Generic placeholder image

Current Smart Materials (Discontinued)

Editor-in-Chief

ISSN (Print): 2405-4658
ISSN (Online): 2405-4666

Research Article

Study on the Effect of Particle Size on Viscoelastic Properties of Magnetorheological Elastomers

Author(s): Ruyi Gan, Yaping Li, Song Qi, Mi Zhu and Miao Yu*

Volume 4, Issue 1, 2019

Page: [59 - 67] Pages: 9

DOI: 10.2174/2405465804666190326151724

Abstract

Background: As an intelligent material, Magnetorheological Elastomer (MRE) has attracted extensive attention due to their excellent magnetic-induced properties.

Aim: In addition to the matrix and interface, magnetic particle is the most critical factor in the magnetic properties of MRE. Particle size does not only affect on the magnetic properties of MRE, but also affects on interface and particle distribution. Therefore, studying the influence of particle size on viscoelastic properties is of great significance for the MRE.

Methods: In this paper, several kinds of MREs containing Carbonyl Iron Particles (CIPs) with different sizes were prepared and characterized. The influences of frequency, strain and magnetic field on viscoelastic properties of these MRE samples have been discussed comprehensively.

Result: The result shows that the particle size has a great impact on the performance of MRE, which indicates that the MRE performance can be improved by optimizing the particle size selection. In addition, possible physical mechanisms have been proposed to explain the effect of particles on MRE performance.

Conclusion: This work can provide guidance for the performance improvement of MREs.

Keywords: Magnetic particles, magnetorheological effect, Magnetorheological Elastomer (MRE), particle size, viscoelasticity, carbonyl iron particles.

