摘要
靶向治疗已成为癌症治疗的主要方式。这样的抗癌药通常被设计用于治疗具有某些遗传/基因组组成的肿瘤。在开具针对性疗法之前进行突变测试对于确定谁可以从特定的癌症药物中获得临床益处至关重要。在过去的二十年中,胃肠道间质瘤(GIST)已从组织学上的模糊发展为具有明确的临床和分子特征的独特的胃肠道间质瘤,为此可采用多种靶向疗法。尽管美国国家综合癌症网络(NCCN)强烈建议采用突变测试以优化GIST的治疗,但许多GIST患者仍未进行突变测试或任何突变指导的癌症治疗。在这里,我们回顾了GIST的突变指导格局,突变测试方法以及针对具有特定突变的GIST的新疗法的最新进展。
关键词: 胃肠道间质瘤,肉瘤,突变检测,KIT,PDGFRA,突变指导的癌症管理。
图形摘要
[1]
Duensing, A.; Heinrich, M.C.; Fletcher, C.D.; Fletcher, J.A. Biology of gastrointestinal stromal tumors: KIT mutations and beyond. Cancer Invest., 2004, 22(1), 106-116.
[2]
Liegl-Atzwanger, B.; Fletcher, J.A.; Fletcher, C.D. Gastrointestinal stromal tumors. Virchows Arch., 2010, 456(2), 111-127.
[3]
Hirota, S.; Isozaki, K.; Moriyama, Y.; Hashimoto, K.; Nishida, T.; Ishiguro, S.; Kawano, K.; Hanada, M.; Kurata, A.; Takeda, M.; Muhammad Tunio, G.; Matsuzawa, Y.; Kanakura, Y.; Shinomura, Y.; Kitamura, Y. Gain-of-function mutations of c-kit in human gastrointestinal stromal tumors. Science, 1998, 279(5350), 577-580.
[4]
Isozaki, K.; Hirota, S.; Miyagawa, J.; Taniguchi, M.; Shinomura, Y.; Matsuzawa, Y. Deficiency of c-kit+ cells in patients with a myopathic form of chronic idiopathic intestinal pseudo-obstruction. Am. J. Gastroenterol., 1997, 92(2), 332-334.
[5]
Isozaki, K.; Hirota, S.; Nakama, A.; Miyagawa, J.; Shinomura, Y.; Xu, Z.; Nomura, S.; Kitamura, Y. Disturbed intestinal movement, bile reflux to the stomach, and deficiency of c-kit-expressing cells in Ws/Ws mutant rats. Gastroenterology, 1995, 109(2), 456-464.
[6]
Oppelt, P.J.; Hirbe, A.C.; Van Tine, B.A. Gastrointestinal stromal tumors (GISTs): point mutations matter in management, a review. J. Gastrointest. Oncol., 2017, 8(3), 466-473.
[7]
Heinrich, M.C.; Owzar, K.; Corless, C.L.; Hollis, D.; Borden, E.C.; Fletcher, C.D.; Ryan, C.W.; von Mehren, M.; Blanke, C.D.; Rankin, C.; Benjamin, R.S.; Bramwell, V.H.; Demetri, G.D.; Bertagnolli, M.M.; Fletcher, J.A. Correlation of kinase genotype and clinical outcome in the North American Intergroup Phase III Trial of imatinib mesylate for treatment of advanced gastrointestinal stromal tumor: CALGB 150105 study by cancer and leukemia group b and southwest oncology group. J. Clin. Oncol., 2008, 26(33), 5360-5367.
[8]
Patrikidou, A.; Domont, J.; Chabaud, S.; Ray-Coquard, I.; Coindre, J.M.; Bui-Nguyen, B.; Adenis, A.; Rios, M.; Bertucci, F.; Duffaud, F.; Chevreau, C.; Cupissol, D.; Perol, D.; Emile, J.F.; Blay, J.Y.; Le Cesne, A. French Sarcoma, G. Long-term outcome of molecular subgroups of GIST patients treated with standard-dose imatinib in the BFR14 trial of the French Sarcoma Group. Eur. J. Cancer, 2016, 52, 173-180.
[9]
Heinrich, M.C.; Maki, R.G.; Corless, C.L.; Antonescu, C.R.; Harlow, A.; Griffith, D.; Town, A.; McKinley, A.; Ou, W.B.; Fletcher, J.A.; Fletcher, C.D.; Huang, X.; Cohen, D.P.; Baum, C.M.; Demetri, G.D. Primary and secondary kinase genotypes correlate with the biological and clinical activity of sunitinib in imatinib-resistant gastrointestinal stromal tumor. J. Clin. Oncol., 2008, 26(33), 5352-5359.
[10]
Garner, A.P.; Gozgit, J.M.; Anjum, R.; Vodala, S.; Schrock, A.; Zhou, T.; Serrano, C.; Eilers, G.; Zhu, M.; Ketzer, J.; Wardwell, S.; Ning, Y.; Song, Y.; Kohlmann, A.; Wang, F.; Clackson, T.; Heinrich, M.C.; Fletcher, J.A.; Bauer, S.; Rivera, V.M. Ponatinib inhibits polyclonal drug-resistant KIT oncoproteins and shows therapeutic potential in heavily pretreated gastrointestinal stromal tumor (GIST) patients. Clin. Cancer Res., 2014, 20(22), 5745-5755.
[11]
Corless, C.L.; Schroeder, A.; Griffith, D.; Town, A.; McGreevey, L.; Harrell, P.; Shiraga, S.; Bainbridge, T.; Morich, J.; Heinrich, M.C. PDGFRA mutations in gastrointestinal stromal tumors: frequency, spectrum and in vitro sensitivity to imatinib. J. Clin. Oncol., 2005, 23(23), 5357-5364.
[12]
Zehir, A.; Benayed, R.; Shah, R.H.; Syed, A.; Middha, S.; Kim, H.R.; Srinivasan, P.; Gao, J.; Chakravarty, D.; Devlin, S.M.; Hellmann, M.D.; Barron, D.A.; Schram, A.M.; Hameed, M.; Dogan, S.; Ross, D.S.; Hechtman, J.F.; DeLair, D.F.; Yao, J.; Mandelker, D.L.; Cheng, D.T.; Chandramohan, R.; Mohanty, A.S.; Ptashkin, R.N.; Jayakumaran, G.; Prasad, M.; Syed, M.H.; Rema, A.B.; Liu, Z.Y.; Nafa, K.; Borsu, L.; Sadowska, J.; Casanova, J.; Bacares, R.; Kiecka, I.J.; Razumova, A.; Son, J.B.; Stewart, L.; Baldi, T.; Mullaney, K.A.; Al-Ahmadie, H.; Vakiani, E.; Abeshouse, A.A.; Penson, A.V.; Jonsson, P.; Camacho, N.; Chang, M.T.; Won, H.H.; Gross, B.E.; Kundra, R.; Heins, Z.J.; Chen, H.W.; Phillips, S.; Zhang, H.; Wang, J.; Ochoa, A.; Wills, J.; Eubank, M.; Thomas, S.B.; Gardos, S.M.; Reales, D.N.; Galle, J.; Durany, R.; Cambria, R.; Abida, W.; Cercek, A.; Feldman, D.R.; Gounder, M.M.; Hakimi, A.A.; Harding, J.J.; Iyer, G.; Janjigian, Y.Y.; Jordan, E.J.; Kelly, C.M.; Lowery, M.A.; Morris, L.G.T.; Omuro, A.M.; Raj, N.; Razavi, P.; Shoushtari, A.N.; Shukla, N.; Soumerai, T.E.; Varghese, A.M.; Yaeger, R.; Coleman, J.; Bochner, B.; Riely, G.J.; Saltz, L.B.; Scher, H.I.; Sabbatini, P.J.; Robson, M.E.; Klimstra, D.S.; Taylor, B.S.; Baselga, J.; Schultz, N.; Hyman, D.M.; Arcila, M.E.; Solit, D.B.; Ladanyi, M.; Berger, M.F. Mutational landscape of metastatic cancer revealed from prospective clinical sequencing of 10,000 patients. Nat. Med., 2017, 23(6), 703-713.
[13]
Miettinen, M.; Wang, Z.F.; Sarlomo-Rikala, M.; Osuch, C.; Rutkowski, P.; Lasota, J. Succinate dehydrogenase-deficient GISTs: a clinicopathologic, immunohistochemical, and molecular genetic study of 66 gastric GISTs with predilection to young age. Am. J. Surg. Pathol., 2011, 35(11), 1712-1721.
[14]
Wozniak, A.; Sciot, R.; Guillou, L.; Pauwels, P.; Wasag, B.; Stul, M.; Vermeesch, J.R.; Vandenberghe, P.; Limon, J.; Debiec-Rychter, M. Array CGH analysis in primary gastrointestinal stromal tumors: cytogenetic profile correlates with anatomic site and tumor aggressiveness, irrespective of mutational status. Genes Chromosomes Cancer, 2007, 46(3), 261-276.
