[1]
Singh, S.K. Diagnostics to Pathogenomics of Sexually Trans-mitted Infections, 1st ed; Wiley Blackwell, 2018.
[2]
Satterwhite, C.L.; Torrone, E.; Meites, E.; Dunne, E.F.; Mahajan, R.; Ocfemia, M.C.B.; Su, J.; Xu, F.; Weinstock, H. Sexually transmitted infections among US women and men: prevalence and incidence estimates, 2008. Sex. Transm. Dis., 2013, 40(3), 187-193.
[4]
Friedman, A.L.; Kachur, R.E.; Noar, S.M.; McFarlane, M. Health communication and social marketing campaigns for sexually transmitted disease prevention and control: What is the evidence of their effectiveness? Sex. Transm. Dis., 2016, 43(2)(Suppl. 1), S83-S101.
[6]
Ferreira, L.G.; Dos Santos, R.N.; Oliva, G.; Andricopulo, A.D. Molecular docking and structure-based drug design strategies. Molecules, 2015, 20(7), 13384-13421.
[7]
Chen, Y.; Shoichet, B.K. Molecular docking and ligand specificity in fragment-based inhibitor discovery. Nat. Chem. Biol., 2009, 5(5), 358-364.
[8]
Kitchen, D.B.; Decornez, H.; Furr, J.R.; Bajorath, J. Docking and scoring in virtual screening for drug discovery: methods and applications. Nat. Rev. Drug Discov., 2004, 3(11), 935-949.
[9]
Wang, R.; Lu, Y.; Wang, S. Comparative evaluation of 11 scoring functions for molecular docking. J. Med. Chem., 2003, 46(12), 2287-2303.
[10]
Warren, G.L.; Andrews, C.W.; Capelli, A.M.; Clarke, B.; LaLonde, J.; Lambert, M.H.; Lindvall, M.; Nevins, N.; Semus, S.F.; Senger, S.; Tedesco, G.; Wall, I.D.; Woolven, J.M.; Peishoff, C.E.; Head, M.S. A critical assessment of docking programs and scoring functions. J. Med. Chem., 2006, 49(20), 5912-5931.
[11]
Rarey, M.; Kramer, B.; Lengauer, T.; Klebe, G. A fast flexible docking method using an incremental construction algorithm. J. Mol. Biol., 1996, 261(3), 470-489.
[12]
Jones, G.; Willett, P.; Glen, R.C.; Leach, A.R.; Taylor, R. Development and validation of a genetic algorithm for flexible docking. J. Mol. Biol., 1997, 267(3), 727-748.
[13]
Österberg, F.; Morris, G.M.; Sanner, M.F.; Olson, A.J.; Goodsell, D.S. Automated docking to multiple target structures: incorporation of protein mobility and structural water heterogeneity in AutoDock. Proteins, 2002, 46(1), 34-40.
[14]
Morris, G.M.; Huey, R.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem., 2009, 30(16), 2785-2791.
[15]
Venkatachalam, C.M.; Jiang, X.; Oldfield, T.; Waldman, M. LigandFit: a novel method for the shape-directed rapid docking of ligands to protein active sites. J. Mol. Graph. Model., 2003, 21(4), 289-307.
[16]
Jain, A.N. Surflex: Fully automatic flexible molecular docking using a molecular similarity-based search engine. J. Med. Chem., 2003, 46(4), 499-511.
[17]
McGann, M.R.; Almond, H.R.; Nicholls, A.; Grant, J.A.; Brown, F.K. Gaussian docking functions. Biopolymers, 2003, 68(1), 76-90.
[18]
Friesner, R.A.; Banks, J.L.; Murphy, R.B.; Halgren, T.A.; Klicic, J.J.; Mainz, D.T.; Repasky, M.P.; Knoll, E.H.; Shelley, M.; Perry, J.K.; Shaw, D.E.; Francis, P.; Shenkin, P.S. Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J. Med. Chem., 2004, 47(7), 1739-1749.
[19]
Trott, O.; Olson, A.J. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem., 2010, 31(2), 455-461.
[20]
Corbeil, C.R.; Williams, C.I.; Labute, P. Variability in docking success rates due to dataset preparation. J. Comput. Aided Mol. Des., 2012, 26(6), 775-786.
[21]
Zhao, H.; Caflisch, A. Discovery of ZAP70 inhibitors by high-throughput docking into a conformation of its kinase domain generated by molecular dynamics. Bioorg. Med. Chem. Lett., 2013, 23(20), 5721-5726.
[22]
Allen, W.J.; Balius, T.E.; Mukherjee, S.; Brozell, S.R.; Moustakas, D.T.; Lang, P.T.; Case, D.A.; Kuntz, I.D.; Rizzo, R.C. DOCK 6: Impact of new features and current docking performance. J. Comput. Chem., 2015, 36(15), 1132-1156.
[23]
Wang, Z.; Sun, H.; Yao, X.; Li, D.; Xu, L.; Li, Y.; Tian, S.; Hou, T. Comprehensive evaluation of ten docking programs on a diverse set of protein-ligand complexes: the prediction accuracy of sampling power and scoring power. Phys. Chem. Chem. Phys., 2016, 18(18), 12964-12975.
[24]
Leroy, E.M.; Kumulungui, B.; Pourrut, X.; Rouquet, P.; Hassanin, A.; Yaba, P.; Délicat, A.; Paweska, J.T.; Gonzalez, J.P.; Swanepoel, R. Fruit bats as reservoirs of Ebola virus. Nature, 2005, 438(7068), 575-576.
[27]
Bwaka, M.A.; Bonnet, M.J.; Calain, P.; Colebunders, R.; De Roo, A.; Guimard, Y.; Katwiki, K.R.; Kibadi, K.; Kipasa, M.A.; Kuvula, K.J.; Mapanda, B.B.; Massamba, M.; Mupapa, K.D.; Muyembe-Tamfum, J.J.; Ndaberey, E.; Peters, C.J.; Rollin, P.E.; Van den Enden, E.; Van den Enden, E. Ebola hemorrhagic fever in Kikwit, Democratic Republic of the Congo: clinical observations in 103 patients. J. Infect. Dis., 1999, 179(Suppl. 1), S1-S7.
[30]
Rodriguez, L.L.; De Roo, A.; Guimard, Y.; Trappier, S.G.; Sanchez, A. Bressler, Williams, D.A.J.; Rowe, A.K.; Bertolli, J.; Khan, A.S.; Ksiazek, T.G.; Peters, C.J.; Nichol, S.T. Persis-tence and genetic stability of Ebola virus during the outbreak in Kikwit, Democratic Republic of the Congo, 1995. J. Infect. Dis., 1999, 179, 170-176.
[31]
Rogstad, K.E.; Tunbridge, A. Ebola virus as a sexually transmitted infection. Curr. Opin. Infect. Dis., 2015, 28(1), 83-85.
[32]
Deen, G.F.; Broutet, N.; Xu, W.; Knust, B.; Sesay, F.R.; McDonald, S.L.; Ervin, E.; Marrinan, J.E.; Gaillard, P.; Habib, N.; Liu, H.; Liu, W.; Thorson, A.E.; Yamba, F.; Mas-saquoi, T.A.; James, F.; Ariyarajah, A.; Ross, C.; Bernstein, K.; Coursier, A.; Klena, J.; Carino, M.; Wurie, A.H.; Zhang, Y.; Dumbuya, M.S.; Abad, N.; Idriss, B.; Wi, T.; Bennett, S.D.; Davies, T.; Ebrahim, F.K.; Meites, E.; Naidoo, D.; Smith, S.J.; Ongpin, P.; Malik, T.; Banerjee, A.; Erickson, B.R.; Liu, Y.; Liu, Y. Xu, K.; Brault, A.; Durski, K.N.; Winter, J.; Sealy, T.; Nichol S.T.; Lamunu, M.; Bangura, J.; Landoulsi, S.; Jambai, A.; Morgan, A.; Wu, G.; Liang, M.; Su, Q.; Lan, Y.; Hao, Y.; Formenty, P.; Ströher, U.; Sahr, F. Ebola RNA persistence in semen of Ebola virus disease survivors. N. Engl. J. Med., 2017, 377(15), 1428-1437.
[33]
Christie, A.; Davies-Wayne, G.J.; Cordier-Lassalle, T.; Blackley, D.J.; Laney, A.S.; Williams, D.E.; Shinde, S.A.; Badio, M.; Lo, T.; Mate, S.E.; Ladner, J.T.; Wiley, M.R.; Kugelman, J.R.; Palacios, G.; Holbrook, M.R.; Janosko, K.B.; de Wit, E.; van Doremalen, N.; Munster, V.J.; Pettitt, J.; Schoepp, R.J.; Verhenne, L.; Evlampidou, I.; Kollie, K.K.; Sieh, S.B.; Gasasira, A.; Bolay, F.; Kateh, F.N.; Nyenswah, T.G.; De Cock, K.M. Possible sexual transmission of Ebola virus - Liberia, 2015. MMWR Morb. Mortal. Wkly. Rep., 2015, 64(17), 479-481.
[35]
Mate, S.E.; Kugelman, J.R.; Nyenswah, T.G.; Ladner, J.T.; Wiley, M.R.; Cordier-Lassalle, T.; Christie, A.; Schroth, G.P.; Gross, S.M.; Davies-Wayne, G.J.; Shinde, S.A.; Murugan, R.; Sieh, S.B.; Badio, M.; Fakoli, L.; Taweh, F.; de Wit, E.; van Doremalen, N.; Munster, V.J.; Pettitt, J.; Prieto, K.; Humrighouse, B.W.; Ströher, U.; DiClaro, J.W.; Hensley, L.E.; Schoepp, R.J.; Safronetz, D.; Fair, J.; Kuhn, J.H.; Blackley, D.J.; Laney, A.S.; Williams, D.E.; Lo, T.; Gasasira, A.; Nichol, S.T.; Formenty, P.; Kateh, F.N.; De Cock, K.M.; Bolay, F.; Sanchez-Lockhart, M.; Palacios, G. Molecular evidence of sexual transmission of Ebola virus. N. Engl. J. Med., 2015, 373(25), 2448-2454.
[36]
Judson, S.; Prescott, J.; Munster, V. Understanding ebola virus transmission. Viruses, 2015, 7(2), 511-521.
[37]
Gire, S.K.; Goba, A.; Andersen, K.G.; Sealfon, R.S.G.; Park, D.J.; Kanneh, L. Jalloh, s.; Momoh, M.; Fullah, M.; Dudas, G.; Wohl, S.; Moses, L.M.; Yozwiak, N.L.; Winnicki, S.; Matranga, C.B.; Malboeyf, C.M.; Qu, J.; Glandden, A.D.; Schaffner, S.F.; Yang, X.; Jiang, P.P.; Nekoui, M.; Colubri, A.; Coomber, M.R.; Fonnie, M.; Moigboi, A.; Gbakie, M.; Kama-ra, F.K.; Tucker, V.; Konuwa, E.; Saffa, S.; Sellu, J.; Jalloh, A.A.; Jovoma, A.; Koninga, J.; Mustapha, I.; Kargbo, K.; Fo-day, M.; Yillah, M.; Kanneh, F.; Robert, W.; Massally, J.L.B.; Chapman, S.B.; Bochicchio, J.; Murphy, C.; Nusbaum, C.; Young, S.; Birren, B.W.; Grant, D.S.; Scheiffelin, J.S.; Lander, E.S.; Happi, C.; Gevao, S.M.; Gnirke, A.; Rambaut, A.; Garry, R.F.; Khan, S.H.; Sabeti, P.C. Genomic surveillance elucidates Ebola virus origin and transmission during the 2014 out-break. Science, 2014, 345, 1369-1372.
[38]
Hulo, C.; de Castro, E.; Masson, P.; Bougueleret, L.; Bairoch, A.; Xenarios, I.; Le Mercier, P. ViralZone: A knowledge resource to understand virus diversity. Nucleic Acids Res., 2011, 39(Database issue), D576-D582.
[39]
Nanbo, A.; Watanabe, S.; Halfmann, P.; Kawaoka, Y. The spatio-temporal distribution dynamics of Ebola virus proteins and RNA in infected cells. Sci. Rep., 2013, 3, 1206.
[40]
Raj, U.; Varadwaj, P.K. Flavonoids as multi-target inhibitors for proteins associated with Ebola virus: In silico discovery using virtual screening and molecular docking studies. Interdiscip. Sci., 2016, 8(2), 132-141.
[41]
Chou, K.C. Impacts of bioinformatics to medicinal chemistry. Med. Chem., 2015, 11(3), 218-234.
[42]
Diehl, W.E.; Lin, A.E.; Grubaugh, N.D.; Carvalho, L.M.; Kim, K.; Kyawe, P.P.; McCauley, S.M.; Donnard, E.; Kucukural, A.; McDonel, P.; Schaffner, S.F.; Garber, M.; Rambaut, A.; Andersen, K.G.; Sabeti, P.C.; Luban, J. Ebola virus glycopro-tein with increased infectivity dominated the 2013-2016 epi-demic. Cell, 2016, 167(4), 1088-1098.e6.
[43]
Weissenhorn, W.; Carfí, A.; Lee, K.H.; Skehel, J.J.; Wiley, D.C. Crystal structure of the Ebola virus membrane fusion subunit, GP2, from the envelope glycoprotein ectodomain. Mol. Cell, 1998, 2(5), 605-616.
[44]
Takada, A.; Robison, C.; Goto, H.; Sanchez, A.; Murti, K.G.; Whitt, M.A.; Kawaoka, Y. A system for functional analysis of Ebola virus glycoprotein. Proc. Natl. Acad. Sci. USA, 1997, 94(26), 14764-14769.
[45]
Earp, L.J.; Delos, S.E.; Park, H.E.; White, J.M. The many mechanisms of viral membrane fusion proteins.Mem-brane trafficking in viral replication; Marsh, M., Ed.; Springer: Berlin, Heidelberg, 2004, Vol. 285, pp. 25-66.
[46]
Sakurai, Y.; Kolokoltsov, A.A.; Chen, C.C.; Tidwell, M.W.; Bauta, W.E.; Klugbauer, N.; Grimm, C.; Wahl-Schott, C.; Biel, M.; Davey, R.A. Ebola virus. Two-pore channels control Ebola virus host cell entry and are drug targets for disease treatment. Science, 2015, 347(6225), 995-998.
[47]
Lee, J.E.; Fusco, M.L.; Hessell, A.J.; Oswald, W.B.; Burton, D.R.; Saphire, E.O. Structure of the Ebola virus glycoprotein bound to an antibody from a human survivor. Nature, 2008, 454(7201), 177-182.
[48]
Ahmad, N.; Farman, A.; Badshah, S.L.; Ur Rahman, A.; Ur Rashid, H.; Khan, K. Molecular modeling, simulation and docking study of ebola virus glycoprotein. J. Mol. Graph. Model., 2017, 72, 266-271.
[49]
Shinyguruce, A.; Sathya, D.; Keerthiga, K.; Pavithra, P.; Vin-itha, M.; Vaidheeswari, R.; Eswara, P.B. In Silico Antiviral Drug Screening and Molecular Docking Studies Against Ebola Virus Glycoprotein. J. Appl. Sci. Comput., 2018, 5(9), 211-216.
[50]
Basler, C.F.; Mikulasova, A.; Martinez-Sobrido, L.; Paragas, J.; Mühlberger, E.; Bray, M.; Klenk, H.D.; Palese, P.; García-Sastre, A. The Ebola virus VP35 protein inhibits activation of interferon regulatory factor 3. J. Virol., 2003, 77(14), 7945-7956.
[51]
Reynard, O.; Nemirov, K.; Page, A.; Mateo, M.; Raoul, H.; Weissenhorn, W.; Volchkov, V.E. Conserved proline-rich re-gion of Ebola virus matrix protein VP40 is essential for plas-ma membrane targeting and virus-like particle release. J. Infect. Dis., 2011, 204, 884-891.
[52]
Ekins, S.; Freundlich, J.S.; Coffee, M. A common feature pharmacophore for FDA-approved drugs inhibiting the Ebola virus. F1000 Res., 2014, 3, 277.
[53]
Glanzer, J.G.; Byrne, B.M.; McCoy, A.M.; James, B.J.; Frank, J.D.; Oakley, G.G. In silico and in vitro methods to identify ebola virus VP35-dsRNA inhibitors. Bioorg. Med. Chem., 2016, 24(21), 5388-5392.
[54]
Ren, J.X.; Zhang, R.T.; Zhang, H.; Cao, X.S.; Liu, L.K.; Xie, Y. Identification of novel VP35 inhibitors: Virtual screening driven new scaffolds. Biomed. Pharmacother., 2016, 84, 199-207.
[55]
Sulaiman, K.O.; Kolapo, T.U.; Onawole, A.T.; Islam, A.; Adegoke, R.O.; Badmus, S.O. Molecular dynamics and com-bined docking studies for the identification of Zaire Ebola Vi-rus inhibitors. J. Biomol. Struct. Dyn., 2018, 2018, 1-31.
[56]
Hartlieb, B.; Muziol, T.; Weissenhorn, W.; Becker, S. Crystal structure of the C-terminal domain of Ebola virus VP30 reveals a role in transcription and nucleocapsid association. Proc. Natl. Acad. Sci. USA, 2007, 104(2), 624-629.
[57]
John, S.P.; Wang, T.; Steffen, S.; Longhi, S.; Schmaljohn, C.S.; Jonsson, C.B. Ebola virus VP30 is an RNA binding protein. J. Virol., 2007, 81(17), 8967-8976.
[58]
Biedenkopf, N.; Hartlieb, B.; Hoenen, T.; Becker, S. Phosphorylation of Ebola virus VP30 influences the composition of the viral nucleocapsid complex: impact on viral transcription and replication. J. Biol. Chem., 2013, 288(16), 11165-11174.
[59]
Martínez, M.J.; Biedenkopf, N.; Volchkova, V.; Hartlieb, B.; Alazard-Dany, N.; Reynard, O.; Becker, S.; Volchkov, V. Role of Ebola virus VP30 in transcription reinitiation. J. Virol., 2008, 82(24), 12569-12573.
[60]
Shah, R.; Panda, P.K.; Patel, P.; Panchal, H. Pharmacophore based virtual screening and molecular docking studies of inherited compounds against ebola virus receptor proteins. World J. Pharm. Pharm. Sci., 2015, 4(5), 1268-1282.
[61]
Setlur, A.S.; Naik, S.Y.; Skariyachan, S. Herbal lead as ideal bioactive compounds against probable drug targets of ebola virus in comparison with known chemical analogue: A computational drug discovery perspective. Interdiscip. Sci., 2017, 9(2), 254-277.
[62]
Vecchio, K.D.; Shwarz, A.; Saphire, E.O.; Stahelin, R. The ebola virus matrix protein vp40 interacts selectively with plasma membrane lipids to promote viral egress. FASEB J., 2017, 31, 945-951.
[63]
Gomis-Rüth, F.X.; Dessen, A.; Timmins, J.; Bracher, A.; Kolesnikowa, L.; Becker, S.; Klenk, H.D.; Weissenhorn, W. The matrix protein VP40 from Ebola virus octamerizes into pore-like structures with specific RNA binding properties. Structure, 2003, 11(4), 423-433.
[64]
Scianimanico, S.; Schoehn, G.; Timmins, J.; Ruigrok, R.H.; Klenk, H.D.; Weissenhorn, W. Membrane association induces a conformational change in the Ebola virus matrix protein. EMBO J., 2000, 19(24), 6732-6741.
[65]
Mirza, M.U.; Ikram, N. Integrated computational approach for virtual hit identification against ebola viral proteins VP35 and VP40. Int. J. Mol. Sci., 2016, 17(11), 1748.
[66]
M., Alam El-Din H.; A Loutfy, S.; Fathy, N.; H Elberry, M.; M Mayla, A.; Kassem, S.; Naqvi, A. Molecular docking based screening of compounds against VP40 from Ebola virus. Bioinformation, 2016, 12(3), 192-196.
[67]
Abazari, D.; Moghtadaei, M.; Behvarmanesh, A.; Ghannadi, B.; Aghaei, M.; Behruznia, M.; Rigi, G. Molecular docking based screening of predicted potential inhibitors for VP40 from Ebola virus. Bioinformation, 2015, 11(5), 243-247.
[68]
Karthick, V.; Nagasundaram, N.; Doss, C.G.P.; Chakraborty, C.; Siva, R.; Lu, A.; Zhang, G.; Zhu, H. Virtual screening of the inhibitors targeting at the viral protein 40 of Ebola virus. Infect. Dis. Poverty, 2016, 5, 12.
[69]
Patel, J.; Chipkar, Y.; Momin, A. Comparitive study of vari-ous ebola virus Vp40 strains with modelling and docking studies to treat ebola virus infection. Intl. J. Pharm. Drug Res., 2013, 2(1), 1-10.
[70]
Skariyachan, S.; Acharya, A.B.; Subramaniyan, S.; Babu, S.; Kulkarni, S.; Narayanappa, R. Secondary metabolites extracted from marine sponge associated Comamonas testosteroni and Citrobacter freundii as potential antimicrobials against MDR pathogens and hypothetical leads for VP40 matrix protein of Ebola virus: an in vitro and in silico investigation. J. Biomol. Struct. Dyn., 2016, 34(9), 1865-1883.
[71]
Tamilvanan, T.; Hopper, W. High-throughput virtual screening and docking studies of matrix protein vp40 of ebola virus. Bioinformation, 2013, 9(6), 286-292.
[72]
Reid, S.P.; Leung, L.W.; Hartman, A.L.; Martinez, O.; Shaw, M.L.; Carbonnelle, C.; Volchkov, V.E.; Nichol, S.T.; Basler, C.F. Ebola virus VP24 binds karyopherin alpha1 and blocks STAT1 nuclear accumulation. J. Virol., 2006, 80(11), 5156-5167.
[73]
Watanabe, S.; Noda, T.; Halfmann, P.; Jasenosky, L.; Kawaoka, Y. Ebola virus (EBOV) VP24 inhibits transcription and replication of the EBOV genome. J. Infect. Dis., 2007, 196(Suppl. 2), S284-S290.
[74]
Hoenen, T.; Jung, S.; Herwig, A.; Groseth, A.; Becker, S. Both matrix proteins of Ebola virus contribute to the regulation of viral genome replication and transcription. Virology, 2010, 403(1), 56-66.
[75]
Tambunan, U.S.F.; Nasution, M.A.F. Identification of novel Ebola virus (EBOV) VP24 inhibitor from Indonesian natural products through in silico drug design approach. AIP Conf. Proc., 2017, 1862(1)030091
[76]
Tambunan, U.S.F.; Siregar, S.; Toepak, E.P. Ebola viral protein 24 (Vp24) inhibitor discovery by in silico fragment-based design. Int. J. Geomech., 2018, 15(49), 59-64.
[77]
Sharmila, R.; Jaikumar, B. Molecular docking study of bioac-tive compound of andrographolide against ebola virus. Int. J. Pharm. Sci. Res., 2016, 7(5), 250-253.
[78]
Sharma, D.; Pathak, M.; Sharma, R.; Tyagi, P.; Chawla, R.; Basu, M.; Ojha, H. Homology modeling and docking studies of VP24 protein of Ebola virus with an antiviral drug and its derivatives. Chem. Biol. Lett., 2017, 4(1), 27-32.
[79]
Sun, Y.; Guo, Y.; Lou, Z. A versatile building block: the structures and functions of negative-sense single-stranded RNA virus nucleocapsid proteins. Protein Cell, 2012, 3(12), 893-902.
[80]
Zhou, H.; Sun, Y.; Guo, Y.; Lou, Z. Structural perspective on the formation of ribonucleoprotein complex in negative-sense single-stranded RNA viruses. Trends Microbiol., 2013, 21(9), 475-484.
[81]
Baikerikar, S. Curcumin and natural derivatives inhibit ebola viral proteins: An in silico approach. Pharmacol. Res., 2017, 9(Suppl. 1), S15-S22.
[82]
Slots, J. Periodontal herpesviruses: prevalence, pathogenicity, systemic risk. Periodontol. 2000, 2015, 69(1), 28-45.
[83]
Whitley, R.J. Herpesviruses.University of Texas Medical Branch at Gal-veston; Microbiology, M.; Sam-uel, B., Eds.; Galveston, Texas, , 1996.
[84]
Robbins, G.; Lammert, S.; Rompalo, A.; Riley, L.; Daskalakis, D.; Morrow, R.; Lee, H.; Shui, A.; Gaydos, C.; Detrick, B.; Rosenber, E.; Crochiere, D.; Cunningham, K.; Bradley, H.; Markowitz, L.; Xu, F.; Felsenstein, D. Serologic assays for the diagnosis of herpes virus 1 (HSV-1) herpes virus 2 (HSV-2): test characteristics of FDA approved type-specific assays in an ethnically, racially, and economi-cally diverse patient population. In: Open Forum Infectious Diseases; Oxford University Press, 2015; p. 2.
[85]
Rohner, E.; Wyss, N.; Heg, Z.; Faralli, Z.; Mbulaiteye, S.M.; Novak, U.; Zwahlen, M.; Egger, M.; Bohlius, J. HIV and human herpesvirus 8 co-infection across the globe: Systematic review and meta-analysis. Int. J. Cancer, 2016, 138(1), 45-54.
[87]
Burn, C.; Ramsey, N.; Garforth, S.J.; Almo, S.; Jacobs, W.R., Jr; Herold, B.C. A herpes simplex virus (HSV)-2 single-cycle candidate vaccine deleted in glycoprotein D protects male mice from lethal skin challenge with clinical isolates of HSV-1 and HSV-2. J. Infect. Dis., 2018, 217(5), 754-758.
[88]
Sripiboon, S.; Angkawanish, T.; Boonprasert, K.; Sombutputorn, P.; Langkaphin, W.; Ditcham, W.; Warren, K. Successful treatment of a clinical elephant endotheliotropic herpesvirus infection: The dynamics of viral load, genotype analysis, and treatment with acyclovir. J. Zoo Wildl. Med., 2017, 48(4), 1254-1259.
[89]
Troszok, A.; Kolek, L.; Szczygieł, J.; Wawrzeczko, J.; Borzym, E.; Reichert, M.; Kamińska, T.; Ostrowski, T.; Jurecka, P.; Adamek, M.; Rakus, K.; Irnazarow, I. Acyclovir inhibits Cyprinid herpesvirus 3 multiplication in vitro. J. Fish Dis., 2018, 41(11), 1709-1718.
[90]
Piret, J.; Boivin, G. Herpesvirus Resistance to Antiviral Drugs; Antimicrobial Drug Resistance, 2017, pp. 1185-1211.
[91]
Kolb, A.W.; Larsen, I.V.; Cuellar, J.A.; Brandt, C.R. Genomic, phylogenetic, and recombinational characterization of herpes simplex virus 2 strains. J. Virol., 2015, 89(12), 6427-6434.
[92]
Lehman, I.R.; Boehmer, P.E. Replication of herpes simplex virus DNA. J. Biol. Chem., 1999, 274(40), 28059-28062.
[93]
Matthews, J.T.; Terry, B.J.; Field, A.K. The structure and function of the HSV DNA replication proteins: Defining novel antiviral targets. Antiviral Res., 1993, 20(2), 89-114.
[94]
Hoog, S.S.; Smith, W.W.; Qiu, X.; Janson, C.A.; Hellmig, B.; McQueney, M.S.; O’Donnell, K.; O’Shannessy, D.; DiLella, A.G.; Debouck, C.; Abdel-Meguid, S.S. Active site cavity of herpesvirus proteases revealed by the crystal structure of herpes simplex virus protease/inhibitor complex. Biochemistry, 1997, 36(46), 14023-14029.
[95]
Kashyap, K.; Kakkar, R. Herpesvirus Proteases: Structure, Function, and Inhibition; Viral Proteases and Their Inhibitors, 2017, pp. 411-439.
[96]
Arunkumar, J.; Rajarajan, S. Study on antiviral activities, drug-likeness and molecular docking of bioactive compounds of Punica granatum L. to Herpes simplex virus - 2 (HSV-2). Microb. Pathog., 2018, 118, 301-309.
[97]
Chowdary, T.K.; Cairns, T.M.; Atanasiu, D.; Cohen, G.H.; Eisenberg, R.J.; Heldwein, E.E. Crystal structure of the conserved herpesvirus fusion regulator complex gH-gL. Nat. Struct. Mol. Biol., 2010, 17(7), 882-888.
[98]
Atanasiu, D.; Cairns, T.M.; Whitbeck, J.C.; Saw, W.T.; Rao, S.; Eisenberg, R.J.; Cohen, G.H. Regulation of herpes simplex virus gB-induced cell-cell fusion by mutant forms of gH/gL in the absence of gD and cellular receptors. MBio, 2013, 4(2), e00046-e13.
[99]
Connolly, C.S.A.; Jackson, J.O.; Jardetzky, T.S.; Longnecker, R. Fusing structure and function: a structural view of the her-pesvirus entry machinery. Nat. Rev. Microbiol., 2011, 9(5), 369.
[100]
Boyer, C.B.; Greenberg, L.; Chutuape, K.; Walker, B.; Monte, D.; Kirk, J.; Ellen, J.M.; Belzer, M.; Martinez, M.; Dudek, J. Adolescent medicine trials network. exchange of sex for drugs or money in adolescents and young adults: An examination of sociodemographic factors, HIV-related risk, and community context. J. Commun. Healthc., 2017, 42(1), 90-100.
[101]
Strategies, P.; Therapy, F.O.R.A.; Tecnol, D.; Cruz, O. Estratégias farmacológicas para a terapia anti-aids Emerson Poley Peçanha* e Octavio A. C. Antunes., 2002, 25(6), 1108-1116.
[103]
Mohammadi, A.A.; Taheri, S.; Amouzegar, A.; Ahdenov, R.; Halvagar, M.R.; Sadr, A.S. Diastereoselective synthesis and molecular docking studies of novel fused tetrahydro-pyridine derivatives as new inhibitors of HIV protease. J. Mol. Struct., 2017, 1139, 166-174.
[104]
Tong, J.; Wu, Y.; Bai, M.; Zhan, P. 3D-QSAR and molecular docking studies on HIV protease inhibitors. J. Mol. Struct., 2017, 1129, 17-22.
[105]
Zondagh, J.; Balakrishnan, V.; Achilonu, I.; Dirr, H.W.; Sayed, Y. Molecular dynamics and ligand docking of a hinge region variant of South African HIV-1 subtype C protease. J. Mol. Graph. Model., 2018, 82, 1-11.
[106]
Ahmad, R.; Sahidin, I.; Taher, M.; Low, C.; Noor, N.M.; Sillapachaiyaporn, C.; Chuchawankul, S.; Sarachana, T.; Tencomnao, T.; Iskandar, F.; Rajab, N.F.; Baharum, S.N. Polygonumins A, a newly isolated compound from the stem of Polygonum minus Huds with potential medicinal activities. Sci. Rep., 2018, 8(1), 4202.
[107]
Al-Shehri, M.M.; Al-Majed, A.R.A.; Aljohar, H.I.; El-Emam, A.A.; Pathak, S.K.; Sachan, A.K.; Prasad, O.; Sinha, L. First principle study of a potential bioactive molecule with tetrahydroisoquinoline, carbothiomide and adamantane scaffolds. J. Mol. Struct., 2017, 1143, 204-216.
[108]
Ghosh, A.K.; Osswald, H.L.; Glauninger, K.; Agniswamy, J.; Wang, Y-F.; Hayashi, H.; Aoki, M.; Weber, I.T.; Mitsuya, H. Probing lipophilic adamantyl group as the P1-ligand for HIV-1 protease inhibitors: Design, synthesis, protein X-ray structural studies, and biological evaluation. J. Med. Chem., 2016, 59(14), 6826-6837.
[109]
Debnath, U.; Kumar, P.; Agarwal, A.; Kesharwani, A.; Gupta, S.K.; Katti, S.B. N-hydroxy-substituted 2-aryl acetamide analogs: A novel class of HIV-1 integrase inhibitors. Chem. Biol. Drug Des., 2017, 90(4), 527-534.
[110]
Vyas, V.K.; Shah, S.; Ghate, M. Generation of new leads as HIV-1 integrase inhibitors: 3D QSAR, docking and molecular dynamics simulation. Med. Chem. Res., 2017, 26(3), 532-550.
[111]
Chander, S.; Pandey, R.K.; Penta, A.; Choudhary, B.S.; Sharma, M.; Malik, R.; Prajapati, V.K.; Murugesan, S. Molecular docking and molecular dynamics simulation based approach to explore the dual inhibitor against HIV-1 reverse transcriptase and integrase. Comb. Chem. High Throughput Screen., 2017, 20(8), 734-746.
[112]
Faridoon; Mnkandhla, D.; Isaacs, M.; Hoppe, H. C.; Kaye, P. T. Synthesis and evaluation of substituted 4-arylimino-3-hydroxybutanoic acids as potential HIV-1 integrase inhibitors. Bioorg. Med. Chem. Lett., 2018, 28(6), 1067-1070.
[113]
Zhang, F.H.; Debnath, B.; Xu, Z.L.; Yang, L.M.; Song, L.R.; Zheng, Y.T.; Neamati, N.; Long, Y.Q. Discovery of novel 3-hydroxypicolinamides as selective inhibitors of HIV-1 integrase-LEDGF/p75 interaction. Eur. J. Med. Chem., 2017, 125, 1051-1063.
[114]
Panwar, U.; Singh, S.K. Structure-based virtual screening toward the discovery of novel inhibitors for impeding the protein-protein interaction between HIV-1 integrase and hu-man lens epithelium-derived growth factor (LEDGF/P75). J. Biomol. Struct. Dyn., 2018, 36(12), 3199-3217.
[115]
Srivastav, V.K.; Tiwari, M. QSAR and Docking studies of coumarin derivatives as potent HIV-1 integrase inhibitors. Arab. J. Chem., 2017, 10, S1081-S1094.
[116]
Ericksen, S.S.; Wu, H.; Zhang, H.; Michael, L.A.; Newton, M.A.; Hoffmann, F.M.; Wildman, S.A. Machine learning consensus scoring improves performance across targets in structure-based virtual screening. J. Chem. Inf. Model., 2017, 57(7), 1579-1590.
[117]
Jin, K.; Yin, H.; De Clercq, E.; Pannecouque, C.; Meng, G.; Chen, F. Discovery of biphenyl-substituted diarylpyrimidines as non-nucleoside reverse transcriptase inhibitors with high potency against wild-type and mutant HIV-1. Eur. J. Med. Chem., 2018, 145, 726-734.
[118]
Kashid, A.M.; Dhawale, S. Design, Synthesis and Biological Screening of N 1 - (Substituted Pyridine-2-Yl) -N 3 - (Quinoline-2-Yl). Malonamide as Novel Anti-HIV-I Agents., Ind. J. Chem. Sec. B Org. Med. Chem., 2018, 57, 870-879.
[119]
Liu, G.; Wang, W.; Wan, Y.; Ju, X.; Gu, S. Application of 3D-QSAR, Pharmacophore, and Molecular Docking in the Molec-ular Design of Diarylpyrimidine Derivatives as HIV-1 Nonnucleoside Reverse Transcriptase Inhibitors. Int. J. Mol. Sci., 2018, 19(5), 1436.
[120]
Singh, A.; Singh, V.K.; Verma, R.; Singh, R.K. In Silico Studies on N - (Pyridin- 2-Yl) Thiobenzamides as NNRTIs against Wild and Mutant HIV-1 Strains. Philipp. J. Sci., 2018, 147(March), 37-46.
[121]
Peddi, S.R.; Mohammed, N.A.; Hussein, A.A.; Sivan, S.K.; Manga, V. Multiple-Receptor Conformation Docking, Dock Pose Clustering, and 3D QSAR-Driven Approaches Exploring New HIV-1 RT Inhibitors. Struct. Chem., 2018, 29(4), 999-1012.
[122]
Zhang, H.; Tian, Y.; Kang, D.; Huo, Z.; Zhou, Z.; Liu, H.; De Clercq, E.; Pannecouque, C.; Zhan, P.; Liu, X. Discovery of uracil-bearing DAPYs derivatives as novel HIV-1 NNRTIs via crystallographic overlay-based molecular hybridization. Eur. J. Med. Chem., 2017, 130, 209-222.
[123]
Samanta, P.N.; Das, K.K. Inhibition activities of catechol diether based non-nucleoside inhibitors against the HIV reverse transcriptase variants: Insights from molecular docking and ONIOM calculations. J. Mol. Graph. Model., 2017, 75, 294-305.
[124]
Poongavanam, V.; Namasivayam, V.; Vanangamudi, M.; Al Shamaileh, H.; Veedu, R.N.; Kihlberg, J.; Murugan, N.A. In-tegrative Approaches in HIV-1 Non-Nucleoside Reverse Transcriptase Inhibitor Design. Wiley Interdiscip. Rev. Comput. Mol. Sci., 2018, 8(1), 1-26.
[125]
Monforte, A.M.; De Luca, L.; Buemi, M.R.; Agharbaoui, F.E.; Pannecouque, C.; Ferro, S. Structural optimization of N1-aryl-benzimidazoles for the discovery of new non-nucleoside reverse transcriptase inhibitors active against wild-type and mutant HIV-1 strains. Bioorg. Med. Chem., 2018, 26(3), 661-674.
[126]
Cabrera, A.; Huerta, H.L.; Chávez, D.; Medina-Franco, J.L. Molecular Modeling of Potential Dual Inhibitors of HIV Reverse Transcriptase and Integrase. Comput. Mol. Biosci., 2018, 8, 1-41.
[127]
Tang, J.; Vernekar, S.K.V.; Chen, Y.L.; Miller, L.; Huber, A.D.; Myshakina, N.; Sarafianos, S.G.; Parniak, M.A.; Wang, Z. Synthesis, biological evaluation and molecular modeling of 2-Hydroxyisoquinoline-1,3-dione analogues as inhibitors of HIV reverse transcriptase associated ribonuclease H and polymerase. Eur. J. Med. Chem., 2017, 133, 85-96.
[128]
Barberato, C.; Neto, Z.G. A AÇÃO coletiva como instrumento de tutela e concretização do direito à saúde. J. Popul., 2018, 1(3), 129-146.
[129]
Sousa, S.J.F.E.; Sousa, S.B.F.E. Eye bank procedures: donor selection criteria. Arq. Bras. Oftalmol., 2018, 81(1), 73-79.
[130]
Lemon, S.M.; Walker, C.M.; Hepatitis, A. Virus and Hepatitis E Virus: Emerging and Re-Emerging Enterically Transmitted Hepatitis Viruses. Cold Spring Harb. Perspect. Med., , 2019, 9(6), pii. A031823..
[131]
Majumdar, A.; Gilliam, B.L.; Arnold, R.; Rock, C.; Croft, L.; Morgan, D.J.; Donnenberg, M.S.; Majid, A.; McAninch, J.; Morgan, D.J. Grazoprevir Potassium. HCV NS3 NS4A Prote-ase Inhibitor, Anti-Hepatitis C Virus Drug. Drugs Future, 2016, 41(2), 85-109.
[132]
Pontarolo, R.; Borba, H.H.L.; Ferreira, V.L.; Pedroso, M.L.A.; Souza, A.W.; Siqueira, F.M. Direct-Acting Antivirals For Chronic Hepatitis C Treatment, ed. Berlin, Germany: Arid Science, , 2017. v., p.t.
[133]
Stanaway, J.D.; Flaxman, A.D.; Naghavi, M.; Fitzmaurice, C.; Vos, T.; Abubakar, I.; Abu-Raddad, L.J.; Assadi, R.; Bhala, N.; Cowie, B.; Forouzanfour, M.H.; Groeger, J.; Hanafiah, K.M.; Jacobsen, K.H.; James, S.L.; MacLachlan, J.; Malekzadeh, R.; Martin, N.K.; Mokdad, A.A.; Mokdad, A.H.; Murray, C.J.L.; Plass, D.; Rana, S.; Rein, D.B.; Richardus, J.H.; Sanabria, J.; Saylan, M.; Shahraz, S.; So, S.; Vlassov, V.V.; Weiderpass, E.; Wiersma, S.T.; Younis, M.; Yu, C.; El Sayed Zaki, M.; Cooke, G.S. The global burden of viral hepatitis from 1990 to 2013: findings from the Global Burden of Disease Study 2013. Lancet, 2016, 388(10049), 1081-1088.
[134]
Liver, E.A.F.T.S.O.T. EASL 2017 Clinical Practice Guidelines on the management of hepatitis B virus infection. J. Hepatol., 2017, 67(2), 370-398.
[135]
Kimberlin, D.W.; Brady, M.T.; Jackson, M.A.; Long, S.S. Red Book: 2015 Report of the Committee on Infec-tious Diseases, 30th ed; American Academy of Pediatrics: Elk Grove Village, IL, 2015.
[136]
Giesecke, J. Modern Infectious Disease Epidemiology; CRC Press, 2017.
[137]
Pilot-Matias, T.; Tripathi, R.; Cohen, D.; Gaultier, I.; Dekhtyar, T.; Lu, L.; Reisch, T.; Irvin, M.; Hopkins, T.; Pithawalla, R.; Middleton, T.; Ng, T.; McDaniel, K.; Or, Y.S.; Menon, R.; Kempf, D.; Molla, A.; Collins, C. In vitro and in vivo antiviral activity and resistance profile of the hepatitis C virus NS3/4A protease inhibitor ABT-450. Antimicrob. Agents Chemother., 2015, 59(2), 988-997.
[138]
Foureau, D.M.; Walling, T.L.; Maddukuri, V.; Anderson, W.; Culbreath, K.; Kleiner, D.E.; Ahrens, W.A.; Jacobs, C.; Watkins, P.B.; Fontana, R.J.; Chalasani, N.; Talwalkar, J.; Lee, W.M.; Stolz, A.; Serrano, J.; Bonkovsky, H.L. Comparative analysis of portal hepatic infiltrating leucocytes in acute drug-induced liver injury, idiopathic autoimmune and viral hepatitis. Clin. Exp. Immunol., 2015, 180(1), 40-51.
[139]
Sarrazin, C.; Lathouwers, E.; Peeters, M.; Daems, B.; Buelens, A.; Witek, J.; Wyckmans, Y.; Fevery, B.; Verbinnen, T.; Ghys, A.; Schlag, M.; Baldini, A.; De Meyer, S.; Lenz, O. Prevalence of the hepatitis C virus NS3 polymorphism Q80K in genotype 1 patients in the European region. Antiviral Res., 2015, 116, 10-16.
[140]
Appleby, T.C.; Perry, J.K.; Murakami, E.; Barauskas, O.; Feng, J.; Cho, A.; Fox, D.; Wetmore, D.R.; McGrath, M.E.; Ray, A.S. Structural Basis for RNA Replication by the Hepatitis C Virus Polymerase. Science, 2015, 347(6223), 771-775.
[141]
Patel, P.D.; Patel, M.R.; Kaushik-Basu, N.; Talele, T.T. 3D QSAR and molecular docking studies of benzimidazole derivatives as hepatitis C virus NS5B polymerase inhibitors. J. Chem. Inf. Model., 2008, 48(1), 42-55.
[142]
Vani, G.S.; Rajarajan, S. A Study on In-Silico Analysis of Phytochemicals Targeting the Proteins of Hepatitis B and C Virus. Int. J. Curr. Microbiol. Appl. Sci., 2015, 4(12), 683-691.
[143]
Wang, X.; Yang, W.; Xu, X.; Zhang, H.; Li, Y.; Wang, Y. Studies of benzothiadiazine derivatives as hepatitis C virus NS5B polymerase inhibitors using 3D-QSAR, molecular docking and molecular dynamics. Curr. Med. Chem., 2010, 17(25), 2788-2803.
[144]
Anithaa, K.; Singhb, N.; Shaikc, B.; Ahmadc, I.; Agrawald, V.K.; Guptac, S.P. QSAR and Docking Studies on 1, 1-Dioxo-2H-Benzothiadiazines Acting as HCV NS5B Polymerase In-hibitors. J. Mod. Med. Chem., 2015, 3, 49-68.
[145]
Liu, M-M.; Zhou, L.; He, P-L.; Zhang, Y-N.; Zhou, J-Y.; Shen, Q.; Chen, X-W.; Zuo, J-P.; Li, W.; Ye, D-Y. Discovery of flavonoid derivatives as anti-HCV agents via pharmacophore search combining molecular docking strategy. Eur. J. Med. Chem., 2012, 52, 33-43.
[146]
Scull, M.A.; Schneider, W.M.; Flatley, B.R.; Hayden, R.; Fung, C.; Jones, C.T.; van de Belt, M.; Penin, F.; Rice, C.M. The N-terminal Helical Region of the Hepatitis C Virus p7 Ion Channel Protein Is Critical for Infectious Virus Production. PLoS Pathog., 2015, 11(11)e1005297
[147]
Boukadida, C.; Fritz, M.; Blumen, B.; Fogeron, M-L.; Penin, F.; Martin, A. NS2 proteases from hepatitis C virus and related hepaciviruses share composite active sites and previously unrecognized intrinsic proteolytic activities. PLoS Pathog., 2018, 14(2)e1006863
[148]
Lisboa Neto, G.; Noble, C.; Pinho, J.R.R.; Malta, F.M.; Gomes-Gouvea, M.S.; Alvarado-Mora, M.V.; Silva, M.H.; Leite, A.G.; Piccoli, L.Z.; Carrilho, F.J. Characterization of clinical predictors of naturally oc-curring ns3/ns4a protease polymorphism in genotype 1 hepatitis c virus infected patients. J. Hepatol; Elsevier Science BV, 2015, Vol. 62, pp. S686-S686.
[149]
Bailey, M.D.; Halmos, T.; Lemke, C.T. Discovery of novel P2 substituted 4-biaryl proline inhibitors of hepatitis C virus NS3 serine protease. Bioorg. Med. Chem. Lett., 2013, 23(15), 4436-4440.
[150]
Wei, Y.; Yang, J.; Kishore Sakharkar, M.; Wang, X.; Liu, Q.; Du, J.; Zhang, J-J. Evaluating the Inhibitory Effect of Eight Compounds from Daphne Papyracea against the NS3/4A Pro-tease of Hepatitis C Virus. Nat. Prod. Res., 2018, 17, 1-4.
[151]
Ashfaq, U.A.; Jalil, A.; Ul Qamar, M.T. Antiviral phytochemicals identification from Azadirachta indica leaves against HCV NS3 protease: an in silico approach. Nat. Prod. Res., 2016, 30(16), 1866-1869.
[152]
Shaw, J.; Harris, M.; Fishwick, C.W.G. Identification of a lead like inhibitor of the hepatitis C virus non-structural NS2 autoprotease. Antiviral Res., 2015, 124, 54-60.
[153]
Lulu, S.S.; Thabitha, A.; Vino, S.; Priya, A.M.; Rout, M. Naringenin and quercetin--potential anti-HCV agents for NS2 protease targets. Nat. Prod. Res., 2016, 30(4), 464-468.
[154]
Uddin, R.; Downard, K.M. Molecular basis of benzimidazole inhibitors to hepatitis C virus envelope glycoprotein. Chem. Biol. Drug Des., 2018, 92(3), 1638-1646.
[155]
Hung, T-C.; Jassey, A.; Liu, C-H.; Lin, C-J.; Lin, C-C.; Wong, S.H.; Wang, J.Y.; Yen, M-H.; Lin, L-T. Berberine inhibits hepatitis C virus entry by targeting the viral E2 glycoprotein. Phytomedicine, 2019, 53, 62-69.