Research Article

线粒体tRNAHis G12192A突变可调节中国家系中耳聋相关tRNAThr G15927A突变的临床表现

卷 19, 期 2, 2019

页: [136 - 146] 页: 11

弟呕挨: 10.2174/1566524019666190308121552

价格: $65

摘要

背景:已发现线粒体tRNA(mt-tRNA)基因的突变与综合征和非综合征性听力损伤有关。然而,在听力损失的临床表达中mt-tRNA突变的病理生理学仍然知之甚少。 目的:本研究的目的是探讨mttRNA突变与听力损失之间的潜在关联。 方法和结果:我们在这里报告了母系传播非综合征性听力损失的谱系的分子特征。在12名母系亲属中,有5人患有不同程度的听力障碍,但他们都没有使用氨基糖苷类抗生素(AmAn)的病史。对来自母系亲属的完整线粒体基因组的遗传筛选鉴定了mt-tRNAHis G12192A和mt-tRNAThr G15927A突变的共存,以及属于人线粒体单倍群B5b1b的一组多态性。有趣的是,G12192A突变发生在mt-tRNAHis的TψC环的3''末端2-bp,其从各种物种进化保守。此外,众所周知的G15927A突变破坏了mt-tRNAThr的反密码子茎中高度保守的C-G碱基配对,可能导致mt-tRNA代谢失败。此外,从携带这些mt-tRNA突变的耳聋患者中分离的多核白细胞(PMNs)中观察到ATP产生显着减少和ROS产生增加,表明G12192A和G15927A突变可能导致线粒体功能障碍,耳聋。然而,GJB2,GJB3,GJB6和TRMU基因中不存在任何功能性突变/变体表明核基因可能在该家族中非综合征性听力丧失的临床表达中不起重要作用。 结论:我们的数据表明,mt-tRNAHis G12192A突变可能增加该家族中耳聋相关m-tRNAThr G15927A突变的外显率和表达能力。

关键词: 非综合征性听力损失,mt-tRNA突变,G12192A,G15927A,临床表现,病理生理学。

[1]
Han C, Someya S. Mouse models of age-related mitochondrial neurosensory hearing loss. Mol Cell Neurosci 2013; 55: 95-100.
[2]
Gates GA, Mills JH. Presbycusis. Lancet 2005; 366: 1111-20.
[3]
Zytsar MV, Barashkov NA, Bady-Khoo MS, et al. Updated carrier rates for c.35delG (GJB2) associated with hearing loss in Russia and common c.35delG haplotypes in Siberia. BMC Med Genet 2018; 19: 138.
[4]
Chan DK, Chang KW. GJB2-associated hearing loss: Systematic review of worldwide prevalence, genotype, and auditory phenotype. Laryngoscope 2014; 124: E34-53.
[5]
Wu L, Li R, Chen J, et al. Analysis of mitochondrial A1555G mutation in infants with hearing impairment. Exp Ther Med 2018; 15: 5307-13.
[6]
Ding Y, Leng J, Fan F, et al. The role of mitochondrial DNA mutations in hearing loss. Biochem Genet 2013; 51: 588-602.
[7]
Young WY, Zhao L, Qian Y, et al. Extremely low penetrance of hearing loss in four Chinese families with the mitochondrial 12S rRNA A1555G mutation. Biochem Biophys Res Commun 2005; 328: 1244-51.
[8]
Chen J, Yang L, Yang A, et al. Maternally inherited aminoglycoside-induced and nonsyndromic hearing loss is associated with the 12S rRNA C1494T mutation in three Han Chinese pedigrees. Gene 2007; 401: 4-11.
[9]
Zheng J, Ji Y, Guan MX. Mitochondrial tRNA mutations associated with deafness. Mitochondrion 2012; 12: 406-13.
[10]
Hoptasz M, Szczuciński A, Losy J. Heterogeneous phenotypic manifestations of maternally inherited deafness associated with the mitochondrial A3243G mutation. Case report. Neurol Neurochir Pol 2014; 48: 150-3.
[11]
Chen DY, Zhu WD, Chai YC, et al. Mutation in PCDH15 may modify the phenotypic expression of the 7511T>C mutation in MT-TS1 in a Chinese Han family with maternally inherited nonsyndromic hearing loss. Int J Pediatr Otorhinolaryngol 2015; 79: 1654-7.
[12]
Yan X, Wang X, Wang Z, et al. Maternally transmitted late-onset non-syndromic deafness is associated with the novel heteroplasmic T12201C mutation in the mitochondrial tRNAHis gene. J Med Genet 2011; 48: 682-90.
[13]
Wang M, Liu H, Zheng J, et al. A deafness- and diabetes-associated tRNA mutation causes deficient pseudouridinylation at position 55 in tRNAGlu and mitochondrial dysfunction. J Biol Chem 2016; 291: 21029-41.
[14]
Ding Y, Xia BH, Liu Q, et al. Allele-specific PCR for detecting the deafness-associated mitochondrial 12S rRNA mutations. Gene 2016; 591: 148-52.
[15]
Tang X, Li R, Zheng J, et al. Maternally inherited hearing loss is associated with the novel mitochondrial tRNA Ser(UCN) 7505T>C mutation in a Han Chinese family. Mol Genet Metab 2010; 100: 57-64.
[16]
Moassass F, Al-Halabi B, Nweder MS, et al. Investigation of the mtDNA mutations in Syrian families with non-syndromic sensorineural hearing loss. Int J Pediatr Otorhinolaryngol 2018; 113: 110-4.
[17]
Andrews RM, Kubacka I, Chinnery PF, et al. Reanalysis and revision of the Cambridge reference sequence for human mitochondrial DNA. Nat Genet 1999; 23: 147.
[18]
Zhang J, Lu B, Xia WW, et al. The mitochondrial transfer RNAAsp A7551G mutation may contribute to the clinical expression of deafness associated with the A1555G mutation in a pedigree with hearing impairment. Mol Med Rep 2019; 19: 1797-802.
[19]
Ming L, Wang Y, Lu W, et al. A mutational analysis of GJB2, SLC26A4, MT-RNA1, and GJB3 in children with nonsyndromic hearing loss in the Henan province of China. Genet Test Mol Biomarkers 2019; 23: 51-6.
[20]
Adhikary B, Ghosh S, Paul S, et al. Spectrum and frequency of GJB2, GJB6 and SLC26A4 gene mutations among nonsyndromic hearing loss patients in eastern part of India. Gene 2015; 573: 239-45.
[21]
Levin L, Zhidkov I, Gurman Y, et al. Functional recurrent mutations in the human mitochondrial phylogeny: Dual roles in evolution and disease. Genome Biol Evol 2013; 5: 876-90.
[22]
Ding Y, Xia BH, Zhang CJ, et al. Mitochondrial tRNALeu(UUR) C3275T, tRNAGln T4363C and tRNALys A8343G mutations may be associated with PCOS and metabolic syndrome. Gene 2018; 642: 299-306.
[23]
Ding Y, Xia BH, Zhang CJ, et al. Mutations in mitochondrial tRNA genes may be related to insulin resistance in women with polycystic ovary syndrome. Am J Transl Res 2017; 9: 2984-96.
[24]
Yarham JW, Al-Dosary M, Blakely EL, et al. A comparative analysis approach to determining the pathogenicity of mitochondrial tRNA mutations. Hum Mutat 2011; 32: 1319-25.
[25]
Kong QP, Bandelt HJ, Sun C, et al. Updating the East Asian mtDNA phylogeny: a prerequisite for the identification of pathogenic mutations. Hum Mol Genet 2006; 15: 2076-86.
[26]
Bibb MJ, Van Etten RA, Wright CT, et al. Sequence and gene organization of mouse mitochondrial DNA. Cell 1981; 26: 167-80.
[27]
Gadaleta G, Pepe G, De Candia G, et al. The complete nucleotide sequence of the Rattus norvegicus mitochondrial genome: cryptic signals revealed by comparative analysis between vertebrates. J Mol Evol 1989; 28: 497-516.
[28]
Roe BA, Ma DP, Wilson RK, et al. The complete nucleotide sequence of the Xenopus laevis mitochondrial genome. J Biol Chem 1985; 260: 9759-74.
[29]
Suzuki T, Nagao A, Suzuki T. Human mitochondrial tRNAs: biogenesis, function, structural aspects, and diseases. Annu Rev Genet 2011; 45: 299-329.
[30]
Pütz J, Dupuis B, Sissler M, et al. Mamit-tRNA, a database of mammalian mitochondrial tRNA primary and secondary structures. RNA 2007; 13: 1184-90.
[31]
Wang X, Lu J, Zhu Y, et al. Mitochondrial tRNAThr G15927A mutation may modulate the phenotypic manifestation of ototoxic 12S rRNA A1555G mutation in four Chinese families. Pharmacogenet Genomics 2008; 18: 1059-70.
[32]
Rybalka E, Timpani CA, Cooke MB, et al. Defects in mitochondrial ATP synthesis in dystrophin-deficient mdx skeletal muscles may be caused by complex I insufficiency. PLoS One 2014; 9: e115763.
[33]
Zorov DB, Juhaszova M, Sollott SJ. Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release. Physiol Rev 2014; 94: 909-50.
[34]
Mimaki M, Ikota A, Sato A, et al. A double mutation (G11778A and G12192A) in mitochondrial DNA associated with Leber’s hereditary optic neuropathy and cardiomyopathy. J Hum Genet 2003; 48: 47-50.
[35]
Ueda T, Yotsumoto Y, Ikeda K, et al. The T-loop region of animal mitochondrial tRNA(Ser)(AGY) is a main recognition site for homologous seryl-tRNA synthetase. Nucleic Acids Res 1992; 20: 2217-22.
[36]
Meng F, He Z, Tang X, et al. Contribution of the tRNAIle 4317A→G mutation to the phenotypic manifestation of the deafness-associated mitochondrial 12S rRNA 1555A→G mutation. J Biol Chem 2018; 293: 3321-34.
[37]
Valente L, Piga D, Lamantea E, et al. Identification of novel mutations in five patients with mitochondrial encephalo-myopathy. Biochim Biophys Acta 2009; 1787: 491-501.
[38]
Zhang J, Ji Y, Liu X, et al. Leber’s hereditary optic neuro-pathy caused by a mutation in mitochondrial tRNAThr in eight Chinese pedigrees. Mitochondrion 2018; 42: 84-91.
[39]
Jia Z, Wang X, Qin Y, et al. Coronary heart disease is associated with a mutation in mitochondrial tRNA. Hum Mol Genet 2013; 22: 4064-73.
[40]
Yano T, Nishio SY, Usami S. Deafness Gene Study Consortium Frequency of mitochondrial mutations in non-syndromic hearing loss as well as possibly responsible variants found by whole mitochondrial genome screening. J Hum Genet 2014; 59: 100-6.
[41]
Dai P, Yu F, Han B, et al. GJB2 mutation spectrum in 2,063 Chinese patients with nonsyndromic hearing impairment. J Transl Med 2009; 7: 26.
[42]
Li TC, Kuan YH, Ko TY, et al. Mechanism of a novel missense mutation, p.V174M, of the human connexin31 (GJB3) in causing nonsyndromic hearing loss. Biochem Cell Biol 2014; 92: 251-7.
[43]
Oh SK, Choi SY, Yu SH, et al. Evaluation of the pathogenicity of GJB3 and GJB6 variants associated with nonsyndromic hearing loss. Biochim Biophys Acta 2013; 1832: 285-91.
[44]
Meng F, Cang X, Peng Y, et al. Biochemical evidence for a nuclear modifier allele (A10S) in TRMU (Methylaminomethyl-2-thiouridylate-methyltransferase) related to mitochondrial tRNA modification in the phenotypic manifestation of deafness-associated 12S rRNA mutation. J Biol Chem 2017; 292: 2881-92.
[45]
Ying Z, Zheng J, Cai Z, et al. Mitochondrial haplogroup B increases the risk for hearing loss among the Eastern Asian pedigrees carrying 12S rRNA 1555A>G mutation. Protein Cell 2015; 6: 844-8.
[46]
Bai Y, Wang Z, Dai W, et al. A six-generation Chinese family in haplogroup B4C1C exhibits high penetrance of 1555A>G-induced hearing Loss. BMC Med Genet 2010; 11: 129.
[47]
Chen X, Nie Z, Wang F, et al. Late onset nonsyndromic hearing loss in a Dongxiang Chinese family is associated with the 593T>C variant in the mitochondrial tRNAPhe gene. Mitochondrion 2017; 35: 111-8.
[48]
Wu Y, Liang LZ, Xiao HL, et al. Hearing loss may be associated with the novel mitochondrial tRNA(Asp) A7551G mutation in a Chinese family. Zhonghua Er Bi Yan Hou Tou Jing Wai Ke Za Zhi 2013; 48: 978-84. [Article in Chinese].
[49]
Kokotas H, Grigoriadou M, Yang L, et al. Homoplasmy of the G7444A mtDNA and heterozygosity of the GJB2 c.35delG mutations in a family with hearing loss. Int J Pediatr Otorhinolaryngol 2011; 75: 89-94.
[50]
Kamogashira T, Fujimoto C, Yamasoba T. Reactive oxygen species, apoptosis, and mitochondrial dysfunction in hearing loss. BioMed Res Int 2015; 2015: 617207.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy