Review Article

肌肽和糖尿病肾病

卷 27, 期 11, 2020

页: [1801 - 1812] 页: 12

弟呕挨: 10.2174/0929867326666190326111851

价格: $65

摘要

糖尿病肾病(DN)是1型或2型糖尿病患者的主要并发症,是终末期肾脏疾病的主要原因。需要新颖的治疗方法。鉴于肌肽酶1基因CNDP1的多态性,导致肌肽降解活性降低和DN风险显着降低,肌肽(β-丙氨酰-L-组氨酸)已成为潜在的治疗靶点。肌肽具有抗炎,抗氧化,抗糖基化和反应性羰基猝灭特性。在糖尿病啮齿动物中,肌肽的补充能够持续改善肾脏的组织学和功能,并且在大多数研究中还可以改善葡萄糖的代谢。即使肌肽在人体内的血浆半衰期很短,对(糖尿病前)糖尿病患者的首次干预研究仍取得了可喜的结果。然而,肌肽介导的保护作用的确切分子机制仍不完全清楚。这篇综述着重介绍了肌肽代谢在DN中的作用的最新知识。

关键词: CNDP1基因,肌肽,糖尿病肾病,终末期肾脏疾病,含组氨酸的二肽,多态性。

[1]
Boldyrev, A.A.; Aldini, G.; Derave, W. Physiology and pathophysiology of carnosine. Physiol. Rev., 2013, 93(4), 1803-1845.
[http://dx.doi.org/10.1152/physrev.00039.2012] [PMID: 24137022]
[2]
Kwiatkowski, S.; Kiersztan, A.; Drozak, J. Biosynthesis of carnosine and related dipeptides in vertebrates. Curr. Protein Pept. Sci., 2018, 19(8), 771-789.
[http://dx.doi.org/10.2174/1389203719666180226155657] [PMID: 29484990]
[3]
Babizhayev, M.A. Current ocular drug delivery challenges for N-acetylcarnosine: novel patented routes and modes of delivery, design for enhancement of therapeutic activity and drug delivery relationships. Recent Pat. Drug Deliv. Formul., 2009, 3(3), 229-265.
[http://dx.doi.org/10.2174/187221109789105621] [PMID: 19534670]
[4]
Kawahara, M.; Tanaka, K.I.; Kato-Negishi, M. Zinc, carnosine, and neurodegenerative diseases. Nutrients, 2018, 10(2)E147
[http://dx.doi.org/10.3390/nu10020147] [PMID: 29382141]
[5]
Peters, V.; Klessens, C.Q.; Baelde, H.J.; Singler, B.; Veraar, K.A.; Zutinic, A.; Drozak, J.; Zschocke, J.; Schmitt, C.P.; de Heer, E. Intrinsic carnosine metabolism in the human kidney. Amino Acids, 2015, 47(12), 2541-2550.
[http://dx.doi.org/10.1007/s00726-015-2045-7] [PMID: 26206726]
[6]
Peters, V.; Schmitt, C.P.; Zschocke, J.; Gross, M.L.; Brismar, K.; Forsberg, E. Carnosine treatment largely prevents alterations of renal carnosine metabolism in diabetic mice. Amino Acids, 2012, 42(6), 2411-2416.
[http://dx.doi.org/10.1007/s00726-011-1046-4] [PMID: 21833769]
[7]
Peters, V.; Jansen, E.E.; Jakobs, C.; Riedl, E.; Janssen, B.; Yard, B.A.; Wedel, J.; Hoffmann, G.F.; Zschocke, J.; Gotthardt, D.; Fischer, C.; Köppel, H. Anserine inhibits carnosine degradation but in human serum carnosinase (CN1) is not correlated with histidine dipeptide concentration. Clin. Chim. Acta, 2011, 412(3-4), 263-267.
[http://dx.doi.org/10.1016/j.cca.2010.10.016] [PMID: 20971102]
[8]
Barca, A.; Gatti, F.; Spagnolo, D.; Ippati, S.; Vetrugno, C.; Verri, T. Responsiveness of carnosine homeostasis genes in the pancreas and brain of streptozotocin-treated mice exposed to dietary carnosine. Int. J. Mol. Sci., 2018, 19(6), 19.
[http://dx.doi.org/10.3390/ijms19061713] [PMID: 29890740]
[9]
Pfister, F.; Riedl, E.; Wang, Q.; vom Hagen, F.; Deinzer, M.; Harmsen, M.C.; Molema, G.; Yard, B.; Feng, Y.; Hammes, H.P. Oral carnosine supplementation prevents vascular damage in experimental diabetic retinopathy. Cell. Physiol. Biochem., 2011, 28(1), 125-136.
[http://dx.doi.org/10.1159/000331721] [PMID: 21865855]
[10]
Mong, M.C.; Chao, C.Y.; Yin, M.C. Histidine and carnosine alleviated hepatic steatosis in mice consumed high saturated fat diet. Eur. J. Pharmacol., 2011, 653(1-3), 82-88.
[http://dx.doi.org/10.1016/j.ejphar.2010.12.001] [PMID: 21167151]
[11]
Kamal, M.A.; Jiang, H.; Hu, Y.; Keep, R.F.; Smith, D.E. Influence of genetic knockout of Pept2 on the in vivo disposition of endogenous and exogenous carnosine in wild-type and Pept2 null mice. Am. J. Physiol. Regul. Integr. Comp. Physiol., 2009, 296(4), R986-R991.
[http://dx.doi.org/10.1152/ajpregu.90744.2008] [PMID: 19225147]
[12]
Barski, O.A.; Xie, Z.; Baba, S.P.; Sithu, S.D.; Agarwal, A.; Cai, J.; Bhatnagar, A.; Srivastava, S. Dietary carnosine prevents early atherosclerotic lesion formation in apolipoprotein E-null mice. Arterioscler. Thromb. Vasc. Biol., 2013, 33(6), 1162-1170.
[http://dx.doi.org/10.1161/ATVBAHA.112.300572] [PMID: 23559625]
[13]
Negre-Salvayre, A.; Coatrieux, C.; Ingueneau, C.; Salvayre, R. Advanced lipid peroxidation end products in oxidative damage to proteins. Potential role in diseases and therapeutic prospects for the inhibitors. Br. J. Pharmacol., 2008, 153(1), 6-20.
[http://dx.doi.org/10.1038/sj.bjp.0707395] [PMID: 17643134]
[14]
Vistoli, G.; Orioli, M.; Pedretti, A.; Regazzoni, L.; Canevotti, R.; Negrisoli, G.; Carini, M.; Aldini, G. Design, synthesis, and evaluation of carnosine derivatives as selective and efficient sequestering agents of cytotoxic reactive carbonyl species. ChemMedChem, 2009, 4(6), 967-975.
[http://dx.doi.org/10.1002/cmdc.200800433] [PMID: 19301317]
[15]
Alhamdani, M.S.; Al-Azzawie, H.F.; Abbas, F.K. Decreased formation of advanced glycation end-products in peritoneal fluid by carnosine and related peptides. Perit. Dial. Int., 2007, 27(1), 86-89.
[PMID: 17179517]
[16]
Hou, W.C.; Chen, H.J.; Lin, Y.H. Antioxidant peptides with Angiotensin converting enzyme inhibitory activities and applications for Angiotensin converting enzyme purification. J. Agric. Food Chem., 2003, 51(6), 1706-1709.
[http://dx.doi.org/10.1021/jf0260242] [PMID: 12617609]
[17]
Nakagawa, K.; Ueno, A.; Nishikawa, Y. Interactions between carnosine and captopril on free radical scavenging activity and angiotensin-converting enzyme activity in vitro. Yakugaku Zasshi, 2006, 126(1), 37-42.
[http://dx.doi.org/10.1248/yakushi.126.37] [PMID: 16394648]
[18]
Weigand, T.; Singler, B.; Fleming, T.; Nawroth, P.; Klika, K.D.; Thiel, C.; Baelde, H.; Garbade, S.F.; Wagner, A.H.; Hecker, M.; Yard, B.A.; Amberger, A.; Zschocke, J.; Schmitt, C.P.; Peters, V. Carnosine catalyzes the formation of the oligo/polymeric products of methylglyoxal. Cell. Physiol. Biochem., 2018, 46(2), 713-726.
[http://dx.doi.org/10.1159/000488727] [PMID: 29621776]
[19]
Vistoli, G.; Colzani, M.; Mazzolari, A.; Gilardoni, E.; Rivaletto, C.; Carini, M.; Aldini, G. Quenching activity of carnosine derivatives towards reactive carbonyl species: Focus on α-(methylglyoxal) and β-(malondialdehyde) dicarbonyls. Biochem. Biophys. Res. Commun., 2017, 492(3), 487-492.
[http://dx.doi.org/10.1016/j.bbrc.2017.08.069] [PMID: 28834691]
[20]
Brings, S.; Fleming, T.; De Buhr, S.; Beijer, B.; Lindner, T.; Wischnjow, A.; Kender, Z.; Peters, V.; Kopf, S.; Haberkorn, U.; Mier, W.; Nawroth, P.P. A scavenger peptide prevents methylglyoxal induced pain in mice. Biochim. Biophys. Acta Mol. Basis Dis., 2017, 1863(3), 654-662.
[http://dx.doi.org/10.1016/j.bbadis.2016.12.001] [PMID: 27932057]
[21]
Babizhayev, M.A.; Lankin, V.Z.; Savel’Yeva, E.L.; Deyev, A.I.; Yegorov, Y.E. Diabetes mellitus: novel insights, analysis and interpretation of pathophysiology and complications management with imidazole-containing peptidomimetic antioxidants. Recent Pat. Drug Deliv. Formul., 2013, 7(3), 216-256.
[http://dx.doi.org/10.2174/1872211307666131117121058] [PMID: 24236935]
[22]
Decker, E.A.; Livisay, S.A.; Zhou, S. A re-evaluation of the antioxidant activity of purified carnosine. Biochemistry (Mosc.), 2000, 65(7), 766-770.
[PMID: 10951093]
[23]
Hipkiss, A.R. Energy metabolism, proteotoxic stress and age-related dysfunction - protection by carnosine. Mol. Aspects Med., 2011, 32(4-6), 267-278.
[http://dx.doi.org/10.1016/j.mam.2011.10.004] [PMID: 22020113]
[24]
Mozdzan, M.; Szemraj, J.; Rysz, J.; Nowak, D. Antioxidant properties of carnosine re-evaluated with oxidizing systems involving iron and copper ions. Basic Clin. Pharmacol. Toxicol., 2005, 96(5), 352-360.
[http://dx.doi.org/10.1111/j.1742-7843.2005.pto_03.x] [PMID: 15853927]
[25]
Velez, S.; Nair, N.G.; Reddy, V.P. Transition metal ion binding studies of carnosine and histidine: biologically relevant antioxidants. Colloids Surf. B Biointerfaces, 2008, 66(2), 291-294.
[http://dx.doi.org/10.1016/j.colsurfb.2008.06.012] [PMID: 18675540]
[26]
Grasso, G.I.; Arena, G.; Bellia, F.; Rizzarelli, E.; Vecchio, G. Copper(II)-chelating homocarnosine glycoconjugate as a new multifunctional compound. J. Inorg. Biochem., 2014, 131, 56-63.
[http://dx.doi.org/10.1016/j.jinorgbio.2013.10.020] [PMID: 24246303]
[27]
Babizhayev, M.A.; Deyev, A.I.; Yermakova, V.N.; Brikman, I.V.; Bours, J. Lipid peroxidation and cataracts: N-acetylcarnosine as a therapeutic tool to manage age-related cataracts in human and in canine eyes. Drugs R D., 2004, 5(3), 125-139.
[http://dx.doi.org/10.2165/00126839-200405030-00001] [PMID: 15139774]
[28]
Dubois, V.D.; Bastawrous, A. N-acetylcarnosine (NAC) drops for age-related cataract. Cochrane Database Syst. Rev., 2017, 2CD009493
[PMID: 28245346]
[29]
Aldini, G.; Carini, M.; Beretta, G.; Bradamante, S.; Facino, R.M. Carnosine is a quencher of 4-hydroxy-nonenal: through what mechanism of reaction? Biochem. Biophys. Res. Commun., 2002, 298(5), 699-706.
[http://dx.doi.org/10.1016/S0006-291X(02)02545-7] [PMID: 12419310]
[30]
Torreggiani, A.; Taddei, P.; Fini, G. Characterization of dioxygenated cobalt(II)-carnosine complexes by Raman and IR spectroscopy. Biopolymers, 2002, 67(1), 70-81.
[http://dx.doi.org/10.1002/bip.10025] [PMID: 11842416]
[31]
Ganguly, K.; Schinder, A.F.; Wong, S.T.; Poo, M. GABA itself promotes the developmental switch of neuronal GABAergic responses from excitation to inhibition. Cell, 2001, 105(4), 521-532.
[http://dx.doi.org/10.1016/S0092-8674(01)00341-5] [PMID: 11371348]
[32]
Drozak, J.; Veiga-da-Cunha, M.; Vertommen, D.; Stroobant, V.; Van Schaftingen, E. Molecular identification of carnosine synthase as ATP-grasp domain-containing protein 1 (ATPGD1). J. Biol. Chem., 2010, 285(13), 9346-9356.
[http://dx.doi.org/10.1074/jbc.M109.095505] [PMID: 20097752]
[33]
Veiga-da-Cunha, M.; Chevalier, N.; Stroobant, V.; Vertommen, D.; Van Schaftingen, E. Metabolite proofreading in carnosine and homocarnosine synthesis: molecular identification of PM20D2 as β-alanyl-lysine dipeptidase. J. Biol. Chem., 2014, 289(28), 19726-19736.
[http://dx.doi.org/10.1074/jbc.M114.576579] [PMID: 24891507]
[34]
Drozak, J.; Chrobok, L.; Poleszak, O.; Jagielski, A.K.; Derlacz, R. Molecular identification of carnosine N-methyltransferase as chicken histamine N-methyltransferase-like protein (hnmt-like). PLoS One, 2013, 8(5)e64805
[http://dx.doi.org/10.1371/journal.pone.0064805] [PMID: 23705015]
[35]
Teufel, M.; Saudek, V.; Ledig, J.P.; Bernhardt, A.; Boularand, S.; Carreau, A.; Cairns, N.J.; Carter, C.; Cowley, D.J.; Duverger, D.; Ganzhorn, A.J.; Guenet, C.; Heintzelmann, B.; Laucher, V.; Sauvage, C.; Smirnova, T. Sequence identification and characterization of human carnosinase and a closely related non-specific dipeptidase. J. Biol. Chem., 2003, 278(8), 6521-6531.
[http://dx.doi.org/10.1074/jbc.M209764200] [PMID: 12473676]
[36]
Riedl, E.; Koeppel, H.; Brinkkoetter, P.; Sternik, P.; Steinbeisser, H.; Sauerhoefer, S.; Janssen, B.; van der Woude, F.J.; Yard, B.A. A CTG polymorphism in the CNDP1 gene determines the secretion of serum carnosinase in Cos-7 transfected cells. Diabetes, 2007, 56(9), 2410-2413.
[http://dx.doi.org/10.2337/db07-0128] [PMID: 17601991]
[37]
Riedl, E.; Koeppel, H.; Pfister, F.; Peters, V.; Sauerhoefer, S.; Sternik, P.; Brinkkoetter, P.; Zentgraf, H.; Navis, G.; Henning, R.H.; Van Den Born, J.; Bakker, S.J.; Janssen, B.; van der Woude, F.J.; Yard, B.A. N-glycosylation of carnosinase influences protein secretion and enzyme activity: implications for hyperglycemia. Diabetes, 2010, 59(8), 1984-1990.
[http://dx.doi.org/10.2337/db09-0868] [PMID: 20460427]
[38]
Lenney, J.F.; George, R.P.; Weiss, A.M.; Kucera, C.M.; Chan, P.W.; Rinzler, G.S. Human serum carnosinase: characterization, distinction from cellular carnosinase, and activation by cadmium. Clin. Chim. Acta, 1982, 123(3), 221-231.
[http://dx.doi.org/10.1016/0009-8981(82)90166-8] [PMID: 7116644]
[39]
Bando, K.; Shimotsuji, T.; Toyoshima, H.; Hayashi, C.; Miyai, K. Fluorometric assay of human serum carnosinase activity in normal children, adults and patients with myopathy. Ann. Clin. Biochem., 1984, 21(Pt 6), 510-514.
[http://dx.doi.org/10.1177/000456328402100613] [PMID: 6517492]
[40]
Adelmann, K.; Frey, D.; Riedl, E.; Koeppel, H.; Pfister, F.; Peters, V.; Schmitt, C.P.; Sternik, P.; Hofmann, S.; Zentgraf, H.W.; Navis, G.; van den Born, J.; Bakker, S.J.; Krämer, B.K.; Yard, B.A.; Hauske, S.J. Different conformational forms of serum carnosinase detected by a newly developed sandwich ELISA for the measurements of carnosinase concentrations. Amino Acids, 2012, 43(1), 143-151.
[http://dx.doi.org/10.1007/s00726-012-1244-8] [PMID: 22349764]
[41]
Peters, V.; Kebbewar, M.; Jansen, E.W.; Jakobs, C.; Riedl, E.; Koeppel, H.; Frey, D.; Adelmann, K.; Klingbeil, K.; Mack, M.; Hoffmann, G.F.; Janssen, B.; Zschocke, J.; Yard, B.A. Relevance of allosteric conformations and homocarnosine concentration on carnosinase activity. Amino Acids, 2010, 38(5), 1607-1615.
[http://dx.doi.org/10.1007/s00726-009-0367-z] [PMID: 19915793]
[42]
Pavlin, M.; Rossetti, G.; De Vivo, M.; Carloni, P. Carnosine and homocarnosine degradation mechanisms by the human carnosinase enzyme CN1: insights from multiscale simulations. Biochemistry, 2016, 55(19), 2772-2784.
[http://dx.doi.org/10.1021/acs.biochem.5b01263] [PMID: 27105448]
[43]
Peters, V.; Lanthaler, B.; Amberger, A.; Fleming, T.; Forsberg, E.; Hecker, M.; Wagner, A.H.; Yue, W.W.; Hoffmann, G.F.; Nawroth, P.; Zschocke, J.; Schmitt, C.P. Carnosine metabolism in diabetes is altered by reactive metabolites. Amino Acids, 2015, 47(11), 2367-2376.
[http://dx.doi.org/10.1007/s00726-015-2024-z] [PMID: 26081982]
[44]
Peters, V.; Schmitt, C.P.; Weigand, T.; Klingbeil, K.; Thiel, C.; van den Berg, A.; Calabrese, V.; Nawroth, P.; Fleming, T.; Forsberg, E.; Wagner, A.H.; Hecker, M.; Vistoli, G. Allosteric inhibition of carnosinase (CN1) by inducing a conformational shift. J. Enzyme Inhib. Med. Chem., 2017, 32(1), 1102-1110.
[http://dx.doi.org/10.1080/14756366.2017.1355793] [PMID: 28776438]
[45]
Peters, V.; Zschocke, J.; Schmitt, C.P. Carnosinase, diabetes mellitus and the potential relevance of carnosinase deficiency. J. Inherit. Metab. Dis., 2018, 41(1), 39-47.
[http://dx.doi.org/10.1007/s10545-017-0099-2] [PMID: 29027595]
[46]
Jappar, D.; Hu, Y.; Keep, R.F.; Smith, D.E. Transport mechanisms of carnosine in SKPT cells: contribution of apical and basolateral membrane transporters. Pharm. Res., 2009, 26(1), 172-181.
[http://dx.doi.org/10.1007/s11095-008-9726-9] [PMID: 18820998]
[47]
Tuttle, K.R.; Bakris, G.L.; Bilous, R.W.; Chiang, J.L.; de Boer, I.H.; Goldstein-Fuchs, J.; Hirsch, I.B.; Kalantar-Zadeh, K.; Narva, A.S.; Navaneethan, S.D.; Neumiller, J.J.; Patel, U.D.; Ratner, R.E.; Whaley-Connell, A.T.; Molitch, M.E. Diabetic kidney disease: a report from an ADA Consensus Conference. Diabetes Care, 2014, 37(10), 2864-2883.
[http://dx.doi.org/10.2337/dc14-1296] [PMID: 25249672]
[48]
Voziyan, P.; Brown, K.L.; Chetyrkin, S.; Hudson, B. Site-specific AGE modifications in the extracellular matrix: a role for glyoxal in protein damage in diabetes. Clin. Chem. Lab. Med., 2014, 52(1), 39-45.
[http://dx.doi.org/10.1515/cclm-2012-0818] [PMID: 23492568]
[49]
Ceriello, A.; Motz, E. Is oxidative stress the pathogenic mechanism underlying insulin resistance, diabetes, and cardiovascular disease? The common soil hypothesis revisited. Arterioscler. Thromb. Vasc. Biol., 2004, 24(5), 816-823.
[http://dx.doi.org/10.1161/01.ATV.0000122852.22604.78] [PMID: 14976002]
[50]
Fiorentino, T.V.; Prioletta, A.; Zuo, P.; Folli, F. Hyperglycemia-induced oxidative stress and its role in diabetes mellitus related cardiovascular diseases. Curr. Pharm. Des., 2013, 19(32), 5695-5703.
[http://dx.doi.org/10.2174/1381612811319320005] [PMID: 23448484]
[51]
Gould, N.; Doulias, P.T.; Tenopoulou, M.; Raju, K.; Ischiropoulos, H. Regulation of protein function and signaling by reversible cysteine S-nitrosylation. J. Biol. Chem., 2013, 288(37), 26473-26479.
[http://dx.doi.org/10.1074/jbc.R113.460261] [PMID: 23861393]
[52]
Beisswenger, P.J.; Howell, S.K.; Russell, G.B.; Miller, M.E.; Rich, S.S.; Mauer, M. Early progression of diabetic nephropathy correlates with methylglyoxal-derived advanced glycation end products. Diabetes Care, 2013, 36(10), 3234-3239.
[http://dx.doi.org/10.2337/dc12-2689] [PMID: 23780945]
[53]
Saisho, Y.; Maruyama, T.; Hirose, H.; Saruta, T. Relationship between proinsulin-to-insulin ratio and advanced glycation endproducts in Japanese type 2 diabetic subjects. Diabetes Res. Clin. Pract., 2007, 78(2), 182-188.
[http://dx.doi.org/10.1016/j.diabres.2007.03.014] [PMID: 17467843]
[54]
Toth-Manikowski, S.; Atta, M.G. Diabetic kidney disease: pathophysiology and therapeutic targets. J. Diabetes Res., 2015, 2015697010
[http://dx.doi.org/10.1155/2015/697010] [PMID: 26064987]
[55]
Satirapoj, B. Nephropathy in diabetes. Adv. Exp. Med. Biol., 2012, 771, 107-122.
[http://dx.doi.org/10.1007/978-1-4614-5441-0_11] [PMID: 23393675]
[56]
Riedl, E.; Pfister, F.; Braunagel, M.; Brinkkötter, P.; Sternik, P.; Deinzer, M.; Bakker, S.J.; Henning, R.H.; van den Born, J.; Krämer, B.K.; Navis, G.; Hammes, H.P.; Yard, B.; Koeppel, H. Carnosine prevents apoptosis of glomerular cells and podocyte loss in STZ diabetic rats. Cell. Physiol. Biochem., 2011, 28(2), 279-288.
[http://dx.doi.org/10.1159/000331740] [PMID: 21865735]
[57]
Aldini, G.; Orioli, M.; Rossoni, G.; Savi, F.; Braidotti, P.; Vistoli, G.; Yeum, K.J.; Negrisoli, G.; Carini, M. The carbonyl scavenger carnosine ameliorates dyslipidaemia and renal function in Zucker obese rats. J. Cell. Mol. Med., 2011, 15(6), 1339-1354.
[http://dx.doi.org/10.1111/j.1582-4934.2010.01101.x] [PMID: 20518851]
[58]
Iacobini, C.; Menini, S.; Blasetti Fantauzzi, C.; Pesce, C.M.; Giaccari, A.; Salomone, E.; Lapolla, A.; Orioli, M.; Aldini, G.; Pugliese, G. FL-926-16, a novel bioavailable carnosinase-resistant carnosine derivative, prevents onset and stops progression of diabetic nephropathy in db/db mice. Br. J. Pharmacol., 2018, 175(1), 53-66.
[http://dx.doi.org/10.1111/bph.14070] [PMID: 29053168]
[59]
Albrecht, T.; Schilperoort, M.; Zhang, S.; Braun, J.D.; Qiu, J.; Rodriguez, A.; Pastene, D.O.; Krämer, B.K.; Köppel, H.; Baelde, H.; de Heer, E.; Anna Altomare, A.; Regazzoni, L.; Denisi, A.; Aldini, G.; van den Born, J.; Yard, B.A.; Hauske, S.J. Carnosine attenuates the development of both type 2 diabetes and diabetic nephropathy in BTBR ob/ob Mice. Sci. Rep., 2017, 7, 44492.
[http://dx.doi.org/10.1038/srep44492] [PMID: 28281693]
[60]
Peters, V.; Riedl, E.; Braunagel, M.; Höger, S.; Hauske, S.; Pfister, F.; Zschocke, J.; Lanthaler, B.; Benck, U.; Hammes, H.P.; Krämer, B.K.; Schmitt, C.P.; Yard, B.A.; Köppel, H. Carnosine treatment in combination with ACE inhibition in diabetic rats. Regul. Pept., 2014, 194-195, 36-40.
[http://dx.doi.org/10.1016/j.regpep.2014.09.005] [PMID: 25234296]
[61]
Anderson, E.J.; Vistoli, G.; Katunga, L.A.; Funai, K.; Regazzoni, L.; Monroe, T.B.; Gilardoni, E.; Cannizzaro, L.; Colzani, M.; De Maddis, D.; Rossoni, G.; Canevotti, R.; Gagliardi, S.; Carini, M.; Aldini, G. A carnosine analog mitigates metabolic disorders of obesity by reducing carbonyl stress. J. Clin. Invest., 2018, 128(12), 5280-5293.
[http://dx.doi.org/10.1172/JCI94307] [PMID: 30226473]
[62]
Menini, S.; Iacobini, C.; Ricci, C.; Scipioni, A.; Blasetti Fantauzzi, C.; Giaccari, A.; Salomone, E.; Canevotti, R.; Lapolla, A.; Orioli, M.; Aldini, G.; Pugliese, G. D-Carnosine octylester attenuates atherosclerosis and renal disease in ApoE null mice fed a Western diet through reduction of carbonyl stress and inflammation. Br. J. Pharmacol., 2012, 166(4), 1344-1356.
[http://dx.doi.org/10.1111/j.1476-5381.2012.01834.x] [PMID: 22229552]
[63]
Tamura, Y.; Murayama, T.; Minami, M.; Yokode, M.; Arai, H. Differential effect of statins on diabetic nephropathy in db/db mice. Int. J. Mol. Med., 2011, 28(5), 683-687.
[PMID: 21833465]
[64]
Sauerhöfer, S.; Yuan, G.; Braun, G.S.; Deinzer, M.; Neumaier, M.; Gretz, N.; Floege, J.; Kriz, W.; van der Woude, F.; Moeller, M.J. L-carnosine, a substrate of carnosinase-1, influences glucose metabolism. Diabetes, 2007, 56(10), 2425-2432.
[http://dx.doi.org/10.2337/db07-0177] [PMID: 17601992]
[65]
Jia, H.; Qi, X.; Fang, S.; Jin, Y.; Han, X.; Wang, Y.; Wang, A.; Zhou, H. Carnosine inhibits high glucose-induced mesangial cell proliferation through mediating cell cycle progression. Regul. Pept., 2009, 154(1-3), 69-76.
[http://dx.doi.org/10.1016/j.regpep.2008.12.004] [PMID: 19154760]
[66]
Yay, A.; Akkuş, D.; Yapıslar, H.; Balcıoglu, E.; Sonmez, M.F.; Ozdamar, S. Antioxidant effect of carnosine treatment on renal oxidative stress in streptozotocin-induced diabetic rats. Biotech. Histochem., 2014, 89(8), 552-557.
[http://dx.doi.org/10.3109/10520295.2014.913811] [PMID: 24834928]
[67]
Nagai, K.; Tanida, M.; Niijima, A.; Tsuruoka, N.; Kiso, Y.; Horii, Y.; Shen, J.; Okumura, N. Role of L-carnosine in the control of blood glucose, blood pressure, thermogenesis, and lipolysis by autonomic nerves in rats: involvement of the circadian clock and histamine. Amino Acids, 2012, 43(1), 97-109.
[http://dx.doi.org/10.1007/s00726-012-1251-9] [PMID: 22367578]
[68]
Lee, Y.T.; Hsu, C.C.; Lin, M.H.; Liu, K.S.; Yin, M.C. Histidine and carnosine delay diabetic deterioration in mice and protect human low density lipoprotein against oxidation and glycation. Eur. J. Pharmacol., 2005, 513(1-2), 145-150.
[http://dx.doi.org/10.1016/j.ejphar.2005.02.010]
[69]
Cripps, M.J.; Hanna, K.; Lavilla, C., Jr; Sayers, S.R.; Caton, P.W.; Sims, C.; De Girolamo, L.; Sale, C.; Turner, M.D. Carnosine scavenging of glucolipotoxic free radicals enhances insulin secretion and glucose uptake. Sci. Rep., 2017, 7(1), 13313.
[http://dx.doi.org/10.1038/s41598-017-13649-w] [PMID: 29042678]
[70]
Miceli, V.; Pampalone, M.; Frazziano, G.; Grasso, G.; Rizzarelli, E.; Ricordi, C.; Casu, A.; Iannolo, G.; Conaldi, P.G. Carnosine protects pancreatic beta cells and islets against oxidative stress damage. Mol. Cell. Endocrinol., 2018, 474, 105-118.
[http://dx.doi.org/10.1016/j.mce.2018.02.016] [PMID: 29496567]
[71]
Forsberg, E.A.; Botusan, I.R.; Wang, J.; Peters, V.; Ansurudeen, I.; Brismar, K.; Catrina, S.B. Carnosine decreases IGFBP1 production in db/db mice through suppression of HIF-1. J. Endocrinol., 2015, 225(3), 159-167.
[http://dx.doi.org/10.1530/JOE-14-0571] [PMID: 25869614]
[72]
Aydın, A.F.; Bingül, İ.; Küçükgergin, C.; Doğan-Ekici, I.; Doğru Abbasoğlu, S.; Uysal, M. Carnosine decreased oxidation and glycation products in serum and liver of high-fat diet and low-dose streptozotocin-induced diabetic rats. Int. J. Exp. Pathol., 2017, 98(5), 278-288.
[http://dx.doi.org/10.1111/iep.12252] [PMID: 29205589]
[73]
Baba, S.P.; Hoetker, J.D.; Merchant, M.; Klein, J.B.; Cai, J.; Barski, O.A.; Conklin, D.J.; Bhatnagar, A. Role of aldose reductase in the metabolism and detoxification of carnosine-acrolein conjugates. J. Biol. Chem., 2013, 288(39), 28163-28179.
[http://dx.doi.org/10.1074/jbc.M113.504753] [PMID: 23928303]
[74]
Kim, M.Y.; Kim, E.J.; Kim, Y.N.; Choi, C.; Lee, B.H. Effects of α-lipoic acid and L-carnosine supplementation on antioxidant activities and lipid profiles in rats. Nutr. Res. Pract., 2011, 5(5), 421-428.
[http://dx.doi.org/10.4162/nrp.2011.5.5.421] [PMID: 22125679]
[75]
Prokopieva, V.D.; Yarygina, E.G.; Bokhan, N.A.; Ivanova, S.A. Use of carnosine for oxidative stress reduction in different pathologies. Oxid. Med. Cell. Longev., 2016, 20162939087
[http://dx.doi.org/10.1155/2016/2939087] [PMID: 26904160]
[76]
Aydın, A.F.; Küçükgergin, C.; Çoban, J.; Doğan-Ekici, I.; Doğru-Abbasoğlu, S.; Uysal, M.; Koçak-Toker, N. Carnosine prevents testicular oxidative stress and advanced glycation end product formation in D-galactose-induced aged rats. Andrologia, 2018, 50(3), 50.
[http://dx.doi.org/10.1111/and.12939] [PMID: 29230838]
[77]
Aydin, F.; Kalaz, E.B.; Kucukgergin, C.; Coban, J. Dogru- Abbasoglu, S.; Uysal, M. Carnosine treatment diminished oxidative stress and glycation products in serum and tissues of d-galactose-treated rats. Curr. Aging Sci., 2018, 11(1), 10-15.
[http://dx.doi.org/10.2174/1871530317666170703123519] [PMID: 28676006]
[78]
Yılmaz, Z.; Kalaz, E.B.; Aydın, A.F.; Soluk-Tekkeşin, M.; Doğru-Abbasoğlu, S.; Uysal, M.; Koçak-Toker, N. The effect of carnosine on methylglyoxal-induced oxidative stress in rats. Arch. Physiol. Biochem., 2017, 123(3), 192-198.
[http://dx.doi.org/10.1080/13813455.2017.1296468] [PMID: 28276708]
[79]
Peters, V.; Calabrese, V.; Forsberg, E.; Volk, N.; Fleming, T.; Baelde, H.; Weigand, T.; Thiel, C.; Trovato, A.; Scuto, M.; Modafferi, S.; Schmitt, C.P. protective actions of anserine under diabetic conditions. Int. J. Mol. Sci., 2018, 19(9), 19.
[http://dx.doi.org/10.3390/ijms19092751] [PMID: 30217069]
[80]
Janssen, B.; Hohenadel, D.; Brinkkoetter, P.; Peters, V.; Rind, N.; Fischer, C.; Rychlik, I.; Cerna, M.; Romzova, M.; de Heer, E.; Baelde, H.; Bakker, S.J.; Zirie, M.; Rondeau, E.; Mathieson, P.; Saleem, M.A.; Meyer, J.; Köppel, H.; Sauerhoefer, S.; Bartram, C.R.; Nawroth, P.; Hammes, H.P.; Yard, B.A.; Zschocke, J.; van der Woude, F.J. Carnosine as a protective factor in diabetic nephropathy: association with a leucine repeat of the carnosinase gene CNDP1. Diabetes, 2005, 54(8), 2320-2327.
[http://dx.doi.org/10.2337/diabetes.54.8.2320] [PMID: 16046297]
[81]
Mooyaart, A.L.; Zutinic, A.; Bakker, S.J.; Grootendorst, D.C.; Kleefstra, N.; van Valkengoed, I.G.; Böhringer, S.; Bilo, H.J.; Dekker, F.W.; Bruijn, J.A.; Navis, G.; Janssen, B.; Baelde, H.J.; De Heer, E. Association between CNDP1 genotype and diabetic nephropathy is sex specific. Diabetes, 2010, 59(6), 1555-1559.
[http://dx.doi.org/10.2337/db09-1377] [PMID: 20332346]
[82]
Albrecht, T.; Zhang, S.; Braun, J.D.; Xia, L.; Rodriquez, A.; Qiu, J.; Peters, V.; Schmitt, C.P.; van den Born, J.; Bakker, S.J.L.; Lammert, A.; Köppel, H.; Schnuelle, P.; Krämer, B.K.; Yard, B.A.; Hauske, S.J. The CNDP1 (CTG)5 polymorphism is associated with biopsy-proven diabetic nephropathy, time on hemodialysis, and diabetes duration. J. Diabetes Res., 2017, 20179506730
[http://dx.doi.org/10.1155/2017/9506730] [PMID: 28553654]
[83]
Freedman, B.I.; Hicks, P.J.; Sale, M.M.; Pierson, E.D.; Langefeld, C.D.; Rich, S.S.; Xu, J.; McDonough, C.; Janssen, B.; Yard, B.A.; van der Woude, F.J.; Bowden, D.W. A leucine repeat in the carnosinase gene CNDP1 is associated with diabetic end-stage renal disease in European Americans. Nephrol. Dial. Transplant., 2007, 22(4), 1131-1135.
[http://dx.doi.org/10.1093/ndt/gfl717] [PMID: 17205963]
[84]
Mooyaart, A.L.; van Valkengoed, I.G.; Shaw, P.K.; Peters, V.; Baelde, H.J.; Rabelink, T.J.; Bruijn, J.A.; Stronks, K.; de Heer, E. Lower frequency of the 5/5 homozygous CNDP1 genotype in South Asian Surinamese. Diabetes Res. Clin. Pract., 2009, 85(3), 272-278.
[http://dx.doi.org/10.1016/j.diabres.2009.06.001] [PMID: 19577318]
[85]
Yadav, A.K.; Sinha, N.; Kumar, V.; Bhansali, A.; Dutta, P.; Jha, V. Association of CTG repeat polymorphism in carnosine dipeptidase 1 (CNDP1) gene with diabetic nephropathy in north Indians. Indian J. Med. Res., 2016, 144(1), 32-37.
[http://dx.doi.org/10.4103/0971-5916.193280] [PMID: 27834323]
[86]
McDonough, C.W.; Hicks, P.J.; Lu, L.; Langefeld, C.D.; Freedman, B.I.; Bowden, D.W. The influence of carnosinase gene polymorphisms on diabetic nephropathy risk in African-Americans. Hum. Genet., 2009, 126(2), 265-275.
[http://dx.doi.org/10.1007/s00439-009-0667-0] [PMID: 19373489]
[87]
Kurashige, M.; Imamura, M.; Araki, S.; Suzuki, D.; Babazono, T.; Uzu, T.; Umezono, T.; Toyoda, M.; Kawai, K.; Imanishi, M.; Hanaoka, K.; Maegawa, H.; Uchigata, Y.; Hosoya, T.; Maeda, S. The influence of a single nucleotide polymorphism within CNDP1 on susceptibility to diabetic nephropathy in Japanese women with type 2 diabetes. PLoS One, 2013, 8(1)e54064
[http://dx.doi.org/10.1371/journal.pone.0054064] [PMID: 23342076]
[88]
Ahluwalia, T.S.; Lindholm, E.; Groop, L.C. Common variants in CNDP1 and CNDP2, and risk of nephropathy in type 2 diabetes. Diabetologia, 2011, 54(9), 2295-2302.
[http://dx.doi.org/10.1007/s00125-011-2178-5] [PMID: 21573905]
[89]
Peters, V.; Kebbewar, M.; Janssen, B.; Hoffmann, G.F.; Moller, K.; Wygoda, S.; Charbit, M.; Fernandes-Teixeira, A.; Jeck, N.; Zschocke, J.; Schmitt, C.P.; Schäfer, F.; Wühl, E. CNDP1 genotype and renal survival in pediatric nephropathies. J. Pediatr. Endocrinol. Metab., 2016, 29(7), 827-833.
[http://dx.doi.org/10.1515/jpem-2015-0262] [PMID: 27278783]
[90]
Kiliś-Pstrusińska, K.; Zwolińska, D.; Grzeszczak, W. Is carnosinase 1 gene (CNDP1) polymorphism associated with chronic kidney disease progression in children and young adults? results of a family-based study. Arch. Med. Res., 2010, 41(5), 356-362.
[http://dx.doi.org/10.1016/j.arcmed.2010.07.006] [PMID: 20851293]
[91]
Everaert, I.; Taes, Y.; De Heer, E.; Baelde, H.; Zutinic, A.; Yard, B.; Sauerhöfer, S.; Vanhee, L.; Delanghe, J.; Aldini, G.; Derave, W. Low plasma carnosinase activity promotes carnosinemia after carnosine ingestion in humans. Am. J. Physiol. Renal Physiol., 2012, 302(12), F1537-F1544.
[http://dx.doi.org/10.1152/ajprenal.00084.2012] [PMID: 22496410]
[92]
de Courten, B.; Jakubova, M.; de Courten, M.P.; Kukurova, I.J.; Vallova, S.; Krumpolec, P.; Valkovic, L.; Kurdiova, T.; Garzon, D.; Barbaresi, S.; Teede, H.J.; Derave, W.; Krssak, M.; Aldini, G.; Ukropec, J.; Ukropcova, B. Effects of carnosine supplementation on glucose metabolism: Pilot clinical trial. Obesity (Silver Spring), 2016, 24(5), 1027-1034.
[http://dx.doi.org/10.1002/oby.21434] [PMID: 27040154]
[93]
Liu, Y.; Cotillard, A.; Vatier, C.; Bastard, J.P.; Fellahi, S.; Stévant, M.; Allatif, O.; Langlois, C.; Bieuvelet, S.; Brochot, A.; Guilbot, A.; Clément, K.; Rizkalla, S.W. A dietary supplement containing cinnamon, chromium and carnosine decreases fasting plasma glucose and increases lean mass in overweight or obese pre-diabetic subjects: a randomized, placebo-controlled trial. PLoS One, 2015, 10(9)e0138646
[http://dx.doi.org/10.1371/journal.pone.0138646] [PMID: 26406981]
[94]
Houjeghani, S.; Kheirouri, S.; Faraji, E.; Jafarabadi, M.A. l-Carnosine supplementation attenuated fasting glucose, triglycerides, advanced glycation end products, and tumor necrosis factor-α levels in patients with type 2 diabetes: a double-blind placebo-controlled randomized clinical trial. Nutr. Res., 2018, 49, 96-106.
[http://dx.doi.org/10.1016/j.nutres.2017.11.003] [PMID: 29420997]
[95]
Elbarbary, N.S.; Ismail, E.A.R.; El-Naggar, A.R.; Hamouda, M.H.; El-Hamamsy, M. The effect of 12 weeks carnosine supplementation on renal functional integrity and oxidative stress in pediatric patients with diabetic nephropathy: a randomized placebo-controlled trial. Pediatr. Diabetes, 2018, 19(3), 470-477.
[http://dx.doi.org/10.1111/pedi.12564] [PMID: 28744992]
[96]
Spelnikov, D.; Harris, R.C. A kinetic model of carnosine synthesis in human skeletal muscle. Amino Acids, 2019, 51(1), 115-121.
[http://dx.doi.org/10.1007/s00726-018-2646-z] [PMID: 30209603]
[97]
Qiu, J.; Hauske, S.J.; Zhang, S.; Rodriguez-Niño, A.; Albrecht, T.; Pastene, D.O.; van den Born, J.; van Goor, H.; Ruf, S.; Kohlmann, M.; Teufel, M.; Krämer, B.K.; Hammes, H.P.; Peters, V.; Yard, B.A.; Kannt, A. Identification and characterisation of carnostatine (SAN9812), a potent and selective carnosinase (CN1) inhibitor with in vivo activity. Amino Acids, 2019, 51(1), 7-16.
[http://dx.doi.org/10.1007/s00726-018-2601-z] [PMID: 29922921]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy