[1]
Robman L, Taylor H. External factors in the development of cataract. Eye 2005; 19(10): 1074-82.
[2]
Fecondo JV, Augusteyn RC. Superoxide dismutase, catalase and glutathione peroxidase in the human cataractous lens. Exp Eye Res 1983; 36(1): 15-23.
[3]
Giblin FJ, Mccready JP, Kodama T, Reddy VN. A direct correlation between the levels of ascorbic acid and H2O2 in aqueous humor. Exp Eye Res 1984; 38(1): 87-93.
[4]
Sies H, Berndt C, Jones DP. Oxidative Stress. Annu Rev Biochem 2017; 86: 715-48.
[5]
Li WC, Kuszak JR, Dunn K, et al. Lens epithelial cell apoptosis appears to be a common cellular basis for non-congenital cataract development in humans and animals. J Cell Biol 1995; 130(1): 169-81.
[6]
Li WC, Kuszak JR, Wang GM, Wu ZQ, Spector A. Calcimycin-induced lens epithelial cell apoptosis contributes to cataract formation. Exp Eye Res 1995; 61(1): 91-8.
[7]
Li WC, Spector A. Lens epithelial cell apoptosis is an early event in the development of UVB-induced cataract. Free Radic Biol Med 1996; 20(3): 301-11.
[8]
Mccormick JP, Fischer JR, Pachlatko JP, Eisenstark A. Characterization of a cell-lethal product from the photooxidation of tryptophan: hydrogen peroxide. Science 1976; 191(4226): 468-9.
[9]
Xiang JW, Chen ZG, Gong L, et al. Sumoylation in Lens Differentiation and Pathogenesis. Curr Mol Med 2017; 16(10): 859-70.
[10]
Wang K, Zhang X. Inhibition of SENP5 suppresses cell growth and promotes apoptosis in osteosarcoma cells. Exp Ther Med 2014; 7(6): 1691-5.
[11]
Mukhopadhyay D, Dasso M. Modification in reverse: the SUMO proteases. Trends in Biochem Sci 2007; 32(6): 286-95.
[12]
Nie Q, Yang L, Qing W, et al. Differential Expression of Sumoylation Enzymes SAE1, U BA2, UBC9, PIAS1 and RanBP2 in Major Ocular Tissues of Mouse Eye. Curr Mol Med 2018; 18(6): 376-82.
[13]
Nie Q, Xie J, Gong X, et al. Analysis of the Differential Expression Patterns of Sumoylation Enzymes E1, E2 and E3 in Ocular Cell Lines. Curr Mol Med 2018; 18(8): 509-15.
[14]
Gong X, Nie Q, Xiao Y, et al. Localization Patterns of Sumoylation Enzymes E1, E2 and E3 in Ocular Cell Lines Predict Their Functional Importance. Curr Mol Med 2018; 18(8): 516-22.
[15]
Xiang JW, Zhang L, Tang X, et al. Differential Expression of Seven De-sumoylation Enzymes (SENPs) in Major Ocular Tissues of Mouse Eye. Curr Mol Med 2018; 18(8): 533-41.
[16]
Liu Y, Zhang L, Tang X, et al. Determination of Expression Patterns of Seven De-sumoylation Enzymes in Major Ocular Cell Lines. Curr Mol Med 2018; 18(9): 584-93.
[17]
Liu Y, Liu F, Wang L, et al. Localization Analysis of Seven De-sumoylation Enzymes (SENPs) in Ocular Cell Lines. Curr Mol Med 2018; 18(8): 523-32.
[18]
Nie Q, Wang L, Gong X, et al. Altered Expression Patterns of the Sumoylation Enzymes E1, E2 and E3 Are Associated with Glucose Oxidase- and UVA-Induced Cataractogenesis. Curr Mol Med 2018; 18(8): 542-9.
[19]
Nie Q, Gong X, Gong L, et al. Sodium Iodate-Induced Mouse Model of Age-Related Macular Degeneration Displayed Altered Expression Patterns of Sumoylation Enzymes E1, E2 and E3. Curr Mol Med 2018; 18(8): 550-5.
[20]
Sun Q, Qing W, Qi R, et al. Inhibition of sumoylation alleviates oxidative stress-induced retinal pigment epithelial cell senescence and represses proinflammatory gene expression. Curr Mol Med 2018; 18(9): 575-83.
[21]
Liu F, Wang L, Fu JL, et al. Analysis of Non-Sumoylated and Sumoylated Isoforms of Pax-6, the Master Regulator for Eye and Brain Development in Ocular Cell Lines. Curr Mol Med 2018; 18(8): 566-73.
[22]
Gong L, Liu F, Xiong Z, et al. Heterochromatin protects retinal pigment epithelium cells from oxidative damage by silencing p53 target genes. Proc Natl Acad Sci USA 2018; 115(17): E3987-95.
[23]
Nie Q, Gong XD, Liu M, Li DW. Effects of Crosstalks Between Sumoylation and Phosphorylation in Normal Cellular Physiology and Human Diseases. Curr Mol Med 2017; 16(10): 906-13.
[24]
Wang L, Hu XH, Huang ZX, et al. Regulation of CREB Functions by Phosphorylation and Sumoylation in Nervous and Visual Systems. Curr Mol Med 2017; 16(10): 885-92.
[25]
Zhang L, Li DW. SUMOylation Regulation of Retina Development and Functions. Curr Mol Med 2016; 16(9): 803-8.
[26]
Gong L, Ji WK, Hu XH, et al. Sumoylation differentially regulates Sp1 to control cell differentiation. Proc Natl Acad Sci USA 2014; 111(15): 5574-9.
[27]
Gong L, Li DW. SUMOylation in ocular development and pathology. Curr Mol Med 2010; 10(9): 794-801.
[28]
Yan Q, Gong L, Deng M, et al. Sumoylation activates the transcriptional activity of Pax-6, an important transcription factor for eye and brain development. Proc Natl Acad Sci USA 2010; 107(49): 21034-9.
[29]
Shiels A, Hejtmancik JF. Mutations and mechanisms in congenital and age-related cataracts. Exp Eye Res 2017; 156: 95-102.
[30]
Prudent J, Zunino R, Sugiura A, et al. MAPL SUMOylation of Drp1 Stabilizes an ER/Mitochondrial Platform Required for Cell Death. Mol Cell 2015; 59(6): 941-55.
[31]
Li R, Wei J, Jiang C, et al. Akt SUMOylation regulates cell proliferation and tumorigenesis. Cancer Res 2013; 73(18): 5742-53.