Graphical Abstract

[1]
Kumbhar, S.B.; Chavan, S.P.; Gawade, S.S. Adaptive tuned vibration absorber based on magnetorheological elastomer-shape memory alloy composite. Mech. Syst. Signal Process., 2018, 100, 208-223.
[2]
Liao, G.J.; Gong, X.L.; Kang, C.J.; Xuan, S.H. The design of an active-adaptive tuned vibration absorber based on magnetorheological elastomer and its vibration attenuation performance. Smart Mater. Struct., 2011, 20(7), 145-151.
[3]
Komatsuzaki, T.; Inoue, T.; Terashima, O. Broadband vibration control of a structure by using a magnetorheological elastomer-based tuned dynamic absorber. Mechatronics, 2016, 40, 128-136.
[4]
Zhao, L.; Yu, M.; Fu, J.; Zhu, M.; Li, B. A miniature MRE isolator for lateral vibration suppression of bridge monitoring equipment: Design and verification. Smart Mater. Struct., 2017, 26(4), 047001.
[5]
Fu, J.; Li, P.; Wang, Y.; Liao, G.; Yu, M. Model-free fuzzy control of a magnetorheological elastomer vibration isolation system: Analysis and experimental evaluation. Smart Mater. Struct., 2016, 25(3), 035030.
[6]
Behrooz, M.; Wang, X.J.; Gordaninejad, F. Performance of a new magnetorheological elastomer isolation system. Smart Mater. Struct., 2014, 23(4), 045014.
[7]
Fu, J.; Liao, G.; Yu, M.; Li, P.; Lai, J. NARX neural network modeling and robustness analysis of magnetorheological elastomer isolator. Smart Mater. Struct., 2016, 25(12), 125019.
[8]
Sun, S.; Yang, J.; Li, W.; Deng, H.; Du, H.; Alici, G.; Yan, T. An innovative MRE absorber with double natural frequencies for wide frequency bandwidth vibration absorption. Smart Mater. Struct., 2016, 25(5), 055035.
[9]
Sun, S.S.; Yildirim, T.; Wu, J.; Yang, J.; Du, H.; Zhang, S.W.; Li, W.H. Design and verification of a hybrid nonlinear-MRE vibration absorber for controllable broadband performance. Smart Mater. Struct., 2017, 26(9), 095039.
[10]
Qi, S.; Yu, M.; Fu, J.; Zhu, M. Stress relaxation behavior of magnetorheological elastomer: Experimental and modeling study. J. Intell. Mater. Syst. Struct., 2018, 29(2), 205-213.
[11]
Zhu, M.; Yu, M.; Qi, S.; Fu, J. Investigations on response time of magnetorheological elastomer under compression mode. Smart Mater. Struct., 2018, 27(5), 055017.
[12]
Yu, Z.; Yao, Z.; Zhang, N.; Wang, Z.; Li, C.; Han, X.; Wu, X.; Jiang, Z. Electric field-induced synthesis of dendritic nanostructured α-Fe for electromagnetic absorption application. J. Mater. Chem. A, 2013, 1(14), 4571-4576.
[13]
Wang, X.; Shi, G.; Shi, F.N.; Xu, G.; Qi, Y.; Li, D.; Zhang, Z.; Zhang, Y.; You, H. Synthesis of hierarchical cobalt dendrites based on nanoflake self-assembly and their microwave absorption properties. RSC Advances, 2016, 6(47), 40844-40853.
[14]
Gong, X.L.; Zhang, X.Z.; Zhang, P.Q. Fabrication and characterization of isotropic magnetorheological elastomers. Polym. Test., 2005, 24(5), 669-676.
[15]
Bica, I.; Anitas, E.M.; Averis, L.M.E. Tensions and deformations in composites based on polyurethane elastomer and magnetorheological suspension: Effects of the magnetic field. J. Ind. Eng. Chem., 2015, 28, 86-90.
[16]
Xin, F.L.; Bai, X.X.; Qian, L.J. Modeling and experimental verification of frequency-amplitude-and magneto-dependent viscoelasticity of magnetorheological elastomers. Smart Mater. Struct., 2016, 25(10), 105002.
[17]
Bellan, C.; Bossis, G. Field dependence of viscoelastic properties of MR Elastomers. Int. J. Mod. Phys. B.,2002, 16(17n18), 2447- 2453.
[18]
Sorokin, V.V.; Ecker, E.; Stepanov, G.V.; Shamonin, M.; Monkman, G.J.; Kramarenko, E.Y.; Khokhlov, A.R. Experimental study of the magnetic field enhanced Payne effect in magnetorheological elastomers. Soft Matter, 2014, 10(43), 8765-8776.
[19]
Sadasivuni, K.K.; Ponnamma, D.; Kumar, B.; Strankowski, M.; Cardinaels, R.; Moldenaers, P.; Thomas, S.; Grohens, Y. Dielectric properties of modified graphene oxide filled polyurethane nanocomposites and its correlation with rheology. Compos. Sci. Technol., 2014, 104, 18-25.
[20]
Lokander, M.; Reitberger, T.; Stenberg, B. Oxidation of natural rubber-based magnetorheological elastomers. Polym. Degrad. Stabil., 2004, 86, 467-471.
[21]
Slawinski, G.; Miedzińska, D.; Niezgoda, T.; Boczkowska, A. Experimental investigations of MREs behavior under the cyclic load. Environ. Degrad. Eng. Mater. Eng. Technol., 2012, 183, 163-168.
[22]
Sun, T.L.; Gong, X.L.; Jiang, W.Q.; Li, J.F.; Xu, Z.B.; Li, W.H. Study on the damping properties of magnetorheological elastomers based on cis-polybutadiene rubber. Polym. Test., 2008, 27, 520-526.
[23]
Zhang, W.; Gong, X.L.; Sun, T.L.; Fan, Y.C.; Jiang, W.Q. Effect of cyclic deformation on magnetorheological elastomers. Chin. J. Chem. Phys., 2010, 23, 226-230.
[24]