[15]
Klinke, O.K.; Mizani, T.; Baldwin, G.; Bancel, B.; Devouassoux-Shisheboran, M.; Scoazec, J.Y.; Bringuier, P.P.; Feederle, R.; Jauch, A.; Hinderhofer, K.; Taniere, P.; Delecluse, H.J. KIT mutation and loss of 14q may be sufficient for the development of clinically symptomatic very low-risk GIST. PLoS One, 2015, 10(6)e0130149
[16]
Assamaki, R.; Sarlomo-Rikala, M.; Lopez-Guerrero, J.A.; Lasota, J.; Andersson, L.C.; Llombart-Bosch, A.; Miettinen, M.; Knuutila, S. Array comparative genomic hybridization analysis of chromosomal imbalances and their target genes in gastrointestinal stromal tumors. Genes Chromosomes Cancer, 2007, 46(6), 564-576.
[17]
Yamashita, K.; Igarashi, H.; Kitayama, Y.; Ozawa, T.; Kiyose, S.; Konno, H.; Kazui, T.; Ishikawa, S.; Aburatani, H.; Tanioka, F.; Suzuki, M.; Sugimura, H. Chromosomal numerical abnormality profiles of gastrointestinal stromal tumors. Jpn. J. Clin. Oncol., 2006, 36(2), 85-92.
[18]
Kleinbaum, E.P.; Lazar, A.J.; Tamborini, E.; McAuliffe, J.C.; Sylvestre, P.B.; Sunnenberg, T.D.; Strong, L.; Chen, L.L.; Choi, H.; Benjamin, R.S.; Zhang, W.; Trent, J.C. Clinical, histopathologic, molecular and therapeutic findings in a large kindred with gastrointestinal stromal tumor. Int. J. Cancer, 2008, 122(3), 711-718.
[19]
Nishida, T.; Hirota, S.; Taniguchi, M.; Hashimoto, K.; Isozaki, K.; Nakamura, H.; Kanakura, Y.; Tanaka, T.; Takabayashi, A.; Matsuda, H.; Kitamura, Y. Familial gastrointestinal stromal tumours with germline mutation of the KIT gene. Nat. Genet., 1998, 19(4), 323-324.
[20]
Hartmann, K.; Wardelmann, E.; Ma, Y.; Merkelbach-Bruse, S.; Preussner, L.M.; Woolery, C.; Baldus, S.E.; Heinicke, T.; Thiele, J.; Buettner, R.; Longley, B.J. Novel germline mutation of KIT associated with familial gastrointestinal stromal tumors and mastocytosis. Gastroenterology, 2005, 129(3), 1042-1046.
[21]
Kang, D.Y.; Park, C.K.; Choi, J.S.; Jin, S.Y.; Kim, H.J.; Joo, M.; Kang, M.S.; Moon, W.S.; Yun, K.J.; Yu, E.S.; Kang, H.; Kim, K.M. Multiple gastrointestinal stromal tumors: Clinicopathologic and genetic analysis of 12 patients. Am. J. Surg. Pathol., 2007, 31(2), 224-232.
[22]
Graham, J.; Debiec-Rychter, M.; Corless, C.L.; Reid, R.; Davidson, R.; White, J.D. Imatinib in the management of multiple gastrointestinal stromal tumors associated with a germline KIT K642E mutation. Arch. Pathol. Lab. Med., 2007, 131(9), 1393-1396.
[23]
Hirota, S.; Nishida, T.; Isozaki, K.; Taniguchi, M.; Nishikawa, K.; Ohashi, A.; Takabayashi, A.; Obayashi, T.; Okuno, T.; Kinoshita, K.; Chen, H.; Shinomura, Y.; Kitamura, Y. Familial gastrointestinal stromal tumors associated with dysphagia and novel type germline mutation of KIT gene. Gastroenterology, 2002, 122(5), 1493-1499.
[24]
Relles, D.; Baek, J.; Witkiewicz, A.; Yeo, C.J. Periampullary and duodenal neoplasms in neurofibromatosis type 1: Two cases and an updated 20-year review of the literature yielding 76 cases. J. Gastrointest. Surg., 2010, 14(6), 1052-1061.
[25]
McWhinney, S.R.; Pasini, B.; Stratakis, C.A. International Carney, T.; Carney-Stratakis Syndrome, C., Familial gastrointestinal stromal tumors and germ-line mutations. N. Engl. J. Med., 2007, 357(10), 1054-1056.
[26]
Carballo, M.; Roig, I.; Aguilar, F.; Pol, M.A.; Gamundi, M.J.; Hernan, I.; Martinez-Gimeno, M. Novel c-KIT germline mutation in a family with gastrointestinal stromal tumors and cutaneous hyperpigmentation. Am. J. Med. Genet. A., 2005, 132A(4), 361-364.
[27]
Chompret, A.; Kannengiesser, C.; Barrois, M.; Terrier, P.; Dahan, P.; Tursz, T.; Lenoir, G.M.; Bressac-De Paillerets, B. PDGFRA germline mutation in a family with multiple cases of gastrointestinal stromal tumor. Gastroenterology, 2004, 126(1), 318-321.
[28]
de Raedt, T.; Cools, J.; Debiec-Rychter, M.; Brems, H.; Mentens, N.; Sciot, R.; Himpens, J.; de Wever, I.; Schoffski, P.; Marynen, P.; Legius, E. Intestinal neurofibromatosis is a subtype of familial GIST and results from a dominant activating mutation in PDGFRA. Gastroenterology, 2006, 131(6), 1907-1912.
[29]
Pasini, B.; Matyakhina, L.; Bei, T.; Muchow, M.; Boikos, S.; Ferrando, B.; Carney, J.A.; Stratakis, C.A. Multiple gastrointestinal stromal and other tumors caused by platelet-derived growth factor receptor alpha gene mutations: a case associated with a germline V561D defect. J. Clin. Endocrinol. Metab., 2007, 92(9), 3728-3732.
[30]
Miettinen, M.; Fetsch, J.F.; Sobin, L.H.; Lasota, J. Gastrointestinal stromal tumors in patients with neurofibromatosis 1: A clinicopathologic and molecular genetic study of 45 cases. Am. J. Surg. Pathol., 2006, 30(1), 90-96.
[31]
Kinoshita, K.; Hirota, S.; Isozaki, K.; Ohashi, A.; Nishida, T.; Kitamura, Y.; Shinomura, Y.; Matsuzawa, Y. Absence of c-kit gene mutations in gastrointestinal stromal tumours from neurofibromatosis type 1 patients. J. Pathol., 2004, 202(1), 80-85.
[32]
Janeway, K.A.; Kim, S.Y.; Lodish, M.; Nose, V.; Rustin, P.; Gaal, J.; Dahia, P.L.; Liegl, B.; Ball, E.R.; Raygada, M.; Lai, A.H.; Kelly, L.; Hornick, J.L.; Pediatric, N.I.H.; Wild-Type, G.C.; O’Sullivan, M.; de Krijger, R.R.; Dinjens, W.N.; Demetri, G.D.; Antonescu, C.R.; Fletcher, J.A.; Helman, L.; Stratakis, C.A. Defects in succinate dehydrogenase in gastrointestinal stromal tumors lacking KIT and PDGFRA mutations. Proc. Natl. Acad. Sci. USA, 2011, 108(1), 314-318.
[33]
Boccon-Gibod, L.; Boman, F.; Boudjemaa, S.; Fabre, M.; Leverger, G.; Carney, A.J. Separate occurrence of extra-adrenal paraganglioma and gastrointestinal stromal tumor in monozygotic twins: probable familial Carney syndrome. Pediatr. Dev. Pathol., 2004, 7(4), 380-384.
[34]
Pasini, B.; McWhinney, S.R.; Bei, T.; Matyakhina, L.; Stergiopoulos, S.; Muchow, M.; Boikos, S.A.; Ferrando, B.; Pacak, K.; Assie, G.; Baudin, E.; Chompret, A.; Ellison, J.W.; Briere, J.J.; Rustin, P.; Gimenez-Roqueplo, A.P.; Eng, C.; Carney, J.A.; Stratakis, C.A. Clinical and molecular genetics of patients with the Carney-Stratakis syndrome and germline mutations of the genes coding for the succinate dehydrogenase subunits SDHB, SDHC, and SDHD. Eur. J. Hum. Genet., 2008, 16(1), 79-88.
[35]
Benn, D.E.; Gimenez-Roqueplo, A.P.; Reilly, J.R.; Bertherat, J.; Burgess, J.; Byth, K.; Croxson, M.; Dahia, P.L.; Elston, M.; Gimm, O.; Henley, D.; Herman, P.; Murday, V.; Niccoli-Sire, P.; Pasieka, J.L.; Rohmer, V.; Tucker, K.; Jeunemaitre, X.; Marsh, D.J.; Plouin, P.F.; Robinson, B.G. Clinical presentation and penetrance of pheochromocytoma/paraganglioma syndromes. J. Clin. Endocrinol. Metab., 2006, 91(3), 827-836.
[36]
Ricketts, C.J.; Forman, J.R.; Rattenberry, E.; Bradshaw, N.; Lalloo, F.; Izatt, L.; Cole, T.R.; Armstrong, R.; Kumar, V.K.; Morrison, P.J.; Atkinson, A.B.; Douglas, F.; Ball, S.G.; Cook, J.; Srirangalingam, U.; Killick, P.; Kirby, G.; Aylwin, S.; Woodward, E.R.; Evans, D.G.; Hodgson, S.V.; Murday, V.; Chew, S.L.; Connell, J.M.; Blundell, T.L.; Macdonald, F.; Maher, E.R. Tumor risks and genotype-phenotype-proteotype analysis in 358 patients with germline mutations in SDHB and SDHD. Hum. Mutat., 2010, 31(1), 41-51.
