摘要
动脉粥样硬化与增加的反式唾液酸酶活性有关,其可在动脉粥样硬化患者的血浆中检测到。 可能参与疾病发病机制使得该活性成为有趣的研究主题,并且可以进行这种活性的酶在底物特异性和酶特性方面被分离和表征。 发现该酶具有不同的最佳pH值,并且其活性通过Ca 2+离子的存在而增强。 最重要的是,该酶能够在体外引起低密度脂蛋白(LDL)颗粒的致动脉粥样硬化形成。 然而,发现的酶的特性仍有待确定。 目前,唾液酸转移酶,主要是ST6Gal I,被认为是人血液中唾液酸代谢的主要贡献者。 在这篇小型综述中,我们讨论了动脉粥样硬化相关的反式唾液酸酶事实上属于唾液酸转移酶家族的可能性。
关键词: 反式唾液酸酶,唾液酸,唾液酸转移酶,动脉粥样硬化,血浆,循环。
图形摘要
[1]
Alipov V, Sukhorukov V, Karagodin V, Grechko A, Orekhov A. Chemical composition of circulating native and desialylated low density lipoprotein: what is the difference? Vessel Plus 2017; 1: 107-15.
[http://dx.doi.org/10.20517/2574-1209.2017.20]
[http://dx.doi.org/10.20517/2574-1209.2017.20]
[2]
Tertov VV, Kaplun VV, Sobenin IA, Boytsova EY, Bovin NV, Orekhov AN. Human plasma trans-sialidase causes atherogenic modification of low density lipoprotein. Atherosclerosis 2001; 159(1): 103-15.
[http://dx.doi.org/10.1016/S0021-9150(01)00498-1] [PMID: 11689212]
[http://dx.doi.org/10.1016/S0021-9150(01)00498-1] [PMID: 11689212]
[3]
Tertov VV, Nikonova EY, Nifant’ev NE, Bovin NV, Orekhov AN. Human plasma trans-sialidase donor and acceptor specificity. Biochemistry (Mosc) 2002; 67(8): 908-13.http://www.ncbi.nlm.nih.gov/pubmed/12223090
[http://dx.doi.org/10.1023/A:1019918704920] [PMID: 12223090]
[http://dx.doi.org/10.1023/A:1019918704920] [PMID: 12223090]
[4]
Nikonova EY, Tertov VV, Sato C, Kitajima K, Bovin NV. Specificity of human trans-sialidase as probed with gangliosides. Bioorg Med Chem Lett 2014; 14: 5161-4.
[http://dx.doi.org/10.1016/j.bmcl.2004.07.058]
[http://dx.doi.org/10.1016/j.bmcl.2004.07.058]
[5]
Harduin-Lepers A, Vallejo-Ruiz V, Krzewinski-Recchi MA, Samyn-Petit B, Julien S, Delannoy P. The human sialyltransferase family. Biochimie 2001; 83: 727-37.
[http://dx.doi.org/10.1016/S0300-9084(01)01301-3]
[http://dx.doi.org/10.1016/S0300-9084(01)01301-3]
[6]
Noel M, Gilormini P-A, Cogez V, et al. Probing the CMP-Sialic Acid Donor Specificity of Two Human β-d-Galactoside Sialyltransferases (ST3Gal I and ST6Gal I) Selectively Acting on O- and N-Glycosylproteins. ChemBioChem 2017; 18(13): 1251-9.
[http://dx.doi.org/10.1002/cbic.201700024] [PMID: 28395125]
[http://dx.doi.org/10.1002/cbic.201700024] [PMID: 28395125]
[7]
Williams MA, Kitagawa H, Datta AK, Paulson JC, Jamieson JC. Large-scale expression of recombinant sialyltransferases and comparison of their kinetic properties with native enzymes. Glycoconj J
1995; 12(6): 755-61. http://www.ncbi.nlm.nih.gov/pubmed/ 8748151
[http://dx.doi.org//10.1007/BF00731235] [PMID: 8748151]
[http://dx.doi.org//10.1007/BF00731235] [PMID: 8748151]
[8]
Bhide GP, Colley KJ. Sialylation of N-glycans: mechanism, cellular compartmentalization and function. Histochem Cell Biol 2017; 147(2): 149-74.
