[1]
Briggs, G.G.; Freeman, R.K.; Yaffe, S.J. Drugs in pregnancy and lactation: a reference guide to fetal and neonatal risk; Lippincott Williams & Wilkins, 2012, p. 600, ISBN 1451153597.
[2]
Spratto, G.R.; Woods, A.L. Delmar Nurse’s Drug Handbook 2012; Cengage Learning, 2012, p. 748, ISBN 1111310653.
[3]
Holm, A.; Dijkstra, M.; Kleinjan, A.; Severijnen, L.A.; Boks, S.; Mulder, P.; Fokkens, W. Fluticasone propionate aqueous nasal spray reduces inflammatory cells in unchallenged allergic nasal mucosa: Effects of single allergen challenge. J. Allergy Clin. Immunol., 2001, 107, 627-633.
[4]
Johnson, M. The anti-inflammatory profile of fluticasone propionate. Allergy, 1995, 50(23)(Suppl.), 11-14.
[5]
Patterson, C.M.; Morrison, R.L.; D’Souza, A.; Teng, X.S.; Happel, K.I. Inhaled fluticasone propionate impairs pulmonary clearance of Klebsiella pneumoniae in mice. Respir. Res., 2012, 13, 40.
[6]
Moody, A.J.; Yandle, G.M.; Happel, K.I. Effects of nebulized budesonide or fluticasone propionate in a murine model of pulmonary Klebsiella pneumoniae infection. Am. J. Respir. Crit. Care Med., 2014, 189, A6629.
[7]
Lodha, R.; Kabra, S.K.; Pandey, R.M. Antibiotics for community-acquired pneumonia in children. Cochrane Database Syst. Rev., 2013, 6, CD004874.
[8]
Bergstrand, L.H.; Cardenas, E.; Holert, J.; Van Hamme, J.D.; Mohn, W.W. Delineation of steroid-degrading microorganisms through comparative genomic analysis. MBio, 2016, 7, e00166-e16.
[9]
Fujii, K.; Kikuchi, S.; Satomi, M.; Ushio-Sata, N.; Morita, N. Degradation of 17beta-estradiol by a gram-negative bacterium isolated from activated sludge in a sewage treatment plant in Tokyo, Japan. Appl. Environ. Microbiol., 2002, 68, 2057-2060.
[10]
Hashimoto, T.; Onda, K.; Morita, T.; Luxmy, B.S.; Tada, K.; Miya, A.; Murakami, T. Contribution of the estrogen-degrading bacterium Novosphingobium sp. strain JEM-1 to estrogen removal in wastewater treatment. J. Environ. Eng. ASCE, 2010, 136, 890-896.
[11]
Boratyn, G.M.; Schäffer, A.A.; Agarwala, R.; Altschul, S.F.; Lipman, D.J.; Madden, T.L. Domain enhanced lookup time accelerated BLAST. Biol. Direct, 2012, 7, 12.
[12]
Borer, A.; Saidel-Odes, L.; Riesenberg, K.; Eskira, S.; Peled, N.; Nativ, R.; Schlaeffer, F.; Sherf, M. Attributable mortality rate for carbapenem-resistant Klebsiella pneumoniae bacteremia. Infect. Control Hosp. Epidemiol., 2009, 30, 972-976.
[13]
Durdu, B.; Hakyemez, I.N.; Bolukcu, S.; Okay, G.; Gultepe, B.; Aslan, T. Mortality markers in nosocomial Klebsiella pneumoniae bloodstream infection. Springerplus, 2016, 5, 1892.
[14]
Fouts, D.E.; Tyler, H.L.; DeBoy, R.T.; Daugherty, S.; Ren, Q.; Badger, J.H.; Durkin, A.S.; Huot, H.; Shrivastava, S.; Kothari, S.; Dodson, R.J.; Mohamoud, Y.; Khouri, H.; Roesch, L.F.; Krogfelt, K.A.; Struve, C.; Triplett, E.W.; Methé, B.A. Complete genome sequence of the N2-fixing broad host range endophyte Klebsiella pneumoniae 342 and virulence predictions verified in mice. PLoS Genet., 2008, 4, e1000141.
[15]
Xie, G.; Ramirez, M.S.; Marshall, S.H.; Hujer, K.M.; Lo, C.C.; Johnson, S.; Li, P.E.; Davenport, K.; Endimiani, A.; Bonomo, R.A.; Tolmasky, M.E.; Patrick, S.G.; Chain, P.S.G. Genome sequences of Two Klebsiella pneumoniae isolates from different geographical regions, Argentina (Strain JHCK1) and the United States (Strain VA360). Genome Announc., 2013, 12, e00168-e13.
[16]
Wright, M.S.; Perez, F.; Brinkac, L.; Jacobs, M.R.; Kaye, K.; Cober, E.; van Duin, D.; Marshall, S.H.; Hujer, A.M.; Rudin, S.D.; Hujer, K.M.; Bonomo, R.A.; Adams, M.D. Population structure of KPC-producing Klebsiella pneumoniae isolates from Midwestern U.S. hospitals. Antimicrob. Agents Chemother., 2014, 58, 4961-4965.
[17]
Conlan, S.; Park, M.; Deming, C.; Thomas, P.J.; Young, A.C.; Coleman, H.; Sison, C. NISC Comparative Sequencing Program; Weingarten, R.A.; Lau, A.F.; Dekker, J.P.; Palmore, T.N.; Frank, K.M.; Segre, J.A. Plasmid Dynamics in KPC-Positive Klebsiella pneumoniae during long-term patient colonization. MBio, 2016, 7, e00742-e16.
[18]
Fodah, R.A.; Scott, J.B.; Tam, H.H.; Yan, P.; Pfeffer, T.L.; Bundschuh, R.; Warawa, J.M. Correlation of Klebsiella pneumoniae comparative genetic analyses with virulence profiles in a murine respiratory disease model. PLoS One, 2014, 9, e107394.
[19]
Marques, M.A.; Berrêdo-Pinho, M.; Rosa, T.L.; Pujari, V.; Lemes, R.M.; Lery, L.M.; Silva, C.A.; Guimarães, A.C.; Atella, G.C.; Wheat, W.H.; Brennan, P.J.; Crick, D.C.; Belisle, J.T.; Pessolani, M.C. The essential role of cholesterol metabolism in the intracellular survival of Mycobacterium leprae is not coupled to central carbon metabolism and energy production. J. Bacteriol., 2015, 197, 3698-3707.
[20]
Mattos, K.A.; Oliveira, V.C.; Berrêdo-Pinho, M.; Amaral, J.J.; Antunes, L.C.; Melo, R.C.; Acosta, C.C.; Moura, D.F.; Olmo, R.; Han, J.; Rosa, P.S.; Almeida, P.E.; Finlay, B.B.; Borchers, C.H.; Sarno, E.N.; Bozza, P.T.; Atella, G.C.; Pessolani, M.C. Mycobacterium leprae intracellular survival relies on cholesterol accumulation in infected macrophages: A potential target for new drugs for leprosy treatment. Cell. Microbiol., 2014, 16, 797-815.