[1]
Schoenberg, A.; Bartoletti, I.; Heck, R.F. Palladium-catalyzed carboalkoxylation of aryl, benzyl, and vinylic halides. J. Org. Chem., 1974, 39, 3318-3326.
[2]
Skoda-Földes, R.; Kollár, L. Synthetic applications of palladium catalysed carbonylation of organic halides. Curr. Org. Chem., 2002, 6, 1097-1119.
[3]
Barnard, C.F.J. Palladium-catalyzed carbonylations - A reaction come of age. Organometallics, 2008, 27, 5402-5422.
[4]
Brennführer, A.; Neumann, H.; Beller, M. Palladium-catalyzed carbonylation reactions of aryl halides and related compounds. Angew. Chem. Int. Ed., 2009, 48, 4114-4133.
[5]
Grigg, R.; Mutton, S.P. Pd-catalysed carbonylations: Versatile technology for discovery and process chemists. Tetrahedron, 2010, 66, 5515-5548.
[6]
Beller, M.; Wu, X.F. Transition metal catalyzed carbonylation reactions carbonylative activation of C–X bonds; Springer: Berlin, Heidelberg, 2013.
[7]
Vasapollo, G.; Mele, G. Synthesis of heterocycles by transition metals-catalyzed cyclocarbonylation reactions. Curr. Org. Chem., 2006, 10, 1397-1421.
[8]
Wu, X.F.; Neumann, H.; Beller, M. Synthesis of heterocycles via palladium-catalyzed carbonylations. Chem. Rev., 2013, 113, 1-35.
[9]
Skoda-Földes, R. Homogeneous carbonylation reactions in the synthesis of compounds of pharmaceutical importance. In: Modern Carbonylation Methods; Kollár, L., Ed.; Wiley-VCH: Weinheim, 2008; pp. 301-320.
[10]
Bai, Y.; Davis, D.C.; Dai, M. Natural product synthesis via palladium-catalyzed carbonylation. J. Org. Chem., 2017, 82, 2319-2328.
[11]
Garrett, C.E.; Prasad, K. The art of meeting palladium specifications in active pharmaceutical ingredients produced by Pd-catalyzed reactions. Adv. Synth. Catal., 2004, 346, 889-900.
[12]
Benaglia, M. Recoverable and recyclable catalysts; John Wiley & Sons: Chichester, 2009.
[13]
Molnár, Á. Efficient, selective, and recyclable palladium catalysts in carbon-carbon coupling reactions. Chem. Rev., 2011, 111, 2251-2320.
[14]
Hallett, J.P.; Welton, T. Room-temperature ionic liquids: Solvents for synthesis and catalysis. Chem. Rev., 2011, 111, 3508-3576.
[15]
Skoda-Földes, R. ILs in transition metal-catalysed alkoxy- and aminocarbonylation. Top. Organomet. Chem., 2015, 51, 145-162.
[16]
Pagliaro, M.; Pandarus, V.; Ciriminna, R.; Béland, F.; Cará, P.D. Heterogeneous versus homogeneous palladium catalysts for cross-coupling reactions. ChemCatChem, 2012, 4, 432-445.
[17]
Gadge, S.T.; Bhanage, B.M. Recent developments in palladium catalysed carbonylation reactions. RSC Adv, 2014, 4, 10367-10389.
[18]
Liu, X.; Ünal, B.; Jensen, K.F. Heterogeneous catalysis with continuous flow microreactors. Cat. Sci. Techn., 2012, 2, 2134-2138.
[19]
Fang, W.; Zhu, H.; Deng, Q.; Liu, S.; Liu, X.; Shen, Y.; Tu, T. Design and development of ligands for palladium-catalyzed carbonylation reactions. Synthesis, 2014, 46, 1689-1708.
[20]
Pârvulescu, V.I.; Hardacre, C. Catalysis in ionic liquids. Chem. Rev., 2007, 107, 2615-2665.
