loupy, A.; Heip, N.B. Synthesis of jasminaldehyde by solid-liquid phase transfer catalysis without solvent, under microwave irradiation. Synth. Commun., 1994, 24, 1199-1205.
[90]
Patil, M.V.; Sharma, S.K.; Jasra, R.V. Solvent-free synthesis of jasminaldehyde using double metal cyanide based solid acid catalysts. Indian J. Chem., 2013, 52A, 1564-1569.
[91]
Sharma, S.K.; Parikh, P.A.; Jasra, R.V. Solvent free aldol condensation of propanal to 2-methylpentenal using solid base catalysts. J. Mol. Catal. A: Chem., 2008, 286, 55-62.
[92]
Adwani, J.H.; Khan, N.H.; Shukla, R.S. An elegant synthesis of chitosan grafted hydrotalcite nano-bio composite material and its effective catalysis for solvent-free synthesis of jasminaldehyde. RSC Advances, 2015, 5, 94562-94570.
[93]
Kadib, A.E.; Molvinger, K.; Bousmina, M.; Brunel, D. Improving catalytic activity by synergic effect between base and acid pairs in hierarchically porous chitosan@titania nanoreactors. Org. Lett., 2010, 12(5), 948-951.
[94]
Khalil, K.D.; Al-Matar, H.M. Chitosan based heterogeneous catalyses: Chitosan-grafted-poly(4-vinylpyridne) as an efficient catalyst for michael additions and alkylpyridazinylcarbonitrile oxidation. Molecules, 2013, 18, 5288-5305.
[95]
Mahrwald, R. Modern Aldol Reactions; Wiley-VCH: Weinheim, 2004.
[96]
Calo’, V.; Nacci, A.; Monopoli, A.; Fornaro, L.; Sabbatini, L.; Cioffi, N.; Ditaranto, N. Heck reaction catalyzed by nanosized palladium on chitosan in ionic liquids. Organometallics, 2004, 23, 5154-5158.
[97]
Hayashi, Y. In water or in the presence of water? Angew. Chem. Int. Ed., 2006, 45, 8103-8104.
[98]
Mase, N.; Noshiro, N.; Moyuka, A.; Takabe, K. Effect of long chain fatty acids on organocatalytic aqueous direct aldol reactions. Adv. Synth. Catal., 2009, 351, 2791-2796.
[99]
Mase, N.; Nakai, Y.; Ohara, N.; Yoda, H.; Takabe, K.; Tanaka, F.; Barbas III, C.F. Organocatalytic direct asymmetric aldol reactions in water. J. Am. Chem. Soc., 2006, 128, 734-735.
[100]
Raj, M.; Veerasamy, N.; Singh, V.K. Highly enantioselective synthesis of 3-cycloalkanone-3-hydroxy-2-oxindoles, potential anticonvulsants. Tetrahedron Lett., 2010, 51, 2157-2159.
[101]
Ramasastry, S.S.V.; Zhang, H.; Tanaka, F.; Barbas III, C.F. Direct catalytic asymmetric synthesis of anti-1,2-amino alcohols and syn-1,2-diols through organocatalytic anti-mannich and syn-aldol reactions. J. Am. Chem. Soc., 2007, 129, 288-289.
[102]
Safari, J.; Javadian, L. Chitosan decorated Fe3O4 nanoparticles as a magnetic catalyst in the synthesis of phenytoin derivatives. RSC Advances, 2014, 4, 48973-48979.
[103]
Al-Matar, H.M.; Khalil, K.D.; Meier, H.; Kolshorn, H.; Elnagdi, M.H. Chitosan as heterogeneous catalyst in michael additions: the reaction of cinnamonitriles with active methylene moieties and phenols. ARKIVOC, 2008, 16, 288-301.
[104]
Qin, Y.; Zhao, W.; Yang, L.I.; Zhang, X.; Cui, Y. Chitosan-based heterogeneous catalysts for enantioselective michael reaction. Chirality, 2012, 24, 640-645.
[105]
Cucinotta, C.S.; Kosa, M.; Melchiorre, P.; Cavalli, A.; Gervasio, F.L. Bifunctional catalysis by natural cinchona alkaloids: a mechanism explained. Chem Eur J , 2009, 15, 7913-7921.
[106]
Tsuji, J. Palladium Reagents and Catalysts, 2nd ed; Wiley: New York, 2004.
[107]
Garrett, C.E.; Prasad, K. The art of meeting palladium specifications in active pharmaceutical ingredients produced by Pd- catalyzed reactions. Adv. Synth. Catal., 2004, 346, 889-900.
[108]
Cole-Hamilton, D.J.; Tooze, R.P. Homogeneous catalysis advantages and problems in Catalyst Separation, Recovery and Recycling Chemistry and Process Design; Springer: Dordrecht, Germany; , 2006.
[109]
Thomas, J.M.; Thomas, W.J. Principles and Practice of Heterogeneous Catalysis; Wiley-VCH: Weinheim, Germany, 1996.
[110]
Zeng, M. Qi, Chenze; Yang, J.; Wang, B.; Zhang, X.-M., A highly efficient and stable palladium catalyst entrapped within the cross-linked chitosan membrane for heck reactions. Eng. Chem. Res, 2014, 53, 10041-10050.
[111]
Guibal, E. Heterogeneous catalysis on chitosan-based materials: a review. Prog. Polym. Sci., 2005, 30, 71-109.
[112]
Macquarrie, D.J.; Hardy, J.J.E. Applications of functionalized chitosan in catalysis. Ind. Eng. Chem. Res., 2005, 44, 8499-8520.
[113]
Guibal, E. Interactions of metal ions with chitosan-based sorbents: a review. Separ. Purif. Tech., 2004, 38, 43-74.
[114]
Calo, V.; Nacci, A.; Monopoli, A.; Fornaro, A.; Sabbatini, L.; Cioffi, N.; Ditaranto, N. Heck reaction catalyzed by nanosized palladium on chitosan in ionic liquids. Organometallics, 2004, 23, 5154-5158.
[115]
Cotugno, P.; Casiello, M.; Nacci, A.; Mastrorilli, P.; Dell’Anna, M.M.; Monopoli, A. Suzuki coupling of iodo and bromoarenes catalyzed by chitosan-supported Pd-nanoparticles in ionic liquids. J. Organomet. Chem., 2014, 752, 1-5.
[116]
Qi, C.Z.; Sun, X.D.; Lu, C.Y.; Yang, J.Z.; Du, Y.J.; Wu, H.J.; Zhang, X-M. Palladium catalyzed reductive homocoupling reactions of aromatic halides in dimethyl sulfoxide (DMSO) solution. J. Organomet. Chem., 2009, 694, 2912-2916.
[117]
Zeng, M.F.; Du, Y.J.; Qi, C.Z.; Zuo, S.F.; Li, X.D.; Shao, L.J.; Zhang, X-M. An efficient and recyclable heterogeneous palladium catalyst utilizing naturally abundant pearl shell waste. Green Chem., 2011, 13, 350-356.
[118]
Zeng, M.F.; Du, Y.J.; Shao, L.J.; Qi, C.Z.; Zhang, X-M. Palladium-catalyzed reductive homocoupling of aromatic halides and oxidation of alcohols. J. Org. Chem., 2010, 75, 2556-2563.
[119]
Mukhopadhyay, S.; Rothenberg, G.; Gitis, D.; Wiener, H.; Sasson, Y. Kinetics and mechanism of heterogeneous palladium- catalyzed coupling reactions of chloroaryls in water. J. Chem. Soc., Perkin Trans. 2, 1999, 0, 2481-2484.
[120]
Calo, V.; Nacci, A.; Monopoli, A.; Damascelli, A.; Ieva, E.; Cioffi, N. Palladium-nanoparticles catalyzed hydrodehalogenation of aryl chlorides in ionic liquids. J. Organomet. Chem., 2007, 692, 4397-4401.
[121]
Shaughnessy, K.H. In Metal-Catalyzed Reactions in Water; Dixneuf, P.H.; Cadierno, V., Eds.; Wiley-VCH: Weinheim, Germany, 2013.
[122]
Gholinejad, M.; Jeddi, N.; Pullithadathil, B. Agarose functionalized phosphorus ligand for stabiliza- tion of small-sized palladium and copper nanoparticles: efficient heterogeneous catalyst for Sonogashira reaction. Tetrahedron, 2016, 72, 2491-2500.
[123]
Chinchilla, R.; Nájera, C. The Sonogashira reaction: a booming methodology in synthetic organic chemistry. Chem. Rev., 2007, 107, 874-922.
[124]
Sarmah, M.; Dewan, A.; Thakur, A.J.; Bora, U. Urea as mild and efficient additive for palladium catalyzed Sonogashira cross coupling reaction. Tetrahedron Lett., 2016, 57, 914-916.
[125]
Frindy, S.; Primo, A.; Lahcini, M.; Bousmina, M.; Garcia, H.; El Kadib, A. Pd embedded in chitosan microspheres as tunable soft-materials for Sonogashira cross-coupling in water-ethanol mixture. Green Chem., 2015, 17, 1893-1898.
[126]
Bao, Y.S.; Wang, L.; Jia, M.; Xu, A.; Agula, B.; Baiyin, M.; Zhaorigetu, B. Heterogeneous recycla- ble nano-palladium catalyzed amidation of esters using formamides as amine sources. Green Chem., 2016, 18, 3808-3814.
[127]
Yang, F.; Feng, A.; Wang, C.; Dong, S.; Chi, C.; Jia, X.; Li, Y. Graphene oxide/carbon nanotubes-Fe3O4 supported Pd nanoparticles for hydrogenation of nitroarenes and C-H activation. RSC Advances, 2016, 6, 16911-16916.
[128]
Yuan, T.; Gong, H.; Kailasam, K.; Zhao, Y.; Thomas, A.; Zhu, J. Controlling hydrogenation selectiv- ity with Pd catalysts on carbon nitrides functionalized silica. J. Catal., 2015, 326, 38-42.
[129]
Costantino, F.; Vivani, R.; Bastianini, M.; Ortolani, L.; Piermatti, O.; Nocchetti, M.; Vaccaro, L. Accessing stable zirconium carboxy-aminophosphonate nanosheets as support for highly active Pd na- noparticles. Chem. Commun., 2015, 51, 15990-15993.
[130]
Qing, C.; Hong, Z.; Guangsheng, L.; Jianhong, X. An efficient chitosan/silica composite core-shell microspheres-supported Pd catalyst for aryl iodides sonogashira coupling reactions. Ind. Eng. Chem. Res., 2017, 56(1), 143-152.
[131]
Sakakura, T.; Choi, J.C.; Yasuda, H. Transformation of carbon dioxide. Chem. Rev., 2007, 107, 2365-2387.
[132]
North, M.; Pasquale, R.; Young, C. Synthesis of cyclic carbonates from epoxides and CO2. Green Chem., 2010, 12, 1514-1539.
[133]
Barkakaty, B.; Morino, K.; Sudo, A.; Endo, T. Amidine-mediated delivery of CO2 from gas phase to reaction system for highly efficient synthesis of cyclic carbonates from epoxides. Green Chem., 2010, 12, 42-44.
[134]
Xiao, L.F.; Li, F.W.; Peng, J.J.; Xia, C.G. Immobilized ionic liquid/zinc chloride: Heterogeneous catalyst for synthesis of cyclic carbonates from carbon dioxide and epoxides. J. Mol. Catal. A: Chem., 2006, 253, 265-269.
[135]
Zhao, Y.; Tian, J.S.; Qi, X.H.; Han, Z.N.; Zhuang, Y.Y.; He, L.N. Quaternary ammonium salt-functionalized chitosan: An easily recyclable catalyst for efficient synthesis of cyclic carbonates from epoxides and carbon dioxide. J. Mol. Catal. A: Chem, 2007, 271, 284-289.
[136]
Sun, J.; Wang, J.; Cheng, W.; Zhang, J.; Li, X.; Zhang, S.; Sheb, Y. Chitosan functionalized ionic liquid as a recyclable biopolymer-supported catalyst for cycloaddition of CO2. Green Chem., 2012, 14, 654-660.
[137]
Han, L.N.; Choi, H.J.; Choi, S.J.; Liu, B.Y.; Park, D.W. Ionic liquids containing carboxyl acid moieties grafted onto silica: Synthesis and application as heterogeneous catalysts for cycloaddition reactions of epoxide and carbon dioxide. Green Chem., 2011, 13, 1023-1028.
[138]
Sun, J.; Cheng, W.G.; Fan, W.; Wang, Y.H.; Meng, Z.Y.; Zhang, S. Quaternary ammonium salt-functionalized chitosan: An easily recyclable catalyst for efficient synthesis of cyclic carbonates from epoxides and carbon dioxide. J. Catal. Today, 2009, 148, 361-367.
[139]
Tsang, C.W.; Baharloo, B.; Riendl, D.; Yam, M.; Gates, D.P. Radical copolymerization of a phosphaalkene with styrene: New phosphine-containing macromolecules and their use in polymer-supported catalysis. Angew. Chem. Int. Ed., 2004, 43, 5682-5685.
[140]
Zhao, Y.; Tian, J.S.; Qi, X.H.; Han, Z.N.; Zhuang, Y.Y.; He, L.N. Quarternary ammonium salt-functionalized chitosan: An easily recyclable catalyst for efficient synthesis of cyclic carbonates from epoxides and carbon dioxide. J. Mol. Catal. A: Chem., 2007, 271, 284-289.
[141]
Takahashi, T.; Watahiki, T.; Kitazume, S.; Yasuda, H.; Sakakura, T. Synergistic hybrid catalyst for cyclic carbonate synthesis: Remarkable acceleration caused by immobilization of homogeneous catalyst on silica. Chem. Commun., 2006, 0, 1664-1666.
[142]
Franconetti, A.; Domínguez-Rodríguez, P.; Lara-Garcíaa, D.; Prado-Gotor, R.; Cabrera-Escribanoa, F. Native and modified chitosan-based hydrogels as green heterogeneous organocatalysts for imine-mediated Knoevenagel condensation. Appl. Catal. A Gen., 2016, 517, 176-186.
[143]
Qin, Y.; Zhao, W.; Yang, L.; Zhang, X.; Cui, Y. Chitosan-based heterogeneous catalysts for enantioselective Michael reaction. Chirality, 2012, 24, 640-645.
[144]
Chen, Y.; Shi, W.; Hui, Y.; Sun, X.; Xu, L.; Feng, L.; Xie, Z. A new highly selective fluorescent turn-on chemosensor for cyanide anion. Talanta, 2015, 137, 38-42.
[145]
GoodnowJr, R.A.; Huby, N.J.S.; Kong, N.; McDermott, L. A; Moliterni, J.A.; Zhang, Z. Substituted hydantoins. US 7371869 B2, 2008.
[146]
Mahmoodi, N.O.; Khodaee, Z. Evaluating the one-pot synthesis of hydantoins. ARKIVOC, 2007, 3, 29-36.