[1]
Astruc, D. Nanoparticles and Catalysis; Wiley-VCH: Weinheim, 2008.
[2]
Somorjai, G.A.; Frei, H.; Park, J.Y. Advancing the frontiers in nanocatalysis, biointerfaces, and renewable energy conversion by innovations of surface techniques. J. Am. Chem. Soc., 2009, 131, 16589-16605.
[3]
Benaglia, M. Recoverable and Recyclable Catalysts; John Wiley & Sons: Chichester, 2009.
[4]
Rossi, L.M.; Costa, N.J.; Silva, F.P.; Wojcieszak, R. Magnetic nanomaterials in catalysis: Advanced catalysts for magnetic separation and beyond. Green Chem., 2014, 16(6), 2906-2933.
[6]
Aliofkhazraei, M. Handbook of nanoparticlesed.; Springer,
, 2016.
[7]
Mahmoudi, H.; Jafari, A.A. Facial preparation of sulfonic acid-functionalized magnetite-coated maghemite as a magnetically separable catalyst for pyrrole synthesis. ChemCatChem, 2013, 12, 3743-3749.
[8]
Varma, R.S. Nano-catalysts with magnetic core: sustainable options for greener synthesis. Sustainable Chem. Processes., 2014, 2 11 (1-8).
[9]
Gedanken, A.; Mastai, Y. Sonochemistry and other novel methods developed for the synthesis of nanoparticles.In:The Chemistry of Nanomaterials: Synthesis, Properties and Applications; Rao, C.N.R.; Müller, H.C.M.A.; Cheetham, A.K., Eds.; Wiley-VCH Verlag GmbH & Co, 2004, pp. 113-169.
[10]
Cao, J.L.; Wang, Y.; Yu, X.L.; Wang, S.R.; Wu, S.H.; Yuan, Z.Y. Mesoporous CuO–Fe2O3 composite catalysts for low-temperature carbon monoxide oxidation. Appl. Catal. B-Environ., 2008, 79(1), 26-34.
[11]
Li, R.; Zhang, P.; Huang, Y.; Zhang, P.; Zhong, H.; Chen, Q. Pd–Fe3O4@C hybrid nanoparticles: Preparation, characterization, and their high catalytic activity toward suzuki coupling reactions. J. Mater. Chem., 2012, 22(42), 22750-22755.
[12]
Gao, Q.X.; Wang, X.F.; Di, J.L.; Wu, X.C.; Tao, Y.R. Enhanced catalytic activity of α-Fe2O3 nanorods enclosed with 110 and 001 planes for methane combustion and CO oxidation. Catal. Sci. Technol., 2011, 1(4), 574-577.
[13]
Chng, L.L.; Erathodiyil, N.; Ying, J.Y. Nanostructured catalysts for organic transformations. Accounts Chem. Res., 2013, 46(8), 1825-1837.
[14]
Yan, W.; Fan, H.; Zhai, Y.; Yang, C.; Ren, P.; Huang, L. Low temperature solution-based synthesis of porous flower-like α-Fe2O3 superstructures and their excellent gas-sensing properties. Sens. Actuators B Chem., 2011, 160(1), 1372-1379.
[15]
Patil, P.R.; Joshi, S.S. Synthesis of α-Fe2O3 nanocubes. Synth. React. Inorg. M., 2007, 37(6), 425-429.
[16]
Reinemann, C.; Strehlitz, B. Aptamer-Nanomaterial Conjugates for Medical Applications In: Bioengineered Nanomaterials; Tiwari A.; Tiwari A., 1st Ed.,. , 2013, pp. 42-73.
[17]
Sadeghzadeh, S.M.; Mogharabi, M. Metal complexes immobilized on magnetic nanoparticles In: Green Nanotechnology-Overview and Further Prospects ; Larramendy M , Sonia Soloneski, Ed.; Jenza Trdine, Croatia.. , 2016.
[18]
Mpungose, P.; Vundla, Z.; Maguire, G.; Friedrich, H. The current status of heterogeneous palladium catalysed heck and suzuki cross-coupling reactions. Molecules, 2018, 7, 1676.
[19]
Wittmann, S.; Schätz, A.; Grass, R.N.; Stark, W.J.; Reiser, O. A recyclable nanoparticle-supported palladium catalyst for the hydroxycarbonylation of aryl halides in water. Angew. Chem. Int. Ed., 2010, 49, 1867-1870.
[20]
Copéret, C.; Chabanas, M.; Saint-Arroman, R.P.; Basset, J-M. Homogeneous and heterogeneous catalysis: bridging the gap through surface organometallic chemistry. Angew. Chem. Int. Ed., 2003, 42, 156-181.
[21]
Basset, J-M.; Copéret, C.; Soulivong, D.; Taoufik, M. ThivolleCazat, J. Metathesis of alkanes and related reactions. J. Acc. Chem. Res., 2010, 43, 323-334.
[22]
Bönnemann, H.; Brijoux, W. Catalytically active metal powders and colloids.In:Active Metals: Preparation, characterization, applications; Alois, Fürstner, Ed.; Wiley-VCH: Weinheim, 1996, pp. 339-379.
[23]
Bӧnnemann, H.; Brijoux, W.; Brinkmann, R.; Dinjus, E.; Joußen, T.; Korall, B. Formation of colloidal transition metals in organic phases and their application in catalysis. Angew. Chem. Int. Ed., 1991, 30, 1312-1314.
[24]
Narayanan, R.; El-Sayed, M.A. Catalysis with transition metal nanoparticles in colloidal solution: nanoparticle shape dependence and stability. J. Phys. Chem. B, 2005, 109, 12663-12676.
[25]
Kim, S-W.; Son, S.U.; Lee, S.S.; Hyeon, T.; Chung, Y.K. Colloidal cobalt nanoparticles: a highly active and reusable Pauson-Khand catalyst. Chem. Commun. , 2001, 0, 2212-2213.
[26]
Son, S.U.; Lee, S.I.; Chung, Y.K.; Kim, S-W.; Hyeon, T. The first intramolecular Pauson-Khand reaction in water using aqueous colloidal cobalt nanoparticles as catalysts. Org. Lett., 2002, 4, 277-279.
[27]
Lewis, L.N. Chemical catalysis by colloids and clusters. Chem. Rev., 1993, 93, 2693-2730.
[28]
Daniel, M.C.; Astruc, D. Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem. Rev., 2004, 104, 293-346.
[29]
Astruc, D.; Lu, F.; Aranzaes, J.R. Nanoparticles as recyclable catalysts: the frontier between homogeneous and heterogeneous catalysis. Angew. Chem. Int. Ed., 2005, 44, 7852-7872.
[30]
Dahl, J.A.; Maddux, B.L.S.; Hutchinson, J.E. Toward greener nanosynthesis. Chem. Rev., 2007, 107, 2228-2269.
[31]
Shylesh, S.; Schunemann, V.; Thiel, W.R. Magnetically separable nanocatalysts: bridges between homogeneous and heterogeneous catalysis. Angew. Chem. Int. Ed., 2010, 49, 3428-3459.
[32]
Ahmad, T.; Ramanujachary, K.V.; Lofland, S.E.; Ganguli, A.K. Nanorods of manganese oxalate: a single source precursor to different manganese oxide nanoparticles (MnO, Mn2O3, Mn3O4). J. Mater. Chem., 2004, 14, 3406-3410.
[33]
Ahmad, T.; Ramanujachary, K.V.; Lofland, S.E.; Ganguli, A.K. Magnetic and electrochemical properties of nickel oxide nanoparticles obtained by the reverse-micellar route. Solid State Sci., 2006, 8, 425-430.
[34]
Ahmad, T.; Chopra, R.; Ramanujachary, K.V.; Lofland, S.E.; Ganguli, A.K. Canted antiferromagnetism in CuO nanoparticles synthesized by the reverse-micellar route. Solid State Sci., 2005, 7, 891-895.
[35]
Ahmed, J.; Ahmad, T.; Ramanujachary, K.V.; Lofland, S.E.; Ganguli, A.K. Development of microemulsion-based process for pure cobalt (Co) and cobalt oxide (Co3O4) nanoparticles from sub-micron rods of cobalt oxalate. J. Colloid Interface Sci., 2008, 321, 434-441.
[36]
Khatoon, S.; Ahmad, T. Synthesis, optical and magnetic properties of Nidoped ZnO nanoparticles. J. Mater. Sci. Engg., B,, 2012, 2, 325-333.
[37]
Ahmad, T.; Khatoon, S.; Coolahan, K.; Lofland, S.E. Solvothermal Synthesis, Optical and magnetic properties of nanocrystalline Cd1-xMnxO (0.04 < x = 0.10) Solid Solutions. J. Alloys Compd., 2013, 558, 117-124.
[38]
Ahmad, T.; Khatoon, S.; Coolahan, K.; Lofland, S.E. Structural characterization, optical and magnetic properties of Ni-doped CdO dilute magnetic semiconductor nanoparticles. J. Mater. Res., 2013, 28, 1245-1253.
[39]
Al-Hartomy, O.A.; Ubaidullah, M.; Kumar, D.; Madani, J.H.; Ahmad, T. Dielectric properties of Ba1-xSrxZrO3 (0 ≤ x ≤ 1) nanoceramics developed by citrate precursor route. J. Mater. Res., 2013, 28, 1070-1077.
[40]
Ahmad, T.; Lone, I.H.; Ansari, S.G.; Ahmed, J.; Ahamad, T.; Alshehri, S.M. Multifunctional properties and applications of yttrium ferrite nanoparticles prepared by citrate precursor route. Mater. Des., 2017, 126, 331-338.
[41]
Ahmad, T.; Phul, R.; Alam, P.; Lone, I.H.; Shahazad, M.; Ahmed, J.; Ahamad, T.; Alshehri, S.M. Dielectric, optical and enhanced Photo-catalytic properties of CuCrO2 Nanoparticles. RSC Advances, 2017, 7, 27549-27557.
[42]
Kalam, A.; Al-Sehemi, A.G.; Al-Shihri, A.S.; Du, G.; Ahmad, T. Synthesis and characterization of NiO nanoparticles by thermal decomposition of nickel linoleate and their optical properties. Mater. Charact., 2012, 68, 77-81.
[43]
Ganguly, A.; Ahmad, T.; Ganguli, A.K. Silica mesostructures: control of pore size and surface area using a surfactant template hydrothermal process. Langmuir, 2010, 26, 14901-14908.
[44]
Ahmad, T.; Phul, R. Magnetic iron oxide nanoparticles as contrast agents: hydrothermal synthesis, characterization and properties. SSP, 2015, 232, 111-145.
[45]
Ahmad, T.; Ganguli, A.K. Structural and dielectric characterization of nanocrystalline (Ba,Pb)ZrO3 developed by reverse micellar synthesis. J. Am. Ceram. Soc., 2006, 89(10), 3140-3146.
[46]
Ganguli, A.K.; Vaidya, S.; Ahmad, T. Synthesis of nanocrystalline materials through reverse micelles: A versatile methodology for synthesis of complex metal oxides. Bull. Mater. Sci., 2008, 31, 415-419.
[47]
Ahmad, T.; Ramanujachary, K.V.; Lofland, S.E.; Ganguli, A.K. Reverse micellar synthesis and properties of nanocrystalline GMR materials (LaMnO3, La0.67Sr0.33MnO3 and La0.67Ca0.33MnO3): Ramifications of size considerations. J. Chem. Sci., 2006, 118(6), 513-518.
[48]
Ahmad, T.; Ganguli, A.K. Reverse micellar route to nanocrystalline titanates (SrTiO3, Sr2TiO4 and PbTiO3): Structural aspects and dielectric properties. J. Am. Ceram. Soc., 2006, 89, 1326-1332.
[49]
Darken, L.S.; Gurry, P.W. The system iron-oxygen II equilibrium and thermodynamics of liquid oxide and other phases. J. Am. Chem. Soc., 1946, 68, 798-816.
[50]
Osterhout, V. In Magnetic Oxides; Craik, D.S., Ed.; Wiley: New York, 1975.
[51]
Shen, L.; Laibinis, P.E.; Hatton, T.A. Bilayer surfactant stabilized magnetic fluids: synthesis and interactions at interfaces. Langmuir, 1999, 15, 447-453.
[52]
Kang, Y.S.; Risbud, S.; Rabolt, J.F.; Stroeve, P. Synthesis and characterization of nanometer-size Fe3O4 and γ-Fe2O3 particles. Chem. Mater., 1996, 8, 2209-2211.
[53]
Fried, T.; Shemer, G.; Markovich, G. Ordered two-dimensional arrays of ferrite nanoparticles. Adv. Mater., 2001, 13, 1158-1161.
[54]
Kumar, R.V.; Koltypin, Y.; Cohen, Y.S.; Cohen, Y.; Aurbach, D.; Palchik, O.; Felner, I.; Gedanken, A. Preparation of amorphous magnetite nanoparticles embedded in polyvinyl alcohol using ultrasound radiation. J. Mater. Chem., 2000, 10, 1125-1129.
[55]
Ganguli, A.K.; Ahmad, T. Nanorods of iron oxalate synthesized using reverse micelles: facile route for Fe2O3 and Fe3O4 nanoparticles. J. Nanosci. Nanotechnol., 2007, 7, 2029-2035.
[56]
Khollam, Y.B.; Dhage, S.R.; Potdar, H.S.; Deshpande, S.B.; Bakare, P.P.; Kulkarni, S.D.; Date, S.K. Microwave hydrothermal preparation of submicron-sized spherical magnetite (Fe3O4) powders. Mater. Lett., 2001, 56, 571-577.
[57]
Dhage, S.R.; Khollam, Y.B.; Potadar, H.S.; Deshpande, S.B.; Bakare, P.P.; Sainkar, S.R.; Date, S.K. Effect of variation of molar ratio (pH) on the crystallization of iron oxide phases in microwave hydrothermal synthesis. Mater. Lett., 2002, 57, 457-462.
[58]
Gawande, M.B.; Branco, P.S.; Varma, R.S. Nano-magnetite (Fe3O4) as a support for recyclable catalysts in the development of sustainable methodologies. Chem. Soc. Rev., 2013, 42, 3371-3393.
[59]
Baig, R.B.N.; Varma, R.S. Magnetically retrievable catalysts for organic synthesis. Chem. Commun., 2013, 49, 752-770.
[60]
Baig, R.B.N.; Varma, R.S. Organic synthesis via magnetic attraction: benign and sustainable protocols using magnetic nanoferrites. Green Chem., 2013, 15, 398-417.
[61]
Polshettiwar, V.; Luque, R.; Fihri, A.; Zhu, H.; Bouhrara, M.; Bassett, J-M. Magnetically recoverable nanocatalysts. Chem. Rev., 2011, 111, 3036-3075.
[62]
Lu, A.H.; Salabas, E.L.; Schüth, F. Magnetic nanoparticles: synthesis, protection, functionalization and application. Angew. Chem. Int. Ed., 2007, 46, 1222-1244.
[63]
Yoon, T-J.; Lee, W.; Oh, Y-S.; Lee, J-K. Magnetic nanoparticles as a catalyst vehicle for simple and easy recycling. New J. Chem., 2003, 27, 227-229.
[64]
Lim, C.W.; Lee, I.S. Magnetically recyclable nanocatalyst systems for the organic reactions. Nano Today, 2010, 5, 412-434.
[65]
Alshehri, S.M.; Ahmed, J.; Alhabarah, A.N.; Ahamad, T.; Ahmad, T. Nitrogen doped cobalt ferrite/carbon nanocomposites for supercapacitor application. ChemElectroChem, 2017, 4, 2952-2958.
[66]
Polshettiwar, V.; Varma, R.S. Green chemistry by nano-catalysis. Green Chem., 2010, 12, 743-754.
[67]
Gupta, V.K.; Yola, M.L.; Eren, T.; Kartal, F. Çagˇlayan, M.O.; Atar, N. Catalytic activity of Fe@Ag nanoparticle involved calcium alginate beads for the reduction of nitrophenols. J. Mol. Liq., 2014, 190, 133-138.
[68]
Atar, N.; Eren, T.; Yola, M.L.; Hassan, K-M.; Demirdögena, B. Magnetic iron oxide and iron oxide@gold nanoparticle anchored nitrogen and sulphur functionalized reduced graphene oxide electrocatalyst for methanol oxidation. RSC Advances, 2015, 5, 26402-26409.
[69]
Gupta, V.K.; Atar, N.; Yola, M.L.; Üstündağ, Z.; Uzun, L. A novel magnetic Fe@Au core–shell nanoparticles anchored graphene oxide recyclable nanocatalyst for the reduction of nitrophenol compounds. Water Res., 2014, 48, 210-217.
[70]
Atar, N.; Eren, T.; Yola, M.L.; Gerengi, H.; Wang, S. Fe@Ag nanoparticles decorated reduced graphene oxide as ultrahigh capacity anode material for lithium-ion battery. Ionics, 2015, 21, 3185-3192.
[71]
Yola, M.L.; Eren, T.; Atar, N. Molecularly imprinted electrochemical biosensor based on Fe@Au nanoparticles involved in 2-aminoethanethiol functionalized multi-walled carbon nanotubes for sensitive determination of cefexime in human plasma. Biosens. Bioelectron., 2014, 60, 277-285.
[72]
Enthaler, S.; Junge, K.; Beller, M. Sustainable metal catalysis with iron: from rust to a rising star? Angew. Chem. Int. Ed., 2008, 47, 3317-3321.
[73]
Bolm, C.; Legros, J.; Paih, J.L.; Zani, L. Iron-catalyzed reactions in organic synthesis. Chem. Rev., 2004, 104, 6217-6254.
[74]
Hudson, R. Copper ferrite (CuFe2O4) nanoparticles. Synlett, 2013, 24, 1309-1310.
[75]
Polshettiwar, V.; Baruwati, B.; Varma, R.S. Nanoparticle-supported and magnetically recoverable nickel catalyst: a robust and economic hydrogenation and transfer hydrogenation protocol. Green Chem., 2009, 11, 127-131.
[76]
Zhang, Z.J.; Wang, Z.L.; Chakoumakos, B.C.; Yin, J.S. Temperature dependence of cation distribution and oxidation state in magnetic Mn-Fe ferrite nanocrystals. J. Am. Chem. Soc., 1998, 120, 1800-1804.
[77]
Ahmad, T.; Lone, I.H. Development of multifunctional lutetium ferrite nanoparticles: structural characterization and properties. Mater. Chem. Phys., 2017, 202, 50-55.
[78]
Mathew, T.; Shiju, N.R.; Sreekumar, K.; Rao, B.S.; Gopinath, C.S. Cu-Co synergism in Cu1−xCoxFe2O4-catalysis and XPS aspects. J. Catal., 2002, 210, 405-417.
[79]
Mathew, T.; Shylesh, S.; Reddy, S.N.; Sebastian, C.P.; Date, S.K.; Rao, B.S.; Kulkarni, S.D. Redistribution of cations amongst different lattice sites in Cu1-xCoxFe2O4 ferrospinels during alkylation: magnetic study. Catal. Lett., 2004, 93, 155-163.
[80]
Faust, B.C.; Hoffmann, M.R.; Bahnemann, D.W. Photocatalytic oxidation of sulfur dioxide in aqueous suspensions of α-Fe2O3. J. Phys. Chem., 1989, 93, 6371-6381.
[81]
Cornell, R.M.; Schwertmann, U. The Iron Oxides: Structure, Properties, Reactions, Occurrence and Uses; Wiley-VCH: Weinheim, 1996.
[82]
Han, J.S.; Bredow, T.; Davey, D.E.; Yu, A.B. Mulcahy, D.E. The effect of Al addition on the gas sensing properties of Fe2O3-based sensors. Sens. Actuators B, 2001, 75, 18-23.
[83]
Chen, J.; Xu, L.; Li, W.; Gou, X. α-Fe2O3 nanotubes in gas sensors and lithium-ion batteries applications. Adv. Mater., 2005, 17, 582-586.
[84]
Wen, X.; Wang, S.; Ding, Y.; Wang, Z.L.; Yang, S. Controlled growth of large-area, uniform, vertically aligned arrays of α-Fe2O3 nanobelts and nanowires. J. Phys. Chem. B, 2005, 109, 215-220.
[85]
Niederberger, M.; Krumeich, F.; Hegetschweiler, K.; Nesper, R. An iron polyolate complex as a precursor for the controlled synthesis of monodispersed iron oxide colloids. Chem. Mater., 2002, 14, 78-82.
[86]
Srivastava, D.N.; Perkas, N.; Gedanken, A.; Felner, I. Sonochemical synthesis of mesoporous iron oxide and accounts of its magnetic and catalytic properties. J. Phys. Chem. B, 2002, 106, 1878-1883.
[87]
Anand, N.; Reddy, K.H.P.; Satyanarayana, T.; Rao, K.S.R.; Burri, D.R. A magnetically recoverable γ-Fe2O3 nanocatalyst for the synthesis of 2-phenylquinazolines under solvent-free conditions. Catal. Sci. Technol., 2012, 2, 570-574.
[88]
Zheng, Y.; Cheng, Y.; Wang, Y.; Bao, F.; Zhou, L.; Wei, X.; Zhang, Y.; Zheng, Q. Quasicubic α-Fe2O3 nanoparticles with excellent catalytic performance. J. Phys. Chem. B, 2006, 110(7), 3093-3097.
[89]
Li, P.; Miser, D.E.; Rabiei, S.; Yadav, R.T.; Hajaligol, M.R. The removal of carbon monoxide by iron oxide nanoparticles. Appl. Catal. B: Environ., 2003, 43, 151-162.
[90]
Rao, Y.K. A physico-chemical model for reactions between particulate solids occurring through gaseous intermediates-I. Reduction of hematite by carbon. Chem. Eng. Sci., 1974, 29(6), 1435-1445.
[91]
Shi, F.; Tse, M.K.; Pohl, M-M.; Brückner, A.; Zhang, S.M.; Beller, M. Tuning catalytic activity between homogeneous and heterogeneous catalysis: improved activity and selectivity of free nano-Fe2O3 in selective oxidations. Angew. Chem. Int. Ed., 2007, 46, 8866-8868.
[92]
Shi, F.; Tse, M.K.; Pohl, M-M.; Radnik, J.; Brückner, A.; Zhang, S.; Beller, M. Nano-iron oxide-catalyzed selective oxidations of alcohols and olefins with hydrogen peroxide. J. Mol. Catal. A: Chem, 2008, 292, 28-35.
[93]
Zhao, N.; Ma, W.; Cui, Z.M.; Song, W.G.; Xu, C.L.; Gao, M.Y. Polyhedral maghemite nanocrystals prepared by a flame synthetic method: preparations, characterizations, and catalytic properties. ACS Nano, 2009, 3, 1775-1780.
[94]
Chaudhari, K.N.; Chaudhari, N.K.; Yu, J-S. Peroxidase mimic activity of hematite iron oxides (α-Fe2O3) with different nanostructures. Catal. Sci. Technol., 2012, 2, 119-124.
[95]
Zeng, T.Q.; Chen, W-W.; Cirtiu, C.M.; Moores, A.; Song, G.H.; Li, C.J. Fe3O4 nanoparticles: a robust and magnetically recoverable catalyst for three-component coupling of aldehyde, alkyne and amine. Green Chem., 2010, 12, 570-573.
[96]
Zhang, Z-H.; Lü, H-Y.; Yang, S-H.; Gao, J-W. Synthesis of 2,3-Dihydroquinazolin-4(1H)-ones by three-component coupling of isatoic anhydride, amines, and aldehydes catalyzed by magnetic Fe3O4 nanoparticles in water. J. Comb. Chem., 2010, 12(5), 643-646.
[97]
Hudson, R.; Feng, Y.; Varma, R.S.; Moores, A. Bare magnetic nanoparticles: sustainable synthesis and applications in catalytic organic transformations. Green Chem., 2014, 16, 4493-4505.
[98]
Reddy, B.V.S.; Krishna, A.S.; Ganesh, A.V.; Narayanakumar, G.G.K.S. Nano Fe3O4 as magnetically recyclable catalyst for the synthesis of α-aminophosphonates in solvent-free conditions. Tetrahedron Lett., 2011, 52, 1359-1362.
[99]
Ghasemzadeh, M.A.; Safaei-Ghomi, J.; Molaei, H. Fe3O4 nanoparticles: As an efficient, green and magnetically reusable catalyst for the one-pot synthesis of 1,8-dioxo-decahydroacridine derivatives under solvent-free conditions. C. R. Chim., 2012, 15, 969-974.
[100]
Jagadeesh, R.V.; Stemmler, T.; Surkus, A-E.; Junge, H.; Junge, K.; Beller, M. Hydrogenation using iron oxide–based nanocatalysts for the synthesis of amines. Nat. Protoc., 2015, 10, 548-557.
[101]
Wienhöfer, G.; Sorribes, I.; Boddien, A.; Westerhaus, F.; Junge, K.; Junge, H.; Llusar, R.; Beller, M. General and selective iron-catalyzed transfer hydrogenation of nitroarenes without base. J. Am. Chem. Soc., 2011, 133, 12875-12879.
[102]
Cui, X.; Zhou, X.; Dong, Z. Ultrathin γ-Fe2O3 nanosheets as a highly efficient catalyst for the chemoselective hydrogenation of nitroaromatic compounds. Catal. Commun., 2018, 107, 57-61.
[103]
Papadas, I.T.; Fountoulaki, S.; Lykakis, I.N.; Armatas, G.S. Controllable Synthesis of mesoporous iron oxide nanoparticle assemblies for chemoselective catalytic reduction of nitroarenes. Chem. Eur. J., 2016, 22, 4600-4607.
[104]
Tian, M.; Cui, X.; Liang, K.; Ma, J.; Dong, Z. Efficient and chemoselective hydrogenation of nitroarenes by γ-Fe2O3 modified hollow mesoporous carbon microspheres. Inorg. Chem. Front., 2016, 3, 1332-1340.
[105]
Tian, M.; Cui, X.; Yuan, M.; Yang, J.; Ma, J.; Dong, Z. Efficient chemoselective hydrogenation of halogenated nitrobenzenes over an easily prepared γ-Fe2O3-modified mesoporous carbon catalyst. Green Chem., 2017, 19, 1548-1554.
[106]
Cui, X.; Zhang, Q.; Tian, M.; Dong, Z. Facile fabrication of γ-Fe2O3-nanoparticle modified N-doped porous carbon materials for the efficient hydrogenation of nitroaromatic compounds. New J. Chem., 2017, 41, 10165-10173.
[107]
Li, Y.; Zhou, Y-X.; Ma, X.; Jiang, H.L. A metal–organic framework-templated synthesis of γ-Fe2O3 nanoparticles encapsulated in porous carbon for efficient and chemoselective hydrogenation of nitro compounds. Chem. Commun., 2016, 52, 4199-4202.
[108]
Vestal, C.R.; Zhang, Z.J. Synthesis and magnetic characterization of Mn and Co spinel ferrite-silica nanoparticles with tunable magnetic core. Nano Lett., 2003, 3, 1739-1743.
[109]
Jacintho, G.V.M.; Brolo, A.G.; Corio, P.; Suarez, P.A.Z.; Rubin, J.C. Structural investigation of MFe2O4 (M = Fe, Co) magnetic fluids. J. Phys. Chem. B, 2009, 113, 7684-7691.
[110]
Black, C.T.; Murray, C.B.; Sandstorm, R.L.; Sun, S. Spin-dependent tunneling in self-assembled cobalt-nanocrystal superlattices. Science, 2000, 290, 1131-1134.
[111]
Sun, S. Recent advances in chemical synthesis, self-assembly, and applications of FePt nanoparticles. Adv. Mater., 2006, 18, 393-403.
[112]
Park, J-I.; Kim, M.G.; Jun, Y-W.; Lee, J.S.; Lee, W-R.; Cheon, J. Characterization of superparamagnetic “core-shell” nanoparticles and monitoring their anisotropic phase transition to ferromagnetic “solid solution” nanoalloys. J. Am. Chem. Soc., 2004, 126, 9072-9078.
