Generic placeholder image

Current Bioactive Compounds

Editor-in-Chief

ISSN (Print): 1573-4072
ISSN (Online): 1875-6646

Research Article

Docking, Synthesis and Antimalarial Evaluation of Hybrid Phenyl Thiazole 1,3,5-Triazine Derivatives

Author(s): Arpita Das*, Surajit K. Ghosh, Hans Raj Bhat, Junmoni Kalita, Ankita Kashyap and Nayana Adhikari

Volume 16, Issue 5, 2020

Page: [639 - 653] Pages: 15

DOI: 10.2174/1573407215666190308154139

Price: $65

Abstract

Background: Presentlytheeffectiveness of antifolate antimalarial drugs is decreasing due to the emergence of resistant Plasmodium strains. The aim of the present study was to determine the antimalarial effect of hybrid p-bromo phenyl thiazole-triazine derivatives against 3D7 strain of Plasmodium falciparum.

Methods: Seventy-fivehybrid derivativeswere designed based on the lead molecule and docking was done against the active site of Pf-DHFR-TS (PDB i.d. 1J3i) with validated ligand fit protocol by using Discovery Studio 2.5. Based on the highest binding energy and the best docked pose, fifteen compounds were selected for the synthesis. Synthesized compounds were characterized by different spectroscopy methods and in-vitro antimalarial evaluation was done against the 3D7 strain of Plasmodium falciparum.

Results: Fifteen compounds were synthesized by conventional and microwave assisted method and were characterized byFT-IR, 1H-NMR, 13C-NMR and Mass spectroscopy. In-vitro antimalarial screening results showed that compounds ADG303, ADG 306 and ADG 302 have the highest activity against 3D7 strain of P. falciparum. Furthermore, docking result of these compounds having binding energies of -154.91, -165.981, -137.826 respectively showed similarity with reference compound WR99210 (-152.023) and also bound to Asp54 and Phe 58 amino acid at the active site of the receptor.

Conclusion: The synthesized compound ADG303 exhibited an encouraging result which could be a new lead for antimalarial drug discovery.

Keywords: Antimalarial, molecular docking, 1, 3, 5-triazine, p-bromo phenyl thiazole, mutability property, chemotherapies.

Graphical Abstract

[1]
Yuthavong, Y.; Tarnchompoo, B.; Vilaivan, T.; Chitnumsub, P.; Kamchonwongpaisan, S.; Charman, S.A.; McLennan, D.N.; White, K.L.; Vivas, L.; Bongard, E.; Thongphanchang, C.; Taweechai, S.; Vanichtanankul, J.; Rattanajak, R.; Arwon, U.; Fantauzzi, P.; Yuvaniyama, J.; Charman, W.N.; Matthews, D. Malarial dihydrofolate reductase as a paradigm for drug development against a resistance-compromised target. Proc. Natl. Acad. Sci. USA, 2012, 109(42), 16823-16828.
[PMID: 23035243]
[2]
Hazarika, B.; Ghosh, S.K.; Das, A.; Sharma, N.; Kalita, J.M.; Sarma, S.K. Molecular docking studies of some hybrid phenyl thiazolyl 1,3,5 tiazine derivatives with Pf DHFR enzyme. World J. Pharm. Sci., 2016, 5(9), 1782-1788.
[3]
Agarwal, A.; Srivastava, K.; Puri, S.K.; Chauhan, P.M.S. Syntheses of 2,4,6-trisubstituted triazines as antimalarial agents. Bioorg. Med. Chem. Lett., 2005, 15(3), 531-533.
[http://dx.doi.org/10.1016/j.bmcl.2004.11.052] [PMID: 15664807]
[4]
Blotny, G. Recent applications of 2, 4,6-trichloro-1,3,5-triazine and its derivatives in organic synthesis. Tetrahedron Lett., 2006, 62, 9507-9522.
[http://dx.doi.org/10.1016/j.tet.2006.07.039]
[5]
Afonso, C.A.M.; Lourenço, N.M.; Rosatella, Ade.A. Synthesis of 2,4,6-tri-substituted-1,3,5-triazines. Molecules, 2006, 11(1), 81-102.
[http://dx.doi.org/10.3390/11010081] [PMID: 17962749]
[6]
Wang, Q.; Liu, G.; Shao, R.; Huang, R. Synthesis and antivirus activity of 1,3,5-triazine derivatives. Heteroatom Chem., 2003, 14, 542-545.
[http://dx.doi.org/10.1002/hc.10189]
[7]
Menicagli, R.; Samaritani, S.; Signore, G.; Vaglini, F.; Dalla Via, L. In vitro cytotoxic activities of 2-alkyl-4,6-diheteroalkyl-1,3,5-triazines: new molecules in anticancer research. J. Med. Chem., 2004, 47(19), 4649-4652.
[http://dx.doi.org/10.1021/jm0495374] [PMID: 15341480]
[8]
Indorkar.D, Parteti A, Chourasia O.P, Limaye S.N., PC-model computational studies of 4′, 6 -bis-(2,4-dinitro-aniline)-(2′-aryl- amine)-S-triazine and biological activity studies. Int. J. Curr. Microbiol. Appl. Sci., 2013, 2(10), 283-292.
[9]
Peterson, D.S.; Milhous, W.K.; Wellems, T.E. Molecular basis of differential resistance to cycloguanil and pyrimethamine in Plasmodium falciparum malaria. Proc. Natl. Acad. Sci. USA, 1990, 87(8), 3018-3022.
[http://dx.doi.org/10.1073/pnas.87.8.3018] [PMID: 2183222]
[10]
Vangapandu, S.; Jain, M.; Kaur, K.; Patil, P.; Patel, S.R.; Jain, R. Recent advances in antimalarial drug development. Med. Res. Rev., 2007, 27(1), 65-107.
[http://dx.doi.org/10.1002/med.20062] [PMID: 16700012]
[11]
Fidock, D.A.; Rosenthal, P.J.; Croft, S.L.; Brun, R.; Nwaka, S. Antimalarial drug discovery: efficacy models for compound screening. Nat. Rev. Drug Discov., 2004, 3(6), 509-520.
[http://dx.doi.org/10.1038/nrd1416] [PMID: 15173840]
[12]
Wathey, B.; Westman, J.; Lidstrom, P.; Tierney, J. The impact of microwave-assisted organic chemistry on drug discovery-a review Drug Discovery. Today, 2002, 7, 6, 373-38.
[13]
de la Hoz, A.; Díaz-Ortiz, A.; Moreno, A. Microwaves in organic synthesis. Thermal and non-thermal microwave effects. Chem. Soc. Rev., 2005, 34(2), 164-178.
[http://dx.doi.org/10.1039/B411438H] [PMID: 15672180]
[14]
Rieckmann., K.H; Sax., L.J; Champbell., G.H; Mrema., J.E. Drug sensitivity of Plasmodium Falciparum. An In vitro Microtechnique Lancer.i 1987, 22-23.
[15]
Mondal, S.; Mukherjee, S.; Malakar, S.; Debnath, S.; Roy, P.; Sinha, P.S. Studing the biological activities and molecular docking of some novel benzosultams and benzosultones. Curr. Bioact. Compd., 2017, 13(4), 347-355.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy