[1]
Abdel-Rohman, M.; Leipholz, H.H.; Quintana, V.H. Optimal control of civil engineering structures. J. Eng. Mech. Div., 1980, 106, 57-73.
[2]
Shinozuka, M.; Samaras, E.; Paliou, C. Active Control of Floating
Structures. In: Structural Control, Ed.; Springer: Dordrecht 1987,
pp. 651-668.
[3]
Soong, T.; Skinner, G. Experimental study of active structural control. J. Eng. Mech. Div., 1981, 107, 1057-1067.
[4]
Udwadia, F.E.; Tabaie, S. Pulse control of structural and mechanical systems. J. Eng. Mech. Div., 1981, 107, 1011-1028.
[5]
Yang, J.N.; Akbarpour, A.; Ghaemmaghami, P. Optimal control
algorithms for earthquake-excited building structures. In: Structural
control, Ed: Springer: Drodrecht, 1987, pp. 748-761.
[6]
Yang, J.N. Control of tall building under earthquake excitation. J. Eng. Mech. Div., 1982, 108, 833-849.
[7]
Housner, G.; Bergman, L.A.; Caughey, T.K.; Chassiakos, A.G.; Claus, R.O.; Masri, S.F.; Skelton, R.E.; Soong, T.T.; Spencer, B.F.; Yao, J.T. Structural control: Past, present, and future. J. Eng. Mech., 1997, 123, 897-971.
[8]
Yao, J. Concept of structural control. J. Struct. Div., 1972, 98, 1567-1574.
[9]
Dyke, S.; Spencer, B.; Sain, M.; Carlson, J. Seismic response reduction using magnetorheological dampers. In: Proceedings of the IFAC World Congress, 1996, pp. 145-150.
[10]
Dyke, S.; Spencer, B.; Sain, M.; Carlson, J. Experimental verification of semi-active structural control strategies using acceleration feedback. In: Proceedings of the 3rd International Conference on Motion and Vibration and Control, 1996, pp. 291-296.
[11]
Dyke, S.; Spencer, B.; Sain, M.; Carlson, J. Modeling and control of magnetorheological dampers for seismic response reduction. Smart Mater. Struct., 1996, 5, 565.
[12]
Popp, K.M.; Kröger, M. Hua Li, W.; Zhang, X.Z.; Kosasih, P.B. MRE properties under shear and squeeze modes and applications. J. Intell. Mater. Syst. Struct., 2010, 21, 1471-1477.
[13]
Bonnecaze, R.; Brady, J. Dynamic simulation of an electrorheological fluid. J. Chem. Phys., 1992, 96, 2183-2202.
[14]
Wereley, N.M.; Lindler, J.; Rosenfeld, N.; Choi, Y.T. Biviscous damping behavior in electrorheological shock absorbers. Smart Mater. Struct., 2004, 13, 743.
[15]
Liu, B.; Li, W.; Kosasih, P.B.; Zhang, X. Development of an MR-brake-based haptic device. Smart Mater. Struct., 2006, 15, 1960.
[16]
Padalka, O.; Song, H.; Wereley, N.; Filer, J.; Bell, R. Stiffness and damping in Fe, Co, and Ni nanowire-based magnetorheological elastomeric composites. IEEE Trans. Magn., 2010, 46, 2275-2277.
[17]
Han, Y.; Hong, W.; Faidley, L.E. Field-stiffening effect of magneto-rheological elastomers. Int. J. Solids Struct., 2013, 50, 2281-2288.
[18]
Jacob, R. Magnetic fluid torque and force transmitting device. U.S.
Patent 2, 575, 360, 1951.
[19]
Rabinow, J. The magnetic fluid clutch. In: Proceedings of the
American Institute of Electrical Engineers, 1948, 67, 1308-1315.
[20]
Rigbi, Z.; Jilken, L. The response of an elastomer filled with soft ferrite to mechanical and magnetic influences. J. Magn. Magn. Mater., 1983, 37, 267-276.
[21]
Jolly, M.R.; Carlson, J.D.; Muñoz, B.C.; Bullions, T.A. The magnetoviscoelastic response of elastomer composites consisting of ferrous particles embedded in a polymer matrix. J. Intell. Mater. Syst. Struct., 1996, 7, 613-622.
[22]
Jolly, M.R.; Carlson, J.D.; Munoz, B.C. A model of the behaviour of magnetorheological materials. Smart Mater. Struct., 1996, 5, 607.
[23]
Davis, L. Model of magnetorheological elastomers. J. Appl. Phys., 1999, 85, 3348-3351.
[24]
Chen, L.; Gong, X.; Li, W. Microstructures and viscoelastic properties of anisotropic magnetorheological elastomers. Smart Mater. Struct., 2007, 16, 2645.
[25]
Borcea, L.; Bruno, O. On the magneto-elastic properties of elastomer-ferromagnet composites. J. Mech. Phys. Solids, 2001, 49, 2877-2919.
[26]
Shiga, T.; Okada, A.; Kurauchi, T. Magnetroviscoelastic behavior of composite gels. J. Appl. Polym. Sci., 1995, 58, 787-792.
[27]
Zhou, G.; Jiang, Z. Deformation in magnetorheological elastomer and elastomer-ferromagnet composite driven by a magnetic field. Smart Mater. Struct., 2004, 13, 309.
[28]
Zhou, G. Shear properties of a magnetorheological elastomer. Smart Mater. Struct., 2003, 12, 139.
[29]
Li, Y.; Li, J.; Tian, T.; Li, W. A highly adjustable magnetorheological elastomer base isolator for applications of real-time adaptive control. Smart Mater. Struct., 2013, 22, 095020.
[30]
Zhou, G.; Li, J. Dynamic behavior of a magnetorheological elastomer under uniaxial deformation: I. Experiment. Smart Mater. Struct., 2003, 12, 859.
[31]
Chen, L.; Gong, X.I.; Li, W.H. Damping of magnetorheological elastomers. Chin. J. Chem. Phys., 2008, 21, 581-585.
[32]
Ginder, J.M.; Schlotter, W.F.; Nichols, M.E. Magnetorheological elastomers in tunable vibration absorbers. In: SPIE’s 8th Annual International Symposium on Smart Structures and Materials, 2001, pp. 103-110.
[33]
Shen, Y.; Golnaraghi, M.F.; Heppler, G. Experimental research and modeling of magnetorheological elastomers. J. Intell. Mater. Syst. Struct., 2004, 15, 27-35.
[34]
Zhang, X.; Li, W.; Gong, X. An effective permeability model to predict field-dependent modulus of magnetorheological elastomers. Commun. Nonlin. Sci. Num. Simulat., 2008, 13, 1910-1916.
[35]
Melenev, P.; Raikher, Y.; Stepanov, G.; Rusakov, V.; Polygalova, L. Modeling of the field-induced plasticity of soft magnetic elastomers.
J. Intell. Mater. Syst. Struct.,2011, 1045389X11403819.
[36]
Galipeau, E.; Castañeda, P.P. A finite-strain constitutive model for magnetorheological elastomers: Magnetic torques and fiber rotations. J. Mech. Phys. Solids, 2013, 61, 1065-1090.
[37]
Koo, J.H.; Khan, F.; Jang, D.D.; Jung, H.J. Dynamic characterization and modeling of magneto-rheological elastomers under compressive loadings. Smart Mater. Struct., 2010, 19, 117002.
[38]
Li, W.; Zhou, Y.; Tian, T. Viscoelastic properties of MR elastomers under harmonic loading. Rheol. Acta, 2010, 49, 733-740.
[39]
Qiao, X.; Lu, X.; Li, W.; Chen, J.; Gong, X.; Yang, T.; Li, W.; Sun, K.; Chen, X. Microstructure and magnetorheological properties of the thermoplastic magnetorheological elastomer composites containing modified carbonyl iron particles and poly (styrene-b-ethylene-ethylenepropylene-b-styrene) matrix. Smart Mater. Struct., 2012, 21, 115028.
[40]
Li, W.; Nakano, M. Fabrication and characterization of PDMS based magnetorheological elastomers. Smart Mater. Struct., 2013, 22, 055035.
[41]
Collette, C.; Kroll, G.; Saive, G.; Guillemier, V.; Avraam, M. On magnetorheologic elastomers for vibration isolation, damping and stress reduction in mass-varying structures. J. Intell. Mater. Syst. Struct., 2010.
[42]
Liao, G.; Gong, X.; Kang, C.; Xuan, S. The design of an active-adaptive tuned vibration absorber based on magnetorheological elastomer and its vibration attenuation performance. Smart Mater. Struct., 2011, 20, 075015.
[43]
Li, Y.; Li, J.; Li, W.; Samali, B. Development and characterization of a magnetorheological elastomer based adaptive seismic isolator. Smart Mater. Struct., 2013, 22, 035005.
[44]
Fu, J.; Yu, M.; Dong, X.; Zhu, L. Magnetorheological elastomer and its application on impact buffer. In:Journal of Physics; Conference Series, 2013, p. 012032.
[45]
Gong, X.; Zhang, X.; Zhang, P. Fabrication and characterization of isotropic magnetorheological elastomers. Polym. Test., 2005, 24, 669-676.
[46]
Deng, H.; Gong, X. Adaptive tuned vibration absorber based on magnetorheological elastomer. J. Intell. Mater. Syst. Struct., 2007, 18, 1205-1210.
[47]
Gong, X.; Li, J.; Chen, L. Study on a dynamic stiffness-tuning absorber with squeeze-strain enhanced magnetorheological elastomer. J. Intell. Mater. Syst. Struct., 2009.
[48]
Sinko, R.; Karnes, M.; Koo, J.H.; Kim, Y.K.; Kim, K.S. Design
and test of an adaptive vibration absorber based on magnetorheological
elastomers and a hybrid electromagnet. J. Intell. Mater.
Syst. Struct.,2012, 1045389X12463461.
[49]
Sun, S.Y.; Chen, J.; Yang, T.; Tian, H.; Deng, W.; Li, W.; Du, H.; Alici, G. The development of an adaptive tuned magnetorheological elastomer absorber working in squeeze mode. Smart Mater. Struct., 2014, 23, 075009.
[50]
Liao, G.; Gong, X.; Xuan, S.; Kang, C.; Zong, L. Development of a real-time tunable stiffness and damping vibration isolator based on magnetorheological elastomer. J. Intell. Mater. Syst. Struct., 2012, 23, 25-33.
[51]
Eem, S.H.; Jung, H.J.; Koo, J.H. Application of MR elastomers for improving seismic protection of base-isolated structures. IEEE Trans. Magn., 2011, 47, 2901-2904.
[52]
Kim, Y.K.; Bae, H.I.; Koo, J.H.; Kim, K.S.; Kim, S. Note: Real time control of a tunable vibration absorber based on magnetorheological elastomer for suppressing tonal vibrations. Rev. Sci. Instrum., 2012, 83, 046108.
[53]
Li, J.; Li, Y.; Li, W.; Samali, B. Development of adaptive seismic isolators for ultimate seismic protection of civil structures. In:SPIE Smart Structures and Materials+; Nondestructive Evaluation and Health Monitoring, 2013, pp. 86920H-86920H, 12.
[54]
Behrooz, M.; Wang, X.; Gordaninejad, F. Performance of a new magnetorheological elastomer isolation system. Smart Mater. Struct., 2014, 23, 045014.
[55]
Kavlicoglu, B.; Wallis, B.; Sahin, H.; Liu, Y. Magnetorheological elastomer mount for shock and vibration isolation. In:SPIE Smart Structures and Materials+; Nondestructive Evaluation and Health Monitoring, 2011, pp. 79770Y-79770Y, 7.
[56]
Ying, Z.; Ni, Y. Micro-vibration response of a stochastically excited sandwich beam with a magnetorheological elastomer core and mass. Smart Mater. Struct., 2009, 18, 095005.
[57]
Nayak, B.; Dwivedy, S.; Murthy, K. Multi-frequency excitation of magnetorheological elastomer-based sandwich beam with conductive skins. Int. J. Non-Lin. Mech., 2012, 47, 448-460.
[58]
Dwivedy, S.; Mahendra, N.; Sahu, K. Parametric instability regions of a soft and magnetorheological elastomer cored sandwich beam. J. Sound Vibrat., 2009, 325, 686-704.
[59]
Miedzinska, D.; Boczkowska, A.; Zubko, K. Numerical verification
of three point bending experiment of Magnetorheological Elastomer
(MRE) in magnetic field. In: Journal of Physics: Conference
Series, 2010, p. 012158.
[60]
Nayak, B.; Dwivedy, S.; Murthy, K. Dynamic analysis of magnetorheological elastomer-based sandwich beam with conductive skins under various boundary conditions. J. Sound Vibrat., 2011, 330, 1837-1859.
[61]
Naeim, F.; Kelly, J.M. Design of Seismic Isolated Structures: From Theory to Practice; John Wiley & Sons: Los Angeles, CA, 1999.
[62]
Lui, E.M. Seismic isolation for earthquake resistant structures. J. Struct. Eng., 2001, 127, 1117-1118.
[63]
Pan, P.; Zamfirescu, D.; Nakashima, M.; Nakayasu, N.; Kashiwa, H. Base-isolation design practice in Japan: Introduction to the post-Kobe approach. J. Earthquake Eng., 2005, 9, 147-171.
[64]
Ramallo, J.; Johnson, E.; Spencer, Jr, B. “Smart” base isolation systems. J. Eng. Mech., 2002, 128, 1088-1099.
[65]
Yoshioka, H.; Ramallo, J.; Spencer, Jr, B. “Smart” base isolation strategies employing magnetorheological dampers. J. Eng. Mech., 2002, 128, 540-551.
[66]
Yang, J.N.; Agrawal, A.K. Semi-active hybrid control systems for nonlinear buildings against near-field earthquakes. Eng. Struct., 2002, 24, 271-280.
[67]
Wongprasert, N.; Symans, M. Experimental evaluation of adaptive elastomeric base-isolated structures using variable-orifice fluid dampers. J. Struct. Eng., 2005, 131, 867-877.
[68]
Lin, P.Y.; Roschke, P.; Loh, C. Hybrid base isolation with magnetorheological damper and fuzzy control. Struct. Contr. Health Monit., 2007, 14, 384-405.
[69]
Hwang, I.H.; Lim, J.H.; Lee, J.S. A study on base isolation performance of magneto-sensitive rubbers. J. Earthquake Eng. Soc. Korea, 2006, 10, 77-84.
[70]
Usman, M.; Sung, S.; Jang, D.; Jung, H.; Koo, J. Numerical investigation of smart base isolation system employing MR elastomer. In:Journal of Physics; Conference Series, 2009, p. 012099.
[71]
Behrooz, M.; Wang, X.; Gordaninejad, F. Modeling of a new semi-active/passive magnetorheological elastomer isolator. Smart Mater. Struct., 2014, 23, 045013.
[72]
Gu, X.; Yu, Y.; Li, Y.; Li, J.; Askari, M.; Samali, B. Experimental study of semi-active magnetorheological elastomer base isolation system using optimal neuro fuzzy logic control. Mech. Syst. Signal Process., 2019, 119, 380-398.
[73]
Chen, X.; Li, Y.; Li, J.; Gu, X. A dual-loop adaptive control for minimizing time response delay in real-time structural vibration control with Magnetorheological (MR) devices. Smart Mater. Struct., 2017, 27, 015005.
[74]
Gu, X.; Yu, Y.; Li, J.; Li, Y. Semi-active control of magnetorheological elastomer base isolation system utilising learning-based inverse model. J. Sound Vibrat., 2017, 406, 346-362.
[75]
Yang, J.; Sun, S.; Du, H.; Li, W.; Alici, G.; Deng, H. A novel magnetorheological elastomer isolator with negative changing stiffness for vibration reduction. Smart Mater. Struct., 2014, 23, 105023.
[76]
Yang, J.; Sun, S.; Tian, T.; Li, W.; Du, H.; Alici, G.; Nakano, M. Development of a novel multi-layer MRE isolator for suppression of building vibrations under seismic events. Mech. Syst. Signal Process., 2016, 70, 811-820.
[77]
Sun, S.S.; Yang, J.; Deng, H.X.; Du, H.; Li, W.H.; Alici, G.; Nakano, M. Horizontal vibration reduction of a seat suspension using negative changing stiffness magnetorheological elastomer isolators. Int. J. Veh. Des., 2015, 68, 104-118.
[78]
Ormondroyd, J. Theory of the dynamic vibration absorber. In: Transaction of the ASME, 1928, pp. 9-22.
[79]
Matta, E. Performance of tuned mass dampers against near-field earthquakes. Struct. Eng. Mech., 2011, 39, 621-642.
[80]
Schramm, S.; Sihler, C.; Song-Manguelle, J.; Rotondo, P. Damping torsional interharmonic effects of large drives. In: IEEE Trans. on Power Electron., 2010, 25, 1090-1098.
[81]
Qin, L.; Yan, W.; Li, Y. Design of frictional pendulum TMD and
its wind control effectiveness. J. Earthquake Eng. Eng. Vibrat.,2009, 5, 020.
[82]
Walsh, P.; Lamancusa, J. A variable stiffness vibration absorber for minimization of transient vibrations. J. Sound Vibrat., 1992, 158, 195-211.
[83]
Fisco, N.; Adeli, H. Smart structures: Part I-active and semi-active control. Sci. Iran., 2011, 18, 275-284.
[84]
Fisco, N.; Adeli, H. Smart structures: Part II-hybrid control systems and control strategies. Sci. Iran., 2011, 18, 285-295.
[85]
Chang, J.C.; Soong, T.T. Structural control using active tuned mass dampers. J. Eng. Mech. Div., 1980, 106, 1091-1098.
[86]
Gsell, D.; Feltrin, G.; Motavalli, M. Adaptive tuned mass damper based on pre-stressable leaf-springs. J. Intell. Mater. Syst. Struct., 2017, 18, 845-851.
[87]
Nagarajaiah, S.; Sonmez, E. Structures with semiactive variable stiffness single/multiple tuned mass dampers. J. Struct. Eng., 2007, 133, 67-77.
[88]
Xu, Z.; Gong, X.; Chen, X. Development of a mechanical semi-active vibration absorber. Adv. Vib. Eng., 2011, 10, 229-238.
[89]
Weber, F.; Maślanka, M. Frequency and damping adaptation of a TMD with controlled MR damper. Smart Mater. Struct., 2012, 21, 055011.
[90]
Weber, F.; Boston, C.; Maślanka, M. An adaptive tuned mass damper based on the emulation of positive and negative stiffness with an MR damper. Smart Mater. Struct., 2011, 20, 015012.
[91]
Sun, S.; Deng, H.; Yang, J.; Li, W.; Du, H.; Alici, G. Performance
evaluation and comparison of magnetorheological elastomer absorbers
working in shear and squeeze modes. J. Intell. Mater. Syst.
Struct.,2015, 1045389X14568819.
[92]
Lin, P.; Chung, L.; Loh, C. Semiactive control of building structures with semiactive tuned mass damper. Comput. Aided Civ. Infrastruct. Eng., 2005, 20, 35-51.
[93]
Sun, S.; Yang, J.; Du, H.; Zhang, S.; Yan, T.; Nakano, M.; Li, W. Development of magnetorheological elastomers-based tuned mass damper for building protection from seismic events. J. Intell. Mater. Syst. Struct., 2018, 29, 1777-1789.
[94]
Sun, S.; Yang, J.; Yildirim, T.; Du, H.; Alici, G.; Zhang, S.; Li, W. Development of a nonlinear adaptive absorber based on magnetorheological elastomer. J. Intell. Mater. Syst. Struct., 2018, 29, 194-204.