[113]
Tong, J.; Bo, L.; Li, Z.; Lei, Z.; Xia, C. Magnetic CoFe2O4 nanocrystal: A novel and efficient heterogeneous catalyst for aerobic oxidation of cyclohexane. J. Mol. Catal. A: Chem., 2009, 307, 58-63.
[114]
Kooti, M.; Afshari, M. Magnetic cobalt ferrite nanoparticles as an efficient catalyst for oxidation of alkenes. Sci. Iran. F., 2012, 19, 1991-1995.
[115]
Ishikawa, S.; Hudson, R.; Moores, A.; Li, C-J. Ligand modified CuFe2O4 nanoparticles as magnetically recoverable and reusable catalyst for azide-alkyne click condensation. Heterocycles, 2012, 86, 1023-1030.
[116]
Ranganath, K.V.S.; Glorius, F. Superparamagnetic nanoparticles for asymmetric catalysis-a perfect match. Catal. Sci. Technol., 2011, 1, 13-22.
[117]
Kantam, M.L.; Yadav, J.; Laha, S.; Srinivas, P.; Sreedhar, B.; Figueras, F. Asymmetric hydrosilylation of ketones catalyzed by magnetically recoverable and reusable copper ferrite nanoparticles. J. Org. Chem., 2009, 74, 4608-4611.
[118]
Senapati, K.K.; Borgohain, C.; Phukan, P. Synthesis of highly stable CoFe2O4 nanoparticles and their use as magnetically separable catalyst for knoevenagel reaction in aqueous medium. J. Mol. Catal. A: Chem., 2011, 339, 24-31.
[119]
Gawande, M.B.; Rathi, A.K.; Branco, P.S.; Nogueira, I.D.; Velhinho, A.; Shrikhande, J.J.; Indulkar, U.U.; Jayaram, R.V.; Ghumman, C.A.A.; Bundaleski, N.; Teodoro, O.M.N.D. Regio- and chemoselective reduction of nitroarenes and carbonyl compounds over recyclable magnetic ferrite-nickel nanoparticles (Fe3O4-Ni) by using glycerol as a hydrogen source. Chem. Eur. J., , 2012, 18, 12628-12632.
[120]
Sperling, R.A.; Parak, W.J. Surface modification, functionalization and bioconjugation of colloidal inorganic nanoparticles. Philos. Trans. R. Soc. A., 2010, 368, 1333-1383.
[121]
Wang, J.; Han, S.; Ke, D.; Wang, R. Semiconductor quantum dots surface modification for potential cancer diagnostic and therapeutic applications. J. Nanomater., 2012, 1, 1-8.
[122]
Rossi, L.M.; Garcia, M.A.S.; Vono, L.L.R. Recent advances in the development of magnetically recoverable metal nanoparticle catalysts. J. Braz. Chem. Soc., 2012, 23, 1959-1971.
[123]
Costa, N.J.S.; Rossi, L.M. Synthesis of supported metal nanoparticle catalysts using ligand assisted methods. Nanoscale, 2012, 4, 5826-5834.
[124]
Xu, H-J.; Wan, X.; Geng, Y.; Xu, X-L. The catalytic application of recoverable magnetic nanoparticles-supported organic compounds. Curr. Org. Chem., 2013, 17, 1034-1050.
[125]
Jin, M-J.; Lee, D-H. A practical heterogeneous catalyst for the suzuki, sonogashira, and stille coupling reactions of unreactive aryl chlorides. Angew. Chem. Int. Ed., 2010, 49, 1119-1122.
[126]
Jung, J-Y.; Kim, J-B.; Taher, A.; Jin, M-J. Pd(OAc)2 Immobilized on Fe3O4 as magnetically separable heterogeneous catalyst for suzuki reaction in water. Bull. Korean Chem. Soc., 2009, 30, 3082-3084.
[127]
Laska, U.; Frost, C.G.; Price, G.J.; Plucinski, P.K. Easy-separable magnetic nanoparticle-supported Pd catalysts: Kinetics, stability and catalyst re-use. J. Catal., 2009, 268, 318-328.