Research Article

富氢水治疗心肌缺血再灌注损伤的研究

卷 19, 期 4, 2019

页: [294 - 302] 页: 9

弟呕挨: 10.2174/1566524019666190321113544

open access plus

摘要

背景:氢已被证明对心肌发挥生物活性作用。该研究检查了氢减弱缺血 - 再灌注损伤的信号传导途径。 方法:20只雄性Wistar大鼠共检测富氢水对心脏缺血再灌注的影响。采用左心室组织进行蛋白质芯片技术筛选和分析活性蛋白因子。通过使用基因本体论(GO)富集原理获得KEGG途径的富集。 Western blot和免疫组化检测JAK2,STAT1,STAT3,p-STAT1,p-JAK2,p-STAT3在大鼠心肌中的表达。通过TUNEL染色检测对照和富氢水组的凋亡率。 结果:富含氢的水组中25种蛋白质(包括5种转导途径)的表达水平下调。与对照组相比,富含氢的水组中p-JAK2 / JAK2,p-STAT3 / STAT3的表达水平上调,并且与对照组相比,富含氢的水组中p-STAT1 / STAT1下调。 。此外,富氢水组的凋亡率也显着降低。 结论:富氢水可通过上调JAK2-STAT3信号通路的表达抑制缺血再灌注损伤后心肌细胞的凋亡,从而减少缺血再灌注损伤。

关键词: 富氢水,缺血再灌注损伤,JAK-STAT信号通路,蛋白芯片技术,细胞凋亡。

[1]
Sanderson TH, Reynolds CA, Kumar R, Przyklenk K, Huttemann M. Molecular mechanisms of ischemia-reperfusion injury in brain: pivotal role of the mitochondrial membrane potential in reactive oxygen species generation. Mol Neurobiol 2013; 47: 9-23.
[2]
Lesnefsky EJ, Chen Q, Tandler B, Hoppel CL. Mitochondrial dysfunction and myocardial ischemia-reperfusion: implications for novel therapies. Annu Rev Pharmacol Toxicol 2017; 57: 535-65.
[3]
Ghavami S, Gupta S, Ambrose E, et al. Autophagy and heart disease: implications for cardiac ischemia-reperfusion damage. Curr Mol Med 2014; 14(5): 616-29.
[4]
Xin L, Junhua W, Long L, et al. Exogenous Hydrogen Sulfide Protects SH-SY5Y Cells from OGD/R-Induced Injury. Curr Mol Med 2017; 17(8): 563-7.
[5]
Huang CS, Kawamura T, Toyoda Y, Nakao A. Recent advances in hydrogen research as a therapeutic medical gas. Free Radic Res 2010; 44(9): 971-82.
[6]
Zhang Y, Sun Q, He B, Xiao J, Wang Z, Sun X. Anti-inflammatory effect of hydrogen-rich saline in a rat model of regional myocardial ischemia and reperfusion. Int J Cardiol 201(148): 91-5.
[7]
Yu S, Zhao C, Che N, Jing L, Ge R. Hydrogen-rich saline attenuates eosinophil activation in a guinea pig model of allergic rhinitis via reducing oxidative stress. J Inflamm 2017; 14: 1.
[8]
Sun Q, Kang Z, Cai J, et al. Hydrogen-rich saline protects myocardium against ischemia/reperfusion injury in rats. Exp Biol Med (Maywood) 2009; 234: 1212-9.
[9]
Liu Xuecong, Liu Fulin, Li Zhilin, Zhou Xiaodong, Shen Wenzeng, Zhou Cheng Protective effect and mechanism of hydrogen on isolated myocardial ischemia-reperfusion injury in rats. Shandong Medicine 2015; 55(6): 1-3.
[10]
Berrade L, Garcia AE, Camarero JA. Protein microarrays: novel developments and applications. Pharm Res 2011; 28: 1480-99.
[11]
Zarco N, Gonzalez-Ramirez R, Gonzalez RO, Segovia J. GAS1 induces cell death through an intrinsic apoptotic pathway. Apoptosis 2012; 17: 627-35.
[12]
Waskow C, Liu K, Darrasse-Jeze G, et al. The receptor tyrosine kinase Flt3 is required for dendritic cell development in peripheral lymphoid tissues. Nat Immunol 2008; 9: 676-83.
[13]
Laouar Y, Welte T, Fu XY, Flavell RA. STAT3 is required for Flt3L-dependent dendritic cell differentiation. Immunity 2003; 19: 903-12.
[14]
Segura E, Touzot M, Bohineust A, et al. Human inflammatory dendritic cells induce Th17 cell differentiation. Immunity 2013; 38: 336-48.
[15]
Liang SC, Tan XY, Luxenberg DP, et al. Interleukin (IL)-22 and IL-17 are coexpressed by Th17 cells and cooperatively enhance expression of antimicrobial peptides. J Exp Med 2006; 203: 2271-9.
[16]
Chang SH, Dong C. IL-17F: regulation, signaling and function in inflammation. Cytokine 2009; 46: 7-11.
[17]
Yang XO, Chang SH, Park H, et al. Regulation of inflammatory responses by IL-17F. J Exp Med 2008; 205: 1063-75.
[18]
Sundblad V, Morosi LG, Geffner JR, Rabinovich GA. Galectin-1: a Jack-of-all-trades in the resolution of acute and chronic inflammation. J Immunol 2017; 199: 3721-30.
[19]
Weinmann D, André S, Walzer SM, et al. Galectin-1 induces inflammation and cartilage degeneration in osteoarthritis through NF-κB-signaling. Osteoarthritis Cartilage 2016; 24: S139-S40.
[20]
Seropian IM, Cerliani JP, Toldo S, et al. Galectin-1 controls cardiac inflammation and ventricular remodeling during acute myocardial infarction. Am J Pathol 2013; 182: 29-40.
[21]
Corada M, Chimenti S, Cera MR, et al. Junctional adhesion molecule-A-deficient polymorphonuclear cells show reduced diapedesis in peritonitis and heart ischemia-reperfusion injury. Proc Natl Acad Sci USA 2005; 102: 10634-9.
[22]
Khandoga A, Kessler JS, Meissner H, et al. Junctional adhesion molecule-A deficiency increases hepatic ischemia-reperfusion injury despite reduction of neutrophil transendothelial migration. Blood 2005; 106: 725-33.
[23]
Osaki M, Oshimura M, Ito H. PI3K-Akt pathway: its functions and alterations in human cancer. Apoptosis 2004; 9: 667-76.
[24]
Dimitrova V, Arcaro A. Targeting the PI3K/AKT/mTOR signaling pathway in medulloblastoma. Curr Mol Med 2015; 15(1): 82-93.
[25]
Wu H, Ye M, Yang J, et al. Nicorandil protects the heart from ischemia/reperfusion injury by attenuating endoplasmic reticulum response-induced apoptosis through PI3K/Akt signaling pathway. Cell Physiol Biochem 2015; 35: 2320-32.
[26]
Zhang J, Wang C, Yu S, et al. Sevoflurane postconditioning protects rat hearts against ischemia-reperfusion injury via the activation of PI3K/AKT/mTOR signaling. Sci Rep 2014; 4: 7317.
[27]
Wu J, Wang R, Yang D, et al. Hydrogen postconditioning promotes survival of rat retinal ganglion cells against ischemia/reperfusion injury through the PI3K/Akt pathway. Biochem Biophys Res Commun 2018; 495: 2462-8.
[28]
Zhu J, Yao K, Guo J, et al. miR-181a and miR-150 regulate dendritic cell immune inflammatory responses and cardiomyocyte apoptosis via targeting JAK1-STAT1/c-Fos pathway. J Cell Mol Med 2017; 21: 2884-95.
[29]
Liu H, Xie X, Yang X, Li Y, Wang Y, Xu D. Enhanced inflammatory damage by microRNA-136 targeting Klotho expression in HK-2 cells by modulating JAK/STAT pathway. Pharmazie 2017; 72: 265-71.
[30]
Jere SW, Abrahamse H, Houreld NN. The JAK/STAT signaling pathway and photobiomodulation in chronic wound healing. Cytokine Growth Factor Rev 2017; 38: 73-9.
[31]
Rawlings JS, Rosler KM, Harrison DA. The JAK/STAT signaling pathway. J Cell Sci 2004; 117: 1281-3.
[32]
Heim MH. The Jak-STAT pathway: cytokine signalling from the receptor to the nucleus. J Recept Signal Transduct Res 1999; 19: 75-120.
[33]
Mudaliar H, Rayner B, Billah M, et al. Remote ischemic preconditioning attenuates EGR-1 expression following myocardial ischemia reperfusion injury through activation of the JAK-STAT pathway. Int J Cardiol 2017; 228: 729-41.
[34]
Wang Y, Wang D, Zhang L, Ye F, Li M, Wen K. Role of JAK-STAT pathway in reducing cardiomyocytes hypoxia/ reoxygenation injury induced by S1P postconditioning. Eur J Pharmacol 2016; 784: 129-36.
[35]
Knight RA, Scarabelli TM, and Stephanou A. STAT transcription in the ischemic heart. JAK-STAT 2012; 1: 111-7.

© 2025 Bentham Science Publishers | Privacy Policy