[21]
Fukuyama, T.; Totoki, T.; Ryu, I. Carbonylation in microflow: Close encounters of CO and reactive species. Green Chem., 2014, 16, 2042-2050.
[22]
Pineiro, M.; Dias, L.D.; Damas, L.; Aquino, G.L.B.; Calvete, M.J.F.; Pereira, M.M. Microwave irradiation as a sustainable tool for catalytic carbonylation reactions. Inorg. Chim. Acta, 2017, 455, 364-377.
[23]
Dufaud, V.; Thivolle-Cazat, J.; Basset, J.M. Palladium catalysed carbonylation of aryl chlorides to the corresponding methyl esters. Chem. Commun., 1990, 5, 426-427.
[24]
Davies, W.I.; Matty, L.; Hughes, L.D.; Reider, J.P. Are heterogeneous catalysts precursors to homogeneous catalysts? J. Am. Chem. Soc., 2001, 123, 10139-10140.
[25]
Salvadori, J.; Balducci, E.; Zaza, S.; Petricci, E.; Taddei, M. Microwave-assisted carbonylation and cyclocarbonylation of aryl iodides under ligand free heterogenous catalysis. J. Org. Chem., 2010, 75, 1841-1847.
[26]
Hattori, T.; Ueda, S.; Takakura, R.; Sawama, Y.; Monguchi, Y.; Sajiki, H. Heterogeneous one-pot carbonylation and Mizoroki-Heck reactions in a parallel manner following the cleavage of cinnamaldehyde derivatives. Chem. Eur. J., 2017, 34, 1-8.
[27]
Lei, Y.; Li, Z.; Yali, W.; Zhou, X.Y.; Li, G.; Shi, K. Pd/C: An efficient and reusable catalyst for the synthesis of flavones via carbonylation of aryl halides. Appl. Organomet. Chem., 2017, 3, 1-7.
[28]
Mane, R.S.; Bhanage, B.M. Pd/C-catalyzed facile synthesis of primary aromatic amides by aminocarbonylation of aryl iodides using ammonia surrogates. RSC Adv, 2015, 5, 76122-76127.
[29]
Mane, R.S.; Bhanage, B.M. Pd/C-catalyzed aminocarbonylation of aryl iodides via oxidative C-N bond activation of tertiary amines to tertiary amides. J. Org. Chem., 2016, 81, 1223-1228.
[30]
Satapathy, A.; Gadge, S.T.G.; Sasaki, T.; Bhanage, B.M. Synthesis of polyamides using palladium-on-carbon (Pd/C) as a heterogeneous, reusable and ligand-free catalytic system. RSC Adv, 2015, 5, 93773-93778.
[31]
Natte, K.; Neumann, H.; Wu, X.F. Pd/C as an efficient heterogeneous catalyst for carbonylative four-component synthesis of 4(3H)-quinazolinones. Cat. Sci. Techn., 2015, 5, 4474-4480.
[32]
Lin, Y.S.; Alper, H. A novel approach for the one-pot preparation of α-amino amides by Pd-catalyzed double carbohydroamination. Angew. Chem. Int. Ed., 2001, 40, 779-781.
[33]
Gautam, P.; Kathe, P.; Bhanage, B.M. Pd/C catalyzed phenoxycarbonylation using N-formylsaccharin as a CO surrogate in propylene carbonate, a sustainable solvent. Green Chem., 2017, 19, 823-830.
[34]
Maeda, K.; Yagita, H.; Omata, K.; Fujimoto, K. Liquid phase carbonylation with solid catalyst Part 2. Carboxymethylation of bromobenzene with Group VIII metals supported on active carbon. J. Mol. Catal., 1992, 71, 347-355.
[35]
Ziccarelli, I.; Neumann, H.; Kreyenschulte, H.; Bartolo, G.; Beller, M. Pd-supported on N-doped carbon: Improved heterogeneous catalyst for base-free alkoxycarbonylation of aryl iodides. Chem. Commun., 2016, 52, 12729-12732.