[37]
Urbini, M.; Astolfi, A.; Indio, V.; Heinrich, M.C.; Corless, C.L.; Nannini, M.; Ravegnini, G.; Biasco, G.; Pantaleo, M.A. SDHC methylation in gastrointestinal stromal tumors (GIST): A case report. BMC Med. Genet., 2015, 16, 87.
[38]
Rege, T.A.; Wagner, A.J.; Corless, C.L.; Heinrich, M.C.; Hornick, J.L. Pediatric-type” gastrointestinal stromal tumors in adults: distinctive histology predicts genotype and clinical behavior. Am. J. Surg. Pathol., 2011, 35(4), 495-504.
[39]
Debiec-Rychter, M.; Dumez, H.; Judson, I.; Wasag, B.; Verweij, J.; Brown, M.; Dimitrijevic, S.; Sciot, R.; Stul, M.; Vranck, H.; Scurr, M.; Hagemeijer, A.; van Glabbeke, M.; van Oosterom, A.T.; Tissue, E.S.; Bone Sarcoma, G. Use of c-KIT/PDGFRA mutational analysis to predict the clinical response to imatinib in patients with advanced gastrointestinal stromal tumours entered on phase I and II studies of the EORTC Soft Tissue and Bone Sarcoma Group. Eur. J. Cancer, 2004, 40(5), 689-695.
[40]
Heinrich, M.C.; Corless, C.L.; Demetri, G.D.; Blanke, C.D.; von Mehren, M.; Joensuu, H.; McGreevey, L.S.; Chen, C.J.; Van den Abbeele, A.D.; Druker, B.J.; Kiese, B.; Eisenberg, B.; Roberts, P.J.; Singer, S.; Fletcher, C.D.; Silberman, S.; Dimitrijevic, S.; Fletcher, J.A. Kinase mutations and imatinib response in patients with metastatic gastrointestinal stromal tumor. J. Clin. Oncol., 2003, 21(23), 4342-4349.
[41]
Mullard, A. NCI-MATCH trial pushes cancer umbrella trial paradigm. Nat. Rev. Drug Discov., 2015, 14(8), 513-515.
[43]
Hyman, D.M.; Solit, D.B.; Arcila, M.E.; Cheng, D.T.; Sabbatini, P.; Baselga, J.; Berger, M.F.; Ladanyi, M. Precision medicine at Memorial Sloan Kettering Cancer Center: Clinical next-generation sequencing enabling next-generation targeted therapy trials. Drug Discov. Today, 2015, 20(12), 1422-1428.
[44]
Haller, F.; Gunawan, B.; von Heydebreck, A.; Schwager, S.; Schulten, H.J.; Wolf-Salgo, J.; Langer, C.; Ramadori, G.; Sultmann, H.; Fuzesi, L. Prognostic role of E2F1 and members of the CDKN2A network in gastrointestinal stromal tumors. Clin. Cancer Res., 2005, 11(18), 6589-6597.
[45]
Henze, J.; Muhlenberg, T.; Simon, S.; Grabellus, F.; Rubin, B.; Taeger, G.; Schuler, M.; Treckmann, J.; Debiec-Rychter, M.; Taguchi, T.; Fletcher, J.A.; Bauer, S. p53 modulation as a therapeutic strategy in gastrointestinal stromal tumors. PLoS One, 2012, 7(5)e37776
[46]
Andersson, J.; Sihto, H.; Meis-Kindblom, J.M.; Joensuu, H.; Nupponen, N.; Kindblom, L.G. NF1-associated gastrointestinal stromal tumors have unique clinical, phenotypic, and genotypic characteristics. Am. J. Surg. Pathol., 2005, 29(9), 1170-1176.
[47]
Miettinen, M.; Lasota, J. Succinate dehydrogenase deficient gastrointestinal stromal tumors (GISTs) - A review. Int. J. Biochem. Cell Biol., 2014, 53, 514-519.
[48]
Li, H.; Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics, 2009, 25(14), 1754-1760.
[49]
Takahashi, T.; Elzawahry, A.; Mimaki, S.; Furukawa, E.; Nakatsuka, R.; Nakamura, H.; Nishigaki, T.; Serada, S.; Naka, T.; Hirota, S.; Shibata, T.; Tsuchihara, K.; Nishida, T.; Kato, M. Genomic and transcriptomic analysis of imatinib resistance in gastrointestinal stromal tumors. Genes Chromosomes Cancer, 2017, 56(4), 303-313.
[50]
Astolfi, A.; Urbini, M.; Indio, V.; Nannini, M.; Genovese, C.G.; Santini, D.; Saponara, M.; Mandrioli, A.; Ercolani, G.; Brandi, G.; Biasco, G.; Pantaleo, M.A. Whole exome sequencing (WES) on formalin-fixed, paraffin-embedded (FFPE) tumor tissue in gastrointestinal stromal tumors (GIST). BMC Genomics, 2015, 16, 892.
[51]
Ratajska, M.; Koczkowska, M.; Zuk, M.; Gorczynski, A.; Kuzniacka, A.; Stukan, M.; Biernat, W.; Limon, J.; Wasag, B. Detection of BRCA1/2 mutations in circulating tumor DNA from patients with ovarian cancer. Oncotarget, 2017, 8(60), 101325-101332.
[52]
Mouliere, F.; Thierry, A.R. The importance of examining the proportion of circulating DNA originating from tumor, microenvironment and normal cells in colorectal cancer patients. Expert Opin. Biol. Ther., 2012, 12(Suppl. 1), S209-S215.
[53]
Eastley, N.C.; Ottolini, B.; Neumann, R.; Luo, J.L.; Hastings, R.K.; Khan, I.; Moore, D.A.; Esler, C.P.; Shaw, J.A.; Royle, N.J.; Ashford, R.U. Circulating tumour-derived DNA in metastatic soft tissue sarcoma. Oncotarget, 2018, 9(12), 10549-10560.
[54]
Nannini, M.; Astolfi, A.; Urbini, M.; Biasco, G.; Pantaleo, M.A. Liquid biopsy in gastrointestinal stromal tumors: a novel approach. J. Transl. Med., 2014, 12, 210.
[55]
Pasquale, R.; Fenizia, F.; Esposito Abate, R.; Sacco, A.; Esposito, C.; Forgione, L.; Rachiglio, A.M.; Bevilacqua, S.; Montanino, A.; Franco, R.; Rocco, G.; Botti, G.; Denis, M.G.; Morabito, A.; De Luca, A.; Normanno, N. Assessment of high-sensitive methods for the detection of EGFR mutations in circulating free tumor DNA from NSCLC patients. Pharmacogenomics, 2015, 16(10), 1135-1148.
[56]
Tabernero, J.; Lenz, H.J.; Siena, S.; Sobrero, A.; Falcone, A.; Ychou, M.; Humblet, Y.; Bouche, O.; Mineur, L.; Barone, C.; Adenis, A.; Yoshino, T.; Goldberg, R.M.; Sargent, D.J.; Wagner, A.; Laurent, D.; Teufel, M.; Jeffers, M.; Grothey, A.; Van Cutsem, E. Analysis of circulating DNA and protein biomarkers to predict the clinical activity of regorafenib and assess prognosis in patients with metastatic colorectal cancer: A retrospective, exploratory analysis of the CORRECT trial. Lancet Oncol., 2015, 16(8), 937-948.
[57]
Wyatt, A.W.; Annala, M.; Aggarwal, R.; Beja, K.; Feng, F.; Youngren, J.; Foye, A.; Lloyd, P.; Nykter, M.; Beer, T.M.; Alumkal, J.J.; Thomas, G.V.; Reiter, R.E.; Rettig, M.B.; Evans, C.P.; Gao, A.C.; Chi, K.N.; Small, E.J.; Gleave, M.E. Concordance of circulating tumor DNA and matched metastatic tissue biopsy in prostate cancer. J. Natl. Cancer Inst., 2017, 109(12)djx118
[58]
Fiala, C.; Diamandis, E.P. Circulating tumor DNA for personalized lung cancer monitoring. BMC Med., 2017, 15(1), 157.
[59]
Yoo, C.; Ryu, M.H.; Na, Y.S.; Ryoo, B.Y.; Park, S.R.; Kang, Y.K. Analysis of serum protein biomarkers, circulating tumor DNA, and dovitinib activity in patients with tyrosine kinase inhibitor-refractory gastrointestinal stromal tumors. Ann. Oncol., 2014, 25(11), 2272-2277.
[60]
Boonstra, P.A.; Ter Elst, A.; Tibbesma, M.; Bosman, L.J.; Mathijssen, R.; Atrafi, F.; van Coevorden, F.; Steeghs, N.; Farag, S.; Gelderblom, H.; van der Graaf, W.T.A.; Desar, I.M.E.; Maier, J.; Overbosch, J.; Suurmeijer, A.J.H.; Gietema, J.; Schuuring, E.; Reyners, A.K.L. A single digital droplet PCR assay to detect multiple KIT exon 11 mutations in tumor and plasma from patients with gastrointestinal stromal tumors. Oncotarget, 2018, 9(17), 13870-13883.
[61]
Wada, N.; Kurokawa, Y.; Takahashi, T.; Hamakawa, T.; Hirota, S.; Naka, T.; Miyazaki, Y.; Makino, T.; Yamasaki, M.; Nakajima, K.; Takiguchi, S.; Mori, M.; Doki, Y. Detecting secondary C-KIT mutations in the peripheral blood of patients with imatinib-resistant gastrointestinal stromal tumor. Oncology, 2016, 90(2), 112-117.
[62]
Kang, G.; Bae, B.N.; Sohn, B.S.; Pyo, J.S.; Kang, G.H.; Kim, K.M. Detection of KIT and PDGFRA mutations in the plasma of patients with gastrointestinal stromal tumor. Target. Oncol., 2015, 10(4), 597-601.
[63]
Maier, J.; Lange, T.; Kerle, I.; Specht, K.; Bruegel, M.; Wickenhauser, C.; Jost, P.; Niederwieser, D.; Peschel, C.; Duyster, J.; von Bubnoff, N. Detection of mutant free circulating tumor DNA in the plasma of patients with gastrointestinal stromal tumor harboring activating mutations of CKIT or PDGFRA. Clin. Cancer Res., 2013, 19(17), 4854-4867.
[64]
Xu, H.; Chen, L.; Shao, Y.; Zhu, D.; Zhi, X.; Zhang, Q.; Li, F.; Xu, J.; Liu, X.; Xu, Z. Clinical application of circulating tumor DNA in the genetic analysis of patients with advanced GIST. Mol. Cancer Ther., 2018, 17(1), 290-296.
[65]
Blanke, C.D.; Demetri, G.D.; von Mehren, M.; Heinrich, M.C.; Eisenberg, B.; Fletcher, J.A.; Corless, C.L.; Fletcher, C.D.; Roberts, P.J.; Heinz, D.; Wehre, E.; Nikolova, Z.; Joensuu, H. Long-term results from a randomized phase II trial of standard- versus higher-dose imatinib mesylate for patients with unresectable or metastatic gastrointestinal stromal tumors expressing KIT. J. Clin. Oncol., 2008, 26(4), 620-625.
[66]
Debiec-Rychter, M.; Sciot, R.; Le Cesne, A.; Schlemmer, M.; Hohenberger, P.; van Oosterom, A.T.; Blay, J.Y.; Leyvraz, S.; Stul, M.; Casali, P.G.; Zalcberg, J.; Verweij, J.; Van Glabbeke, M.; Hagemeijer, A.; Judson, I.; Tissue, E.S.; Bone Sarcoma, G. Italian Sarcoma, G.; Australasian GastroIntestinal Trials, G. KIT mutations and dose selection for imatinib in patients with advanced gastrointestinal stromal tumours. Eur. J. Cancer, 2006, 42(8), 1093-1103.
[67]
Gastrointestinal Stromal Tumor Meta-Analysis, G. Comparison of two doses of imatinib for the treatment of unresectable or metastatic gastrointestinal stromal tumors: a meta-analysis of 1,640 patients. J. Clin. Oncol., 2010, 28(7), 1247-1253.
[68]
Zhang, L.; Smyrk, T.C.; Young, W.F., Jr; Stratakis, C.A.; Carney, J.A. Gastric stromal tumors in Carney triad are different clinically, pathologically, and behaviorally from sporadic gastric gastrointestinal stromal tumors: findings in 104 cases. Am. J. Surg. Pathol., 2010, 34(1), 53-64.
[69]
von Mehren, M.; Randall, R.L.; Benjamin, R.S.; Boles, S.; Bui, M.M.; Ganjoo, K.N.; George, S.; Gonzalez, R.J.; Heslin, M.J.; Kane, J.M., III; Keedy, V.; Kim, E.; Koon, H.; Mayerson, J.; McCarter, M.; McGarry, S.V.; Meyer, C.; Morris, Z.S.; O’Donnell, R.J.; Pappo, A.S.; Paz, I.B.; Petersen, I.A.; Pfeifer, J.D.; Riedel, R.F.; Ruo, B.; Schuetze, S.; Tap, W.D.; Wayne, J.D.; Bergman, M.A.; Scavone, J.L. Soft tissue sarcoma, Version 2.2018, NCCN clinical practice guidelines in oncology. J. Natl. Compr. Canc. Netw., 2018, 16(5), 536-563.
[70]
Lasota, J.; Miettinen, M. Clinical significance of oncogenic KIT and PDGFRA mutations in gastrointestinal stromal tumours. Histopathology, 2008, 53(3), 245-266.
[71]
Reichardt, P.; Hogendoorn, P.C.; Tamborini, E.; Loda, M.; Gronchi, A.; Poveda, A.; Schoffski, P. Gastrointestinal stromal tumors I: pathology, pathobiology, primary therapy, and surgical issues. Semin. Oncol., 2009, 36(4), 290-301.
[72]
Fletcher, J.A. KIT oncogenic mutations: biologic insights, therapeutic advances, and future directions. Cancer Res., 2016, 76(21), 6140-6142.
[73]
Yeh, C.N.; Chen, M.H.; Chen, Y.Y.; Yang, C.Y.; Yen, C.C.; Tzen, C.Y.; Chen, L.T.; Chen, J.S. A phase II trial of regorafenib in patients with metastatic and/or a unresectable gastrointestinal stromal tumor harboring secondary mutations of exon 17. Oncotarget, 2017, 8(27), 44121-44130.
[75]
Evans, E.K.; Gardino, A.K.; Kim, J.L.; Hodous, B.L.; Shutes, A.; Davis, A.; Zhu, X.J.; Schmidt-Kittler, O.; Wilson, D.; Wilson, K.; DiPietro, L.; Zhang, Y.; Brooijmans, N.; LaBranche, T.P.; Wozniak, A.; Gebreyohannes, Y.K.; Schoffski, P.; Heinrich, M.C.; DeAngelo, D.J.; Miller, S.; Wolf, B.; Kohl, N.; Guzi, T.; Lydon, N.; Boral, A.; Lengauer, C. A precision therapy against cancers driven by KIT/PDGFRA mutations. Sci. Transl. Med., 2017, 9(414), 1960.
[76]
Heinrich, M.C.; Griffith, D.; McKinley, A.; Patterson, J.; Presnell, A.; Ramachandran, A.; Debiec-Rychter, M. Crenolanib inhibits the drug-resistant PDGFRA D842V mutation associated with imatinib-resistant gastrointestinal stromal tumors. Clin. Cancer Res., 2012, 18(16), 4375-4384.
[77]
Pantaleo, M.A.; Nannini, M.; Corless, C.L.; Heinrich, M.C. Quadruple wild-type (WT) GIST: Defining the subset of GIST that lacks abnormalities of KIT, PDGFRA, SDH, or RAS signaling pathways. Cancer Med., 2015, 4(1), 101-103.
[78]
Shi, E.; Chmielecki, J.; Tang, C.M.; Wang, K.; Heinrich, M.C.; Kang, G.; Corless, C.L.; Hong, D.; Fero, K.E.; Murphy, J.D.; Fanta, P.T.; Ali, S.M.; De Siena, M.; Burgoyne, A.M.; Movva, S.; Madlensky, L.; Heestand, G.M.; Trent, J.C.; Kurzrock, R.; Morosini, D.; Ross, J.S.; Harismendy, O.; Sicklick, J.K. FGFR1 and NTRK3 actionable alterations in “Wild-Type” gastrointestinal stromal tumors. J. Transl. Med., 2016, 14(1), 339.
[79]
Drilon, A.; Laetsch, T.W.; Kummar, S.; DuBois, S.G.; Lassen, U.N.; Demetri, G.D.; Nathenson, M.; Doebele, R.C.; Farago, A.F.; Pappo, A.S.; Turpin, B.; Dowlati, A.; Brose, M.S.; Mascarenhas, L.; Federman, N.; Berlin, J.; El-Deiry, W.S.; Baik, C.; Deeken, J.; Boni, V.; Nagasubramanian, R.; Taylor, M.; Rudzinski, E.R.; Meric-Bernstam, F.; Sohal, D.P.S.; Ma, P.C.; Raez, L.E.; Hechtman, J.F.; Benayed, R.; Ladanyi, M.; Tuch, B.B.; Ebata, K.; Cruickshank, S.; Ku, N.C.; Cox, M.C.; Hawkins, D.S.; Hong, D.S.; Hyman, D.M. Efficacy of larotrectinib in TRK fusion-positive cancers in adults and children. N. Engl. J. Med., 2018, 378(8), 731-739.
[80]
Parikh, A.R.; Corcoran, R.B. Fast-TRKing drug development for rare molecular targets. Cancer Discov., 2017, 7(9), 934-936.
[81]
Call, J.; Walentas, C.D.; Eickhoff, J.C.; Scherzer, N. Survival of gastrointestinal stromal tumor patients in the imatinib era: life raft group observational registry. BMC Cancer, 2012, 12, 90.