[1]
Farrugia MC, Calleja-Agius J. Polydactyly: a review. Neonatal Netw 2016; 35(3): 135-42.
[2]
Malik S. Polydactyly: phenotypes, genetics and classification. Clin Genet 2014; 85(3): 203-12.
[3]
Guo B, Lee SK, Paksima N. Polydactyly: a review. Bull Hosp Jt Dis 2013; 71(1): 17-23.
[4]
Wang Z, Wang J, Li Y, et al. Novel frame-shift mutations of GLI3 gene in non-syndromic postaxial polydactyly patients. Clin Chim Acta 2014; 433: 195-9.
[5]
Deng H, Tan T, Yuan L. Advances in the molecular genetics of non-syndromic polydactyly. Expert Rev Mol Med 2015; 17e18
[6]
Xiang Y, Bian J, Wang Z, Xu Y, Fu Q. Clinical study of 459 polydactyly cases in China, 2010 to 2014. Congenit Anom (Kyoto) 2016; 56(5): 226-32.
[7]
Umair M, Shah K, Alhaddad B, et al. Exome sequencing revealed a splice site variant in the IQCE gene underlying post-axial polydactyly type A restricted to lower limb. Eur J Hum Genet 2017; 25(8): 960-5.
[8]
Xiang Y, Jiang L, Wang B, et al. Mutational screening of GLI3, SHH, preZRS, and ZRS in 102 Chinese children with nonsyndromic polydactyly. Dev Dyn 2017; 246(5): 392-402.
[9]
Crapster JA, Hudgins L, Chen JK, Gomez-Ospina N. A novel missense variant in the GLI3 zinc finger domain in a family with digital anomalies. Am J Med Genet A 2017; 173(12): 3221-5.
[10]
Balk K, Biesecker LG. The clinical atlas of Greig cephalopolysyndactyly syndrome. Am J Med Genet A 2008; 146A(5): 548-57.
[11]
Xiang Y, Wang Z, Bian J, Xu Y, Fu Q. Exome sequencing reveals a novel nonsense mutation of GLI3 in a Chinese family with ‘non-syndromic’ pre-axial polydactyly. J Hum Genet 2016; 61(10): 907-10.
[12]
Deng S, Xu H, Yuan J, et al. Identification of a novel collagen type IV alpha-4 (COL4A4) mutation in a Chinese family with autosomal dominant Alport syndrome using exome sequencing. Indian J Med Res 2016; 144(2): 200-5.
[13]
Huang J, Liang X, Xuan Y, et al. A reference human genome dataset of the BGISEQ-500 sequencer. Gigascience 2017; 6(5): 1-9.
[14]
Fang C, Zhong H, Lin Y, et al. Assessment of the cPAS-based BGISEQ-500 platform for metagenomic sequencing. Gigascience 2018; 7(3): 1-8.
[15]
Patch AM, Nones K, Kazakoff SH, et al. Germline and somatic variant identification using BGISEQ-500 and HiSeq X Ten whole genome sequencing. PLoS One 2018; 13(1)e0190264
[16]
Zheng W, Chen H, Deng X, et al. Identification of a novel mutation in the titin gene in a Chinese family with limb-girdle muscular dystrophy 2J. Mol Neurobiol 2016; 53(8): 5097-102.
[17]
Lu Q, Yuan L, Xu H, et al. Identification of a missense mutation in the tyrosinase gene in a Chinese family with oculocutaneous albinism type 1. Mol Med Rep 2017; 15(3): 1426-30.
[18]
Zheng Y, Wang HL, Li JK, et al. A novel mutation in PRPF31, causative of autosomal dominant retinitis pigmentosa, using the BGISEQ-500 sequencer. Int J Ophthalmol 2018; 11(1): 31-5.
[19]
Zheng W, Zhang J, Deng X, et al. Identification of a premature termination mutation in the proline-rich transmembrane protein 2 gene in a