[36]
Polshettiwar, V.; Len, C.; Fihri, A. Silica-supported palladium: Sustainable catalysts for cross-coupling reactions. Coord. Chem. Rev., 2009, 253, 2599-2626.
[37]
Bhattacharyya, S.; Lelong, G.; Saboungi, M.L. Recent progress in the synthesis and selected applications of MCM-41: A short review. J. Exp. Nanosci., 2006, 1, 375-395.
[38]
Sadjadi, S.; Heravi, M.M. Current advances in the utility of functionalized SBA mesoporous silica for developing encapsulated nanocatalysts: State of the art. RSC Adv, 2017, 7, 30815-30838.
[39]
Mane, R.S.; Sasaki, T.; Bhanage, B.M. Silica supported palladium-phosphine as a reusable catalyst for alkoxycarbonylation and aminocarbonylation of aryl and heteroaryl iodides. RSC Adv, 2015, 5, 94776-94785.
[40]
Cai, M.; Zhao, H.; Huang, Y. Carbonylation of aryl halides catalyzed by a silica-supported sulfur and phosphine mixed bidentate palladium complex. J. Mol. Catal. A, 2005, 238, 41-45.
[41]
Cai, M.; Zong, C.; Huang, X. Amidation of aryl halides catalyzed by silica-supported bidentate phosphine palladium complex. Synth. Commun., 1997, 27, 361-366.
[42]
Miller, W.P.; Long, J.N.; de Mello, J.A.; Vilar, R.; Audrain, H.; Bender, D.; Passchier, J.; Gee, A. Rapid multiphase carbonylation reactions by using a microtube reactor: Applications in positron emission tomography 11C-radiolabeling. Angew. Chem. Int. Ed., 2007, 46, 2875-2878.
[43]
Hao, W.; Sha, J.; Sheng, S.; Cai, M. MCM-41-supported bidentate phosphine palladium(II) complex as an efficient catalyst for the carbonylation of aryl halides. Catal. Commun., 2008, 10, 257-260.
[44]
Cai, M.; Zheng, G.; Zha, L.; Peng, J. Carbonylative suzuki-miyaura coupling of arylboronic acids with aryl iodides catalysed by the MCM-41-supported bidentate phosphane palladium(II) complex. Eur. J. Org. Chem., 2009, 10, 1585-1591.
[45]
Cai, M.; Zheng, G.; Ding, G. The first heterogeneous carbonylative Stille coupling of organostannanes with aryl iodides catalyzed by MCM-41-supported bidentate phosphine palladium (0) complex. Green Chem., 2009, 11, 1687-1693.
[46]
Genelot, M.; Dufaud, V.; Djakovitch, L. Carbonylative Sonogashira coupling in the synthesis of ynones: A study of “boomerang” phenomena. Adv. Synth. Catal., 2013, 13, 1-14.
[47]
Genelot, M.; Dufaud, V.; Djakovitch, L. Heterogeneous metallo-organocatalysis for the selective one-pot synthesis of 2-benzylidene-indoxyl and 2-phenyl-4-quinolone. Tetrahedron, 2011, 67, 976-981.
[48]
Antebi, S.; Arya, P.; Manzer, E.L.; Alper, H. Carbonylation reactions of iodoarenes with PAMAM dendrimer-palladium catalysts immobilized on silica. J. Org. Chem., 2002, 67, 6623-6631.
[49]
Lagashi, M.; Moggi, P. Anchoring of Pd on silica functionalized with nitrogen containing chelating groups and applications in catalysis. J. Mol. Catal. A, 2002, 182-183, 61-72.
[50]
Zawartka, W.; Pośpiech, P.; Cypryk, M.; Trzeciak, M.A. Carbonylative suzuki–miyaura coupling catalyzed by palladium supported on aminopropyl polymethylsiloxane microspheres under atmospheric pressure of CO. J. Mol. Catal. A, 2016, 417, 76-80.
[51]
Hao, W.; Liu, H.; Yin, L.; Cai, M. Phosphine-free, heterogeneous palladium-catalyzed atom-efficient carbonylative cross-coupling of triarylbismuths with aryl iodides: Synthesis of biaryl ketones. J. Org. Chem., 2016, 81, 4244-4251.
[52]
You, S.; Xiao, R.; Liu, H.; Cai, M. A phosphine-free, heterogeneous palladium-catalysed atom-efficient carbonylative cross-coupling of triorganoiridiums with aryl halides leading to unsymmetrical ketones. New J. Chem., 2017, 41, 13862-13870.
[53]
Cai, M.; Song, C.; Huang, X. Butoxycarbonylation of aryl halides catalysed by a silica-supported poly [3(2-cyanoethylsulfanyl) propylsiloxane palladium] complex. J. Chem. Soc., 1997, 1, 2273-2274.
[54]
Cai, M.; Huang, Y.; Hu, R.; Song, C. Synthesis of silica-supported poly-diphenylarsinopropylsiloxane palladium complex and its catalytic behavior for Heck carbonylation of aryl halides. J. Mol. Catal. A, 2004, 208, 17-20.
[55]
Cai, M.; Huang, Y.; Hu, R.; Song, C. Synthesis of silica-supported bidentate arsine palladium complex and its catalytic properties for amidation/butoxycarbonylation of aryl halides. J. Mol. Catal. A, 2004, 212, 151-154.
[56]
Cai, M.; Zhou, J.; Zhao, H.; Song, C. Silica-supported poly-γ-methylselenopropylsiloxane palladium complex: An efficient catalyst for Heck carbonylation of aryl halides. React. Funct. Polym., 2002, 50, 191-195.
[57]
Islam, S.M.; Ghosh, K.; Roy, A.S.; Molla, R.A. Polymer supported Pd catalyzed carbonylation of aryl bromides for the synthesis of aryl esters and amides. RSC Adv, 2014, 4, 38986-38999.
[58]
Mansour, A.; Portnoy, M. Efficient heterogeneously catalyzed amidocarbonylation of bromoarenes based on a serinol-derived chelate diphosphine ligand. J. Mol. Catal. A, 2006, 250, 40-43.
[59]
Ibrahim, M.B.; Suleiman, R.; Fettouhi, M.; El Ali, B. Palladium-bisoxazoline supported catalysts for selective synthesis of aryl esters and aryl amides via carbonylative coupling reactions. RSC Adv, 2016, 6, 78826-78837.
[60]
Islam, S.M.; Molla, R.A.; Roy, A.S.; Ghosh, K. Polymer supported Pd catalyzed thioesters synthesis via carbonylation of aryl halides under phosphine free conditions. RSC Adv, 2014, 4, 26181-26192.
[61]
Suzuka, T.; Sueyoshi, H.; Ogihara, K. Polymer-supported terpyridine-palladium complex for the aminocarbonylation in water of aryl iodides using methoxyamine hydrochloride as an ammonia equivalent. Trans. Mater. Res. Soc. Jpn., 2016, 41, 225-228.
[62]
Suzuka, T.; Sueyoshi, H.; Ogihara, K. Recyclable polymer-supported terpyridine-palladium complex for the tandem aminocarbonylation of aryl iodides to primary amides in water using NaN3 as ammonia equivalent. Catalysts, 2017, 107, 1-8.
[63]
Zhu, G.; Ren, H. Porous Organic Frameworks: Design, Synthesis and Their Advanced Applications; Springer: Heidelberg, 2015.
[64]
Lei, Y.; Wu, L.; Zhang, X.; Mei, H.; Gu, Y.; Li, G. Palladium supported on triphenylphosphine functionalized porous organic polymer: A highly active and recyclable catalyst for alkoxycarbonylation of aryl iodides. J. Mol. Catal. A, 2015, 398, 164-169.
[65]
Lei, Y.; Zhang, X.; Gu, Y.; Hu, J.; Li, G.; Shi, K. Palladium supported on triphenylphosphine-functionalized porous organic polymer: an efficient heterogeneous catalyst for aminocarbonylation. Trans. Met. Chem., 2016, 41, 1-7.
[66]
Lei, Y.; Wan, Y.; Li, G.; Zhou, X.; Gu, Y.; Feng, J.; Wang, R. Palladium supported on amphiphilic porous organic polymer: A highly efficient catalyst for aminocarbonylation reaction in water. Mat. Chem. Front., 2017, 1, 1541-1549.
[67]
Deraedt, C.; Astruc, D. “Homeopathic” palladium nanoparticle catalysis of cross carboncarbon coupling reactions. Acc. Chem. Res., 2014, 47, 494-503.
[68]
Hu, Q.; Wang, L.; Wang, C.; Wu, Y.; Ding, Z.; Yuan, R. Ligand-free Pd(0)/SiO2-catalyzed aminocarbonylation of aryl iodides to amides under atmospheric CO pressure. RSC Adv, 2017, 7, 37200-37207.
[69]
Tinnis, F.; Verho, O.; Gustafson, K.P.; Tai, C.W.; Bäckvall, J.E.; Adolfsson, H. Efficient palladium-catalyzed aminocarbonylation of aryl iodides using palladium nanoparticles dispersed on siliceous mesocellular foam. Chem. Eur. J., 2014, 20, 5885-5889.
[70]
Gautam, P.; Dhiman, M.; Polshettiwar, V.; Bhanage, B.M. KCC-1 supported palladium nanoparticles as an efficient and sustainable nanocatalyst for carbonylative Suzuki-Miyaura cross-coupling. Green Chem., 2016, 18, 5890-5899.
[71]
Cacchi, S.; Cotet, L.C.; Fabrizi, G.; Forte, G.; Goggiamani, A.; Martín, L.; Martínez, S.; Molins, E.; Moreno-Mañas, M.; Petrucci, F.; Roig, A.; Vallriberad, A. Efficient hydroxycarbonylation of aryl iodides using recoverable and reusable carbon aerogels doped with palladium nanoparticles as catalyst. Tetrahedron, 2007, 63, 2519-2523.
[72]
Li, Z.; Liu, J.; Huang, Z.; Yang, Y.; Xia, C.; Li, F. One-pot synthesis of Pd nanoparticle catalysts supported on N-doped carbon and the application in the domino carbonylation. ACS Catal., 2013, 3, 839-845.
[73]
Algin, B.O.; Yuanting, K.T.; Hosmane, N.S.; Yinghuai, Z. Synthesis of carboranyl amides catalyzed by recyclable Pd (0) nanoparticles supported on carbon nanotubes (CNTs). J. Organomet. Chem., 2013, 747, 184-188.
[74]
Zhang, Y.; Sun, H.; Zhang, W.; Gao, Z.; Yang, P.; Gu, J.N. N-dimethylformamide solvothermal strategy: From fabrication of palladium nanoparticles supported on reduced graphene oxide nanosheets to their application in catalytic aminocarbonylation reactions. Appl. Catal. A, 2015, 496, 9-16.
[75]
Zhang, Z.; Chen, Y.; He, S.; Zhang, J.; Xu, X.; Yang, Y. Hierarchical Zn/Ni-MOF-2 nanosheet-assembled hollow nanocubes for multicomponent catalytic reactions. Angew. Chem. Int. Ed., 2014, 53, 1-6.
[76]
Solano, V.M.; Miera, G.G.; Pascanu, V.; Inge, A.K.; Martín-Matute, B. Versatile Heterogeneous palladium catalysts for diverse carbonylation reactions under atmospheric CO pressure. ChemCatChem, 2017, 10, 1-7.
[77]
Dang, T.T.; Yinghuai, Z.; Ghosh, S.C.; Anqi, C.; Chai, C.L.L.; Seayad, A.M. Atmospheric pressure aminocarbonylation of aryl iodides using palladium nanoparticles supported on MOF-5. Chem. Commun., 2012, 48, 1805-1807.
[78]
Urbán, B.; Papp, M.; Srankó, D.; Skoda-Földes, R. Phosphine-free atmospheric carbonylation of aryl iodides with aniline derivatives in the presence of a reusable silica-supported palladium catalyst. J. Mol. Catal. A, 2015, 397, 150-157.
[79]
Papp, M.; Szabó, P.; Srankó, D.; Sáfrán, G.; Kollár, L.; Skoda-Földes, R. Mono- and double carbonylation of aryl iodides with amine nucleophiles in the presence of recyclable palladium catalysts immobilised on a supported dicationic ionic liquid phase. RSC Adv, 2017, 7, 44587-44597.
[80]
Jiao, N.; Li, Z.; Wang, Y.; Liu, J.; Xia, C. Palladium nanoparticles immobilized onto supported ionic liquid-like phases (SILLPs) for the carbonylative Suzuki coupling reactions. RSC Adv, 2015, 5, 26913-26922.
[81]
Natour, S.; Abu-Reziq, R. Functionalized magnetic mesoporous silica nanoparticle supported palladium catalysts for carbonylative Sonogashira coupling reactions of aryl iodides. ChemCatChem, 2015, 7, 2230-2240.
[82]
Prasad, A.S.; Satyanarayana, B. Fe3O4 supported Pd(0) nanoparticles catalyzed alkoxycarbonylation of aryl halides. J. Mol. Catal. A, 2013, 370, 205-209.
[83]
Vavasori, A.; Calgaro, L.; Quartarone, G.; Ronchin, L.; Tortato, C. New magnetically recoverable palladium-based catalysts active in the alkoxycarbonylation of iodobenzene. Pure Appl. Chem., 2016, 88, 445-455.
[84]
Hajipour, A.; Tavangar-Rizi, Z.; Iranpoor, N. Palladium catalysed Carbonylation of aryl halides: An efficient, heterogenous and phosphine-free catalytic system for aminocarbonylation and alkoxycarbonylation employing Mo(CO)6 as a solid carbon monoxide source. RSC Adv, 2016, 6, 78468-78476.
[85]
Niu, J.; Liu, M.; Wang, P.; Long, Y.; Xie, M.; Li, R.; Ma, J. Stabilizing Pd(II) on hollow magnetic mesoporous spheres: A highly active and recyclable catalyst for carbonylative cross-coupling and Suzuki coupling reaction. New J. Chem., 2014, 38, 1471-1476.
[86]
Sun, X.; Zheng, Y.; Sun, L.; Lin, Q.; Su, H.; Qi, C. Immobilization of palladium (II) complexes on ethylenediamine functionalized core-shell magnetic nanoparticles: An efficient and recyclable catalyst for aerobic oxidation of alcohols and carbonylative Suzuki coupling reaction. Nano-Struct. Nano-Obj., 2016, 5, 7-14.
[87]
Wittmann, S.; Schätz, A.; Grass, N.R.; Stark, J.W.; Reiser, O. A recyclable nanoparticle-supported palladium catalyst for the hydroxyl carbonylation of aryl halides in water. Angew. Chem. Int. Ed., 2010, 49, 1867-1870.
[88]
Omar, S.; Abu-Reziq, R. Palladium nanoparticles supported on magnetic organic-silica hybrid nanoparticles. J. Phys. Chem. C, 2014, 118, 30045-30056.
[89]
Dutta, B.; Omar, S.; Natour, S.; Abu-Reziq, R. Palladium nanoparticles immobilized on magnetic nanoparticles: An efficient semi-heterogeneous catalyst for carbonylation of aryl bromides. Catal. Commun., 2015, 61, 31-36.
[90]
Eremin, D.B.; Ananikov, V.P. Understanding active species in catalytic transformations: From molecular catalysis to nanoparticles, leaching, “Cocktails” of catalysts and dynamic systems. Coord. Chem. Rev., 2017, 346, 2-19.
[91]
Urbán, B.; Szabó, P.; Srankó, D.; Sáfrán, G.; Kollár, L.; Skoda-Földes, R. Double carbonylation of iodoarenes in the presence of reusable palladium catalysts immobilised on supported phosphonium ionic liquid phases. Mol. Catal., 2018, 445, 195-205.
[92]
Mei, H.; Xiao, S.; Zhu, T.; Lei, Y.; Li, G. Alkoxycarbonylation and phenoxycarbonylation reactions catalyzed by a palladium(II) organometallic complex encaged in Y zeolite. Trans. Met. Chem. , 2014, 39, 443-450.
[93]
Zhang, Y.; Xiong, Y.; Ge, J.; Lin, R.; Chen, C.; Peng, Q.; Wang, D.; Li, Y. Porous organic cage stabilized palladium nanoparticles: Efficient heterogeneous catalysts for carbonylation reaction of aryl halides. Chem. Commun., 2018, 54, 2796-2799.
[94]
Ullah, E.; McNulty, J.; Sliwinski, M.; Robertson, A. One-step synthesis of reusable, polymer-supported tri-alkyl phosphine ligands. Application in Suzuki–Miyaura and alkoxycarbonylation reactions. Tetrahedron Lett., 2012, 53, 3990-3993.
[95]
Hu, Y.; Liu, Y.; Wang, Z.; Zhang, B. Spontaneous electroless deposition of ultrafine Pd nanoparticles on poly(phenylene butadiynylene)s for the hydroxycarbonylation of aryl iodides. Chem. Select Commun., 2016, 1, 1832-1836.
[96]
Roy, S.; Roy, S.; Gribble, G.W. Metal-catalyzed amidation. Tetrahedron, 2012, 68, 9867-9923.
[97]
De Risi, C.; Pollini, G.P.; Zanirato, V. Recent developments in general methodologies for the synthesis of α-ketoamides. Chem. Rev., 2016, 116, 3241-3305.
[98]
Gaudino, C.E.; Carnaroglio, D.; Martina, K.; Palmisano, G.; Penoni, A.; Cravotto, G. Highly efficient microwave-assisted CO aminocarbonylation with a recyclable Pd(II)/TPP-β-cyclodextrin cross linked catalyst. Org. Proc Res. Dev., 2015, 19, 499-505.
[99]
Mei, H.; Hu, J.; Xiao, S.; Lei, Y.; Li, G. Palladium-1, 10-phenanthroline complex encaged in Y zeolite: An efficient and highly recyclable heterogeneous catalyst for aminocarbonylation. Appl. Catal. A, 2014, 475, 40-47.
[100]
Dang, T.T.; Chen, A.; Seayad, A.M. An efficient synthesis of Weinreb amides and ketones via palladium nanoparticles on ZIF-8 catalysed carbonylative coupling. RSC Adv, 2014, 4, 30019-30027.
[101]
Molla, R.A.; Iqubal, M.A.; Ghosh, K.; Roy, A.S. Kamaluddin; Islam, S. M. Mesoporous poly-melamine-formaldehyde stabilized palladium nanoparticle (Pd@mPMF) catalyzed mono and double carbonylation of aryl halides with amines. RSC Adv, 2014, 4, 48177-48190.
[102]
Chen, B.; Li, F.; Huang, Z.; Lua, T.; Yuan, G. Stability or flexibility: Metal nanoparticles supported over cross-linked functional polymers as catalytic active sites for hydrogenation and carbonylation. Appl. Catal. A, 2014, 481, 54-63.
[103]
Papp, M.; Urbán, B.; Drotár, E.; Skoda-Földes, R. Mono- and double carbonylation of iodobenzene in the presence of reusable supported palladium catalysts. Green Proc. Synth., 2015, 4, 103-115.
