[1]
Saroj, S.; Shah, P.; Jairaj, V.; Rathod, R. Green analytical chemistry and quality by design: A combined approach towards robust and sustainable modern analysis. Curr. Anal. Chem., 2018, 14(4), 367-381.
[2]
Hall, E.T. X-Ray Fluorescence analysis applied to archaeology. Archaeometry, 1960, 3(1), 29-35.
[3]
Frahm, E.; Doonan, R.C.P. The technological versus methodological revolution of portable XRF in archaeology. J. Archaeol. Sci., 2013, 40, 1425-1434.
[4]
Piorek, S. Field - portable X-ray fluorescence spectrometry: Past, present and future. Field Anal. Chem. Technol., 1997, 1(6), 317-329.
[5]
Strüder, L.; Meidinger, N.; Stotter, D.; Kemmer, J. Lechner, P.; Leutenegger, P.; Soltau, H.; Eggert, F.; Rohde, M.; Schulein, T. High-resolution X-ray spectroscopy close to room temperature. Microsc. Microanal., 1998, 4(6), 622-631.
[6]
Bronk, H.; Röhrs, S.; Bjeoumikhov, A.; Langhoff, N.; Schmalz, J.; Wedell, R.; Gorny, H.E.; Herold, A.; Waldschläger, U. Artax - a new mobile spectrometer for energy-dispersive micro X-ray fluorescence spectrometry on art and archaeological objects. Fresenius J. Anal. Chem., 2001, 371(3), 307-316.
[7]
Potts, P.J.; West, M. Portable X-ray Fluorescence Spectrometry - Capabilities of In Situ Analysis; The Royal Society of Chemistry: Cambridge, 2008.
[8]
Karydas, A.G.; Brecoulaki, Ch.; Pantazis, T.; Aloupi, T.E.; Argyropoulos, V.; Kotzamani, D.; Bernard, R.; Zarkadas, Ch.; Paradellis, T. Importance of in-situ EDXRF Measurements in the Preservation and Conservation of Material Culture. In: X-rays for Archaeology; Uda, M.; Demortier, G.; Nakai, I., Eds.; Springer: Dordrecht, 2005, pp. 27-53.
[9]
Fitzerald, S. Non-destructive micro-analysis of art and archaeological objects using micro-XRF. Archeometriai Műhely, 2008, 3, 73-78.
[10]
Beckhoff, B.; Kanngießer, B.; Langhoff, N.; Wedell, R.; Wolff, H. Handbook of Practical X-Ray Fluorescence Analysis; Springer Science and Business Media: New York, 2006.
[11]
Cechak, T.; Hlozek, M.; Musilek, L.; Trojek, T. X-ray fluorescence in investigations of archaeological finds. Nucl. Instrum. Methods Phys. Res. B, 2007, 263, 54-57.
[12]
Tykot, R.H. Using nondestructive portable X-ray fluorescence spectrometers on stone, ceramics, metals and other materials in museums: advantages and limitations. Appl. Spectrosc., 2016, 70(1), 42-56.
[13]
Rindby, A.; Adams, F.; Engström, P. Microfocusing X-ray optics. In: Microscopic X-ray Fluorescence Analysis; Janssens, K.; Adams, F, Rindby, A., Ed.; John Wiley & Sons Inc.: New York; , 1999, pp. pp. 63-94.
[14]
Zarkadas, C.; Karydas, A.G. A portable semi-micro-Xray fluorescence spectrometer for archaeometrical studies. Spectrochim. Acta B , 2004, 59(10-11), 1611-1618.
[15]
Buzanich, G.; Wobrauschek, P.; Streli, C.; Markowicz, A.; Wegrzynek, D.; Chinea-Cano, E. Bamford. S. A portable micro-X-ray fluorescence spectrometer with polycapillary optics and vacuum chamber for archaeometric and other applications. Spectrochim. Acta B , 2007, 62(11), 1152-1256.
[16]
Janssens, K.; Vittiglio, G.; Deraedt, I.; Aerts, A.; Vekemans, B.; Vincze, L.; Wei, F.; De Ryck, I.; Schalm, O.; Adams, F.; Rindby, A.; Knochel, A.; A.; Simionovici, A. A. Snigirev, A. Use of microscopic XRF for non-destructive analysis in art and archaeometry. XRay Spectrom., 2000, 29(1), 73-91.
[17]
Haschke, M. Laboratory Micro-X-Ray Fluorescence Spectroscopy - Instrumentation and Applications; Springer International Publishing: Switzerland, 2014.
[18]
Mantouvalou, I.; Malzer, W.; Kanngießer, B. Quantification for 3D micro X-ray fluorescence. Spectrochim. Acta B , 2012, 77, 9-18.
[19]
Wei, H.; Kockelmann, W.; Godfrey, E.; Scott, D.A. The metallography and corrosion of an ancient Chinese bimetallic bronze sword. J. Cult. Herit., 2018, 1, 1-7.
[20]
Pollard, A.M.; Bray, P. Chemical and Isotopic Studies of Ancient Metals. In: Archaeometallurgy in Global Perspective - Methods and Synthesis; Roberts, B.W.; Thornton, C.P., Eds.; Springer Science and Business Media: New York, 2014, pp. 217-238.
[21]
Mantouvalou, I.; Malzer, W.; Schaumann, I.; Lühl, L.; Dargel, R.; Vogt, C.; Kanngiesser, B. Reconstruction of thickness and composition of stratified materials by means of 3D micro X-ray fluorescence spectroscopy. Anal. Chem., 2008, 80, 819-826.
[22]
Goffer, Z. Archaeological Chemistry, 2nd ed; John Wiley & Sons Inc.: Hoboken, New Jersey, 2007.
[23]
Henderson, J. The Science and Archaeology of Materials - An Investigation of Inorganic Materials; Routledge: New York, 2000.
[24]
Orfanou, S. Early Iron Age Greek Copper-Based Technology: Votive Offerings from Thessaly. PhD Thesis.
[25]
Lazic, V.; Vadrucci, M.; Fantoni, R.; Chiari, M.; Mazzinghi, A.; Gorghinian, A. Applications of laser induced breakdown spectroscopy for cultural heritage: A comparison with X-ray Fluorescence and Particle Induced X-ray Emission techniques. Spectrochim. Acta B, , 2018, 149, 1-14.
[26]
Jenkins, R. X-ray Fluorescence Spectrometry, 2nd ed; Wiley & Sons Inc.: New York, 1999.
[27]
Milazzo, M.; Cicardi, C. Simple methods for quantitative X-ray fluorescence analysis of ancient metal objects of archaeological interest. XRay Spectrom., 1997, 26, 211-216.
[28]
Rousseau, R.M. Detection limit and estimate of uncertainty of analytical XRF results. Rigaku J., 2001, 18(2), 33-47.
[29]
Heginbotham, A.; Bezur, A.; Bouchard, M.; Davis, J.M.; Eremin,
K.; Frantz, J.H.; Glinsman, L.; Hayek8, L.A.; Hook, D.; Kantarelou,
V.; Karydas, A.G.; Lee, L.; Mass, J.; Matsen, K.;
McCarthy, B.; McGath, M.; Shugar, A.; Sirois, J.; Smith, D.;
Speakman, R.J. An evaluation of inter-laboratory reproducibility
for quantitative XRF of historic copper alloys. In: Metal 2010, Proceedings
of the Interim Meeting of the ICOM-CC Metal Working
Group, Charleston, South Carolina, USA, October 11-15, 2010;; Mardikian, P.; Chemello, C.; Watters, C.; Hull, P. Eds.; International
Council of Museums: Clemson, South Carolina, USA. , 2011, pp. 244-255.
[30]
Martin, G. Alloy analysis. In: Bells & Mortars and Related Utensil - Catalogue of Italian bronzes in the Victoria and Albert Museum;. Motture, P. Ed.; V & A Publications: London; , 2001.
[31]
Heginbotham, A.; Bassett, J.; Bourgarit, D.; Eveleigh, C.; Frantz, T.; Glinsman, L.; Hook, D.; Smith, D.; Speakman, R.J.; Sugar, A.; Van Langh, R. The copper CHARM set: A new set of certified reference materials for the standardization of quantitative X-ray fluorescence analysis of heritage copper alloys. Archaeometry, 2015, 57(5), 856-868.
[32]
Shugar A.N.; Mass, J.L. Introduction. Shugar, A.N.; Mass, J.L. Eds. Handheld XRF for Art and Archaeology, Leuven University Press: Leunen; , 2012, pp. pp. 17-36.
[33]
Datta, P.K.; Chattopadhyay, P.K.; Mandal, B. Investigations on ancient high-Sn bronze excavated from lower Bengal region of Tilpi. Indian J. Hist. Sci., 2008, 43(3), 381-410.
[34]
Scott, D.A. Ancient Metals: Microstructure and Metallurgy, vol. I. Los Angeles,, 2010.
[35]
Smith, D. Handheld XRF analysis of Renaissance bronzes: practical approaches to quantification and acquisition.Shugar, A.N.; Mass, J.L. Eds. Handheld XRF for Art and Archaeology, Leuven University Press: Leunen; , 2012, pp. pp. 37-74.
[36]
Guerra, M.F. Analysis of archaeological metals. The place of XRF and PIXE in the determination of technology and provenance. XRay Spectrom., 1998, 27, 73-80.
[37]
Karydas, A.G. Application of a portable XRF spectrometer for the non invasive analysis of museum metal artifacts. Annali di Chimica., 2007, 97(7), 419-432.
[38]
Katsifas, C.S.; Ignatiadou, D.; Zacharopoulou, A.; Kantiranis, N.; Karapanagiotis, I.; Zachariadis, G.A. Non-destructive X-ray spectrometric and chromatographic analysis of metal containers and their contents, from ancient Macedonia. Separations, 2018, 5(32), 1-17.
[39]
Figueiredo, E.; Valerio, P.; Fatima Araújo, M.; Silva, R.J.C.; Soares, A.M.M. Inclusions and metal composition of ancient copper-based artefacts: A diachronic view by micro-EDXRF and SEM-eds. XRay Spectrom., 2010, 40, 325-332.
[40]
Charalambous, A.; Kassianidou, V.; Papasavvas, G. A compositional study of Cypriot bronzes dating to the Early Iron Age using portable X-ray fluorescence spectrometry (pXRF). J. Archaeol. Sci., 2014, 46, 205-216.
[41]
Kantarelou, V.; Karydas, A.G.; Zarkadas, Ch.; Giannoulaki, M.; Argyropoulos, V. Micro-XRF analysis of high tin bronze mirrors at the museum of ancient Messene in Greece. In: Strategies for Saving our Cultural Heritage, Proceedings of the International Conference on Conservation Strategies for Saving Indoor Metallic Collections with a Satellite Meeting on Leagal Issues in the Conservation of Cultural Heritage Cairo, February 25 - March 1, 2007; Argyropoulos, V.; Hein, A.; Harith, M. A. Eds; Technological and Educational Institute of Athens; , 2007; pp. 93-99.
[42]
Figueiredo, E.; Valério, P.; Araújo, M.F.; Senna-Martinez, J.C. Micro-EDXRF surface analyses of a bronze spear head: lead content in metal and corrosion layer. Nucl. Instrum. Methods Phys. Res., 2007, A(580), 725-727.
[43]
Baijot-Stroobant, J.; Bodart, F. Ancient pottery analysis by proton bombardment and Mössbauer spectroscopy. Nucl. Instrum. Methods, 1977, 142(1-2), 293-300.
[44]
Cristea-Stan, D.; Constaninescu, B.; Ceccato, D.; Pacheco, C.; Pichon, L.; Luculescu, C. Micro-PIXE studies on native Transylvanian gold for archaeological artifacts authentication. Int. J. Mod. Phys. Conf. Ser, 2014, 27, 1-9.
[45]
Guerra, M.F. The study of the characterisation and provenance of coins and other metalwork using XRF, PIXE and activation analysis. In: Radiation in Art and Archaeometry; Creagh, D.C.; Bradley, D.A., Eds.; Elsevier: Amsterdam, 2000, pp. 379-416.
[46]
De Ryck, L.; Adriaens, A.; Pantos, E.; Adams, F. A comparison of microbeam techniques for the analysis of corroded ancient bronze objects. Analyst , 2003, 128, 1104-1109.
[47]
Dran, J.C.; Salomon, J.; Calligaro, T.; Walter, Ph. Ion beam analysis of art works: 14 years of use in the Louvre. Nucl. Inst. Methods B, 2004, 219-220, 7-15.
[48]
Verma, H.R. Atomic and Nuclear Analytical Methods - XRF, Mössbauer, XPS, NAA, and Ion Beam Spectroscopic Techniques; Springer Science and Business Media: New York, 2007.
[49]
Zucchiatti, A. X-ray spectrometry in archaeometry. In: X-ray Spectrometry: Recent Technological Advance; Tsuji, K.; Injuk, J.; Van Grieken, R., Eds.; John Wiley & Sons Ltd: Chichester, 2004, pp. 553-552.
[50]
Vasilescu, A.; Constantinescu, B.; Stan, D.; Talmatchi, G.; Ceccato, D. XRF and micro-PIXE studies of inhomogeneity of ancient bronze and silver alloys. Nucl. Instrum. Methods Phys. Res. B, 2017, 406, 302-308.
[51]
Żmuda-Trzebiatowska, I.; Śliwiński, S. Surface layers analysis of bronze artifacts by means of laser spectroscopy techniques. Photonics Lett. Pol., 2011, 3(2), 79-81.
[52]
Orlić-Bachler, M.; Bišcan, M.; Kregar, Z.; Jelovica Badovinac, I.; Dobrini’ce, J.; Miloševic, S. Analysis of antique bronze coins by Laser Induced Breakdown Spectroscopy and multivariate analysis. Spectrochimic. Acta B, 2016, 123, 163-170.
[53]
Melessanaki, K.; Mateo, M.; Ferrence, S.C.; Betancourt, P.P.; Anglos, D. The application of LIBS for the analysis of archaeological ceramic and metal artefacts. Appl. Surf. Sci., 2002, 197-198, 156-163.
[54]
Calvo del Castillo, H.; Strivay, D. X-Ray Methods. In: Analytical Archaeometry - Selected Topics; Howell, G.; Edwards, M.; Vandenabeele, P; The Royal Society of Chemistry: Cambridge, 2012, pp. 59-112.
[55]
Fortes, F.J.; Cortes, M.; Simon, M.D.; Cabalin, L.M.; Laserna, J.J. Chronocultural sorting of archaeological bronze objects using laser-induced breakdown spectrometry. Anal. Chim. Acta, 2005, 554, 136-143.
[56]
Fantoni, R.; Caneve, L.; Colao, F.; Fornarini, L.; Lazic, V.; Spizzichino, V. Methodologies for laboratory laser induced breakdown spectroscopy semi-quantitative and quantitative analysis - A review. Spectrochim. Acta B , 2008, 63, 1097-1108.
[57]
Guirado, S.F.J.; Fortes, F.J.V.; Lazic, V.J.J.; Laserna, J.J. Chemical analysis of archaeological materials in submarine environments using LIBS. On-site trials in the Mediterranean Sea. Spectrochim. Acta B ., 2012, 74-75, 137-143.
[58]
Papazoglou, D.G. Papadakis, V. Anglos, D. In situ interferometric depth and topography monitoring in LIBS elemental profiling of multi-layer structures. J. Anal. At. Spectrom., 2004, 19, 483-488.
[59]
Goodall, R.A. Indentification and Authentication In: Analytical Archaeometry - Selected Topics; Howell, G.; Edwards, M.; Vandenabeele, P.; The Royal Society of Chemistry: Cambridge,; , 2012, pp. pp. 483-500.
[60]
Bussera, B.; Moncayo, S.; Colla, J-L.; Sancey, L.; Motto-Ros, V. Elemental imaging using laser-induced breakdown spectroscopy: A new and promising approach for biological and medical applications. Coord. Chem. Rev., 2018, 358, 70-79.
[61]
Kantarelou, V.; Zarkadas, C.; Giakoumaki, A.; Karydas, A.G.; Anglos, D.; Argyropoulos, V. A novel approach on the combined in-situ application of LIBS and μ-XRF spectrometers for the characterization of copper alloy corrosion products. In: Metal 2007; vol.2 Proceedings of International Council of Museums, Innovative Investigation of Metal Artefacts, Amsterdam, September 17-21, 2007; The Netherlands; , 2007; pp. pp. 35-41.
[62]
Arafat, A.; Na’es, M.; Vicky Kantarelou, V.; Naseem, H.; Anastasia Giakoumaki, A. Argyropoulose, V.; Anglos, D.; Karydas, A.G. Combined in situ micro-XRF, LIBS and SEM-EDS analysis of base metal and corrosion products for Islamic copper alloyed artefacts from Umm Qais museum, Jordan. J. Cult. Herit., 2013, 14, 261-269.
[63]
Sotelo-Mazon, O.; Cuevas-Arteaga, C.; Porcayo-Calderon, J.; Izquierdo-Montalvo, G. Chemical, physical and electrochemical characterization of two stainless steels exposed in NaVO3 molten salt at 700°C. Curr. Anal. Chem., 2016, 12(6), 602-611.
[64]
Selwyn, L.S. Corrosion of Metal Artifacts in Buried Environments. ASM International, vol. 13C; , 2006.
[65]
Figueiredo, E.; Valério, P.; Araújo, M.F.; Silva, R.J.C.; Soares, A.M.M. Inclusions and metal composition of ancient copper-based artefacts: A diachronic view by micro-XRF and SEM-EDS. XRay Spectrom., 2011, 40, 325-332.
[66]
Peterson, D.L.; Dudgeon, J.V.; Tromp, M.; Bobokhyan, A. LA-ICP-MS analysis of Prehistoric Copper and Bronze Metalwork from Armenia. In: Recent Advances in Laser Ablation ICP-MS for Archaeology; Dussubieux, L.; Golitko, M.; Gratuze, B., Eds.; Springer, 2016, pp. 115-135.
[67]
Pollard, A.M.; Heron, C. Archaeological Chemistry; The Royal Society of Chemistry: Cambridge, 1996.
[68]
Gale, N.H.; Stos-Gale, Z. Lead isotope analysesapplied to provenance studies. In: Modern Analytical Methods in Art and Archaeology; Ciliberto, E., Spoto, G. Ed.; John Wiley & Sons: New York; , 2000, vol. 155, pp. pp. 503-584.
[69]
Bouchard, M.; Smith, D.C. Catalogue of 45 reference Raman spectra of minerals concerning research in art history or archaeology, especially on corroded metals and colored glass. Spectrochim. Acta A, 2003, 59, 227-266.
[70]
Bouchard, M.; Smith, D.C. Database of 74 Raman spectra of standard minerals of relevance to metal corrosion, stained glass or prehistoric rock art. In: Raman Spectroscopy in Archaeology and Art History; Edwards, H.G.M.; Chalmers, J.M., Eds.; Royal Society of Chemistry: Cambridge, 2005, pp. 17-40.
[71]
Robinet, L.; Thickett, D. Case study: Application to Raman spectroscopy to corrosion products. In:Raman Spectroscopy in Archaeology and Art History; Edwards, H.G.M.; Chalmers, J.M., Eds.; Royal Society of Chemistry: Cambridge, 2005, pp. 325-334.
[72]
Andrikopoulos, K.S.; Daniilia, S.; Roussel, B.; Janssens, K. In vitro validation of a mobile Raman-XRF microanalytical instrument’s capabilities on the diagnosis of Byzantine icons. J. Raman Spectrosc., 2006, 37(10), 1026-1034.
[73]
Colomban, P.; Tournié, A.; Meynard, P. On-site Raman and XRF analysis of Japanese/Chinese bronze/brass patina - the search of specific Raman signatures. J. Raman Spectrosc., 2012, 43, 799-808.
[74]
Żmuda-Trzebiatowska; I.; Śliwiński, S. LIBS and Raman spectroscopic investigation of historical copper alloy objects. In: Laser Physics and Applications, roceedings of the 18th International School on Quantum Electronics, September 29 - October 3, 2014; Sozopol, Bulgaria, 2014; Dreischuh, T.; Gateva, S.; Serafetinides, A. Eds; Society of Photo-Optical Instrumentation Engineers (SPIE),. Vol. 94472015,
[75]
Ciupiński, L.; Fortuna-Zaleśna, E.; Garbacz, H.; Koss, A.; Kurzydłowski, K.J.; Marczak, J.; Mróz, J.; Onyszczuk, T.; Rycyk, A.; Sarzyński, A.; Skrzeczanowski, W.; Strzelec, M.; Zatorska, A.; Żukowska, G.Z. Comparative laser spectroscopy diagnostics for ancient metallic artefacts exposed to environmental pollution. Sensor, 2010, 10, 4926-4949.
[76]
Nakai, I. New trend in application of synchrotron radiation-induced. In: X-rays for Archaeology; Uda, M.; Demortier, G.; Nakai, I., Eds.; Springer: Dordrecht, 2005, pp. 183-198.
[77]
Taube, M.; King, A.H.; Chase, W.T. Transforamtion of ancient Chinese and model two phase bronze surfaces to smooth adherent patinas. Phase Transit., 2008, 81, 217-232.
[78]
Ashkenazi, D.; Iddan, N.; Tal, O. Archaeometallurgical characterization of Hellenistic metal objects: The contribution of the objects for Rishon Le-Zion (Israel). Archaeometry, 2012, 54(3), 528-548.
[79]
Oudbashi, O.; Davami, P. Metallography and microstructure interpretation of some archaeological tin bronze vessels from Iran. Mater. Charact., 2014, 97, 74-82.
[80]
Li, B.; Jiang, X.; Wu, R.; Wei, B.; Hu, T.; Pan, C. Formation of black patina on an ancient Chinese bronze sword of the Warring States Period. Appl. Surf. Sci., 2018, 455, 724-728.
[81]
Wang, C.S.; Lu, B.; Tan, S.; Zhang, S.Y.; Wang, G.Y. An analysis of nanocrystalline on the surface of “heiqigu” mirrors. J. Chin. Electr. Microscopy Soc, 1993, 161, 1.
[82]
Valério, P.; Silva, R.J.C.; Soares, A.M.M.; Araújo, M.F.; Gonçalves, A.P.; Soares, R.M. Combining X-ray based methods to study the protohistoric bronze technology in Western Iberia. Nucl. Instrum. Methods Phys. Res. B, 2015, 358, 117-123.
[83]
Mantovani, L. Tribaudino, M.; Facchinetti, G. A mineralogical approach to the authentication of an archaeological artefact: Real ancient bronze from Roman Age or fake? J. Cult. Herit., 2016, 21, 876-880.
[84]
Robbiola, L.; Portier, R. A global approach to the authentication of ancient bronzes based on the characterization of the alloy-patina-environment system. J. Cult. Herit., 2006, 1, 1-12.
[85]
Scott, D.A. An examination of the patina and corrosion morphology of some Roman bronzes. J. Am. Inst. Conserv., 1994, 33, 1-23.
[86]
Liritzis, I.; Zacharias, N. Portable XRF of Archaeological Artifacts: Current Research and Limitations. In: X-Ray Fluorescence Spectrometry in Geoarchaeology. ; Ed. Shackley, M.S.; Springer Science and Business Media: New York; , 2011, pp. 109-142.