Zhao, X.; Yang, J.; Zhao, D.; Lu, Y.; Wang, W.; Zhang, L.; Nishi, T. Natural rubber/nitrile butadiene rubber/hindered phenol composites with high-damping properties. Int. J. Smart Nano Mater., 2015, 6, 239-250.
[25]
Tian, Z.; Yu, H.; Wang, L.; Saleem, M.; Ren, F.; Ren, P.; Chen, Y.; Sun, R.; Sun, Y.; Huang, L. Recent progress in the preparation of polyaniline nanostructures and their applications in anticorrosive coatings. RSC Advances, 2014, 4(54), 28195-28208.
[26]
Yu, M.; Qi, S.; Fu, J.; Yang, P.A.; Zhu, M. Preparation and characterization of a novel magnetorheological elastomer based on polyurethane/epoxy resin IPNs matrix. Smart Mater. Struct., 2015, 24(4), 045009.
[27]
Khairi, M.H.; Mazlan, S.A.; Aziz, S.A.; Shilan, S.T. Performance of magnetorheological elastomer based green epoxidized natural rubber/sucrose acetate isobutyrate hybrid matrix. In: IOP Conf. Series Mater. Sci. and Eng., 2018, 342(1), 012034.
[28]
Ge, L.; Gong, X.; Fan, Y.; Xuan, S. Preparation and mechanical properties of the magnetorheological elastomer based on natural rubber/rosin glycerin hybrid matrix. Smart Mater. Struct., 2013, 22(11), 115029.
[29]
Jung, H.S.; Kwon, S.H.; Choi, H.J.; Jung, J.H.; Kim, Y.G. Magnetic carbonyl iron/natural rubber composite elastomer and its magnetorheology. Compos. Struct., 2016, 136, 106-112.
[30]
Agirre-Olabide, I.; Elejabarrieta, M.J.; Bou-Ali, M.M. Matrix dependence of the linear viscoelastic region in magnetorheological elastomers. J. Intell. Mater. Syst. Struct., 2015, 26, 1880-1886.
[31]
Li, W.H.; Nakano, M. Fabrication and characterization of PDMS based magnetorheological elastomers. Smart Mater. Struct., 2013, 22(5), 055035.
[32]
Chen, L.; Gong, X.L.; Jiang, W.Q.; Yao, J.J.; Deng, H.X.; Li, W.H. Investigation on magnetorheological elastomers based on natural rubber. J. Mater. Sci., 2007, 42, 5483-5489.
[33]
Qi, S.; Yu, M.; Fu, J.; Zhu, M.; Xie, Y.; Li, W. An EPDM/MVQ polymer blend based magnetorheological elastomer with good thermostability and mechanical performance. Soft Matter, 2018, 14(42), 8521-8528.
[34]
Yu, M.; Qi, S.; Fu, J.; Zhu, M.; Chen, D. Understanding the reinforcing behaviors of polyaniline-modified carbonyl iron particles in magnetorheological elastomer based on polyurethane/epoxy resin IPNs matrix. Compos. Sci. Technol., 2017, 139, 36-46.
[35]
Qiao, X.; Lu, X.; Li, W.; Chen, J.; Gong, X.; Yang, T.; Li, W.; Sun, K.; Chen, X. Microstructure and magnetorheological properties of the thermoplastic magnetorheological elastomer composites containing modified carbonyl iron particles and poly(styrene-\r b\r -ethylene-ethylenepropylene-\r b\r -styrene) matrix. Smart Mater. Struct., 2012, 21(11), 115028.
[36]
Behrooz, M.; Sutrisno, J.; Zhang, L.; Fuchs, A.; Gordaninejad, F. Behavior of magnetorheological elastomers with coated particles. Smart Mater. Struct., 2015, 24(3), 035026.
[37]
Wu, J.; Gong, X.; Fan, Y.; Xia, H. Improving the magnetorheological properties of polyurethane magnetorheological elastomer through plasticization. J. Appl. Polym. Sci., 2012, 123, 2476-2484.
[38]
Malecki, P.; Krolewicz, M.; Krzak, J.; Kaleta, J.; Pigłowski, J. Dynamic mechanical analysis of magnetorheological composites containing silica-coated carbonyl iron powder. J. Intell. Mater. Syst. Struct., 2015, 26, 1899-1905.
[39]
Chen, D.; Yu, M.; Zhu, M.; Qi, S.; Fu, J. Carbonyl iron powder surface modification of magnetorheological elastomers for vibration absorbing application. Smart Mater. Struct., 2016, 25(11), 115005.
[40]
Yu, M.; Qi, S.; Fu, J.; Zhu, M. A high-damping magnetorheological elastomer with bi-directional magnetic-control modulus for potential application in seismology. Appl. Phys. Lett., 2015, 107(11), 111901.
[41]
Yu, M.; Zhu, M.; Fu, J.; Yang, P.A.; Qi, S. A dimorphic magnetorheological elastomer incorporated with Fe nano-flakes modified carbonyl iron particles: Preparation and characterization. Smart Mater. Struct., 2015, 24(11), 115021.
[42]
Padalka, O.; Song, H.J.; Wereley, N.M.; Filer, J.A.; Bell, R.C. Stiffness and damping in Fe, Co, and Ni nanowire-based magnetorheological elastomeric composites. IEEE Trans. Magn., 2010, 46(6), 2275-2277.
[43]
Li, W.H.; Zhang, X.Z. A study of the magnetorheological effect of bimodal particle based magnetorheological elastomers. Smart Mater. Struct., 2010, 19, 035002.
[44]
Sutrisno, J.; Purwanto, A.; Mazlan, S.A. Recent progress on magnetorheological solids: Materials, fabrication, testing, and applications. Adv. Eng. Mater., 2015, 17, 563-597.
[45]
Yang, P.A.; Yu, M.; Fu, J. Ni-coated multi-walled carbon nanotubes enhanced the magnetorheological performance of magnetorheological gel. J. Nanopart. Res., 2016, 18(3), 61.

© 2024 Bentham Science Publishers | Privacy Policy