[http://dx.doi.org/10.1007/s00418-016-1520-x] [PMID: 27975143]
[http://dx.doi.org/10.1007/s00418-016-1520-x] [PMID: 27975143]
[9]
Tailford LE, Owen CD, Walshaw J, et al. Discovery of intramolecular trans-sialidases in human gut microbiota suggests novel mechanisms of mucosal adaptation. Nat Commun 2015; 6: 7624.
[http://dx.doi.org/10.1038/ncomms8624] [PMID: 26154892]
[http://dx.doi.org/10.1038/ncomms8624] [PMID: 26154892]
[10]
Takashima S. Characterization of mouse sialyltransferase genes: their evolution and diversity. Biosci Biotechnol Biochem 2008; 72(5): 1155-67.
[http://dx.doi.org/10.1271/bbb.80025] [PMID: 18460788]
[http://dx.doi.org/10.1271/bbb.80025] [PMID: 18460788]
[11]
Harduin-Lepers A. Comprehensive analysis of sialyltransferases in vertebrate genomes. Glycobiol Insights 2010; 2: 29-61.
[http://dx.doi.org/10.4137/GBI.S3123]
[http://dx.doi.org/10.4137/GBI.S3123]
[12]
Song J, Xue C, Preisser JS, et al. Association of single nucleotide polymorphisms in the ST3GAL4 Gene with VWF antigen and factor VIII activity. PLoS One 2016; 11(9): e0160757.
[http://dx.doi.org/10.1371/journal.pone.0160757] [PMID: 27584569]
[http://dx.doi.org/10.1371/journal.pone.0160757] [PMID: 27584569]
[13]
Audry M, Jeanneau C, Imberty A, Harduin-Lepers A, Delannoy P, Breton C. Current trends in the structure-activity relationships of sialyltransferases. Glycobiology 2011; 21(6): 716-26.
[http://dx.doi.org/10.1093/glycob/cwq189] [PMID: 21098518]
[http://dx.doi.org/10.1093/glycob/cwq189] [PMID: 21098518]
[14]
Gracheva EV, Samovilova NN, Golovanova NK. Il′inskaya OP, Tararak EM, Malyshev PP, Kukharchuk VV, Prokazova NV. Sialyltransferase activity of human plasma and aortic intima is enhanced in atherosclerosis. Biochim Biophys Acta Mol Basis Dis 2002; 1586: 123-8.
[http://dx.doi.org/10.1016/S0925-4439(01) 00093-X]
[http://dx.doi.org/10.1016/S0925-4439(01) 00093-X]
[15]
Jones MB, Nasirikenari M, Lugade AA, Thanavala Y, Lau JTY. Anti-inflammatory IgG production requires functional P1 promoter in β-galactoside α2,6-sialyltransferase 1 (ST6Gal-1) gene. J Biol Chem 2012; 287(19): 15365-70.
[http://dx.doi.org/10.1074/jbc.M112.345710] [PMID: 22427662]
[http://dx.doi.org/10.1074/jbc.M112.345710] [PMID: 22427662]
[16]
Jones MB, Nasirikenari M, Feng L, et al. Role for hepatic and circulatory ST6Gal-1 sialyltransferase in regulating myelopoiesis. J Biol Chem 2010; 285(32): 25009-17.
[http://dx.doi.org/ 10.1074/jbc.M110.104406] [PMID: 20529847]
[http://dx.doi.org/ 10.1074/jbc.M110.104406] [PMID: 20529847]
[17]
Dougher CWL, Buffone A Jr, Nemeth MJ, et al. The blood-borne sialyltransferase ST6Gal-1 is a negative systemic regulator of granulopoiesis. J Leukoc Biol 2017; 102(2): 507-16.
[http://dx.doi.org/10.1189/jlb.3A1216-538RR] [PMID: 28550122]
[http://dx.doi.org/10.1189/jlb.3A1216-538RR] [PMID: 28550122]
[18]
Datta AK. Comparative sequence analysis in the sialyltransferase protein family: analysis of motifs. Curr Drug Targets 2009; 10(6): 483-98.
[http://dx.doi.org/10.2174/138945009788488422] [PMID: 19519350]
[http://dx.doi.org/10.2174/138945009788488422] [PMID: 19519350]
[19]
Zhang J, Liu Y, Deng X, Chen L, Yang X, Yu C. ST6GAL1 negatively regulates monocyte transendothelial migration and atherosclerosis development. Biochem Biophys Res Commun 2018; 500(2): 249-55.
[http://dx.doi.org/10.1016/j.bbrc.2018.04.053] [PMID: 29654763]
[http://dx.doi.org/10.1016/j.bbrc.2018.04.053] [PMID: 29654763]
[20]
Sugimoto I, Futakawa S, Oka R, et al. Beta-galactoside alpha2,6-sialyltransferase I cleavage by BACE1 enhances the sialylation of soluble glycoproteins. A novel regulatory mechanism for alpha2,6-sialylation. J Biol Chem 2007; 282(48): 34896-903.
[http://dx.doi.org/10.1074/jbc.M704766200] [PMID: 17897958]
[http://dx.doi.org/10.1074/jbc.M704766200] [PMID: 17897958]
[21]
Deng X, Zhang J, Liu Y, Chen L, Yu C. TNF-α regulates the proteolytic degradation of ST6Gal-1 and endothelial cell-cell junctions through upregulating expression of BACE1. Sci Rep 2017; 7: 40256.
[http://dx.doi.org/10.1038/srep40256] [PMID: 28091531]
[http://dx.doi.org/10.1038/srep40256] [PMID: 28091531]
[22]
Sabarinath PS, Appukuttan PS. Immunopathology of desialylation: human plasma lipoprotein(a) and circulating anti-carbohydrate antibodies form immune complexes that recognize host cells. Mol Cell Biochem 2015; 403(1-2): 13-23.
[http://dx.doi.org/10.1007/s11010-015-2332-3] [PMID: 25633186]
[http://dx.doi.org/10.1007/s11010-015-2332-3] [PMID: 25633186]
[23]
Bork K, Weidemann W, Berneck B, et al. The expression of sialyltransferases is regulated by the bioavailability and biosynthesis of sialic acids. Gene Expr Patterns 2017; 23-24: 52-8.
[http://dx.doi.org/10.1016/j.gep.2017.03.003] [PMID: 28351515]
[http://dx.doi.org/10.1016/j.gep.2017.03.003] [PMID: 28351515]
[24]
Mondal N, Buffone A Jr, Stolfa G, et al. ST3Gal-4 is the primary sialyltransferase regulating the synthesis of E-, P-, and L-selectin ligands on human myeloid leukocytes. Blood 2015; 125(4): 687-96.
[http://dx.doi.org/10.1182/blood-2014-07-588590] [PMID: 25498912]
[http://dx.doi.org/10.1182/blood-2014-07-588590] [PMID: 25498912]
[25]
Lee MM, Nasirikenari M, Manhardt CT, et al. Platelets support extracellular sialylation by supplying the sugar donor substrate. J Biol Chem 2014; 289(13): 8742-8.
[http://dx.doi.org/10.1074/jbc. C113.546713] [PMID: 24550397]
[http://dx.doi.org/10.1074/jbc. C113.546713] [PMID: 24550397]
[26]
Lee-Sundlov MM, Ashline DJ, Hanneman AJ, et al. Circulating blood and platelets supply glycosyltransferases that enable extrinsic extracellular glycosylation. Glycobiology 2017; 27: 188-98.
[http://dx.doi.org/10.1093/glycob/cww108]
[http://dx.doi.org/10.1093/glycob/cww108]
[27]
Döring Y, Noels H, Mandl M, et al. Deficiency of the sialyltransferase St3Gal4 reduces Ccl5-mediated myeloid cell recruitment and arrest: short communication. Circ Res 2014; 114(6): 976-81.
[http://dx.doi.org/10.1161/CIRCRESAHA.114.302426] [PMID: 24425712]
[http://dx.doi.org/10.1161/CIRCRESAHA.114.302426] [PMID: 24425712]
[28]
Pu Q, Yu C. Glycosyltransferases, glycosylation and atherosclerosis. Glycoconj J 2014; 31(9): 605-11.
[http://dx.doi.org/10.1007/s10719-014-9560-8] [PMID: 25294497]
[http://dx.doi.org/10.1007/s10719-014-9560-8] [PMID: 25294497]
[29]
Mehr K, Withers SG. Mechanisms of the sialidase and trans-sialidase activities of bacterial sialyltransferases from glycosyltransferase family 80. Glycobiology 2016; 26(4): 353-9.
[http://dx.doi.org/10.1093/glycob/cwv105] [PMID: 26582604]
[http://dx.doi.org/10.1093/glycob/cwv105] [PMID: 26582604]