[104]
Sharma, N.; Sekara, G. Stable and reusable binaphthyl-supported palladium catalyst for aminocarbonylation of aryl iodides. Adv. Synth. Catal., 2016, 358, 314-320.
[105]
Khedkar, M.V.; Shindea, A.R.; Sasaki, T.; Bhanage, B.M. Immobilized palladium metal containing ionic liquid catalyzed one step synthesis of isoindole-1,3-diones by carbonylative cyclization reaction. J. Mol. Catal. A, 2014, 385, 91-97.
[106]
Urbán, B.; Srankó, D.; Sáfrán, D.; Ürge, L.; Darvas, F.; Bakos, J.; Skoda-Földes, R. Evaluation of SILP-Pd catalysts for Heck reactions in a microfluidics-based high throughput flow reactor. J. Mol. Catal. A, 2014, 395, 364-372.
[107]
Papp, M.; Szabó, P.; Srankó, D.; Skoda-Földes, R. Solvent-free aminocarbonylation of iodobenzene in the presence of SILP-palladium catalysts. RSC Adv, 2016, 6, 45349-45356.
[108]
Balogh, J.; Kuik, Á.; Ürge, L.; Darvas, F.; Bakos, J.; Skoda-Földes, R. Double carbonylation of iodobenzene in a microfluidics-based high throughput flow reactor. J. Mol. Catal. A, 2009, 302, 76-79.
[109]
Papp, M.; Skoda-Földes, R. Phosphine-free double carbonylation of iodobenzene in the presence of reusable supported palladium catalysts. J. Mol. Catal. A, 2013, 378, 193-199.
[110]
Takács, E.; Varga, C.; Skoda-Földes, R.; Kollár, L. Facile synthesis of primary amides and ketoamides via a palladium-catalysed carbonylation-deprotection reaction sequence. Tetrahedron Lett., 2007, 48, 2453-2456.
[111]
Wang, Z.; Liu, C.; Huang, Y.; Hu, Y.; Zhang, B. Covalent triazine framework-supported palladium as a ligand-free catalyst for the selective double carbonylation of aryl iodides under ambient pressure of CO. Chem. Commun., 2016, 52, 2960-2963.
[112]
Chavan, S.P.; Varadwaj, G.B.B.; Parida, K.M., and ; Bhanage, B.M. Palladium anchored on amine-functionalized K10 as an efficient heterogeneous and reusable catalyst for carbonylative Sonogashira reaction. Appl. Catal. A, 2015, 506, 237-245.
[113]
Chavan, S.P.; Varadwaj, G.B.B.; Parida, K.M., and ; Bhanage, B.M. Solvent-switchable regioselective synthesis of aurones and flavones using palladium-supported amine-functionalized montmorillonite as heterogeneous catalyst. ChemCatChem, 2016, 8, 1-11.
[114]
Fehér, C.; Papp, M.; Gömöry, Á.; Nagy, L.; Wouters, J.; Lendvay, G.; Skoda-Földes, R. Synthesis of 2-ureido-4-ferrocenyl pyrimidine guests. Investigation of complementary molecular recognition of 2,6-diaminopyridine. Organometallics, 2016, 35, 4023-4032.
[115]
Hassan, J.; Sévignon, M.; Gozzi, C.; Schulz, E.; Lemaire, M. Aryl-Aryl Bond Formation One Century after the Discovery of the Ullmann Reaction. Chem. Rev., 2002, 102, 1359-1470.
[116]
Blangetti, M.; Rosso, H.; Prandi, C.; Deagostino, A.; Venturello, P. Suzuki-miyaura cross-coupling in acylation reactions, scope and recent developments. Molecules, 2013, 18, 1188-1213.
[117]
Hübner, S.; de Vries, J.G.; Farina, V. Why does industry not use immobilized transition metal complexes as catalysts? Adv. Synth. Catal., 2016, 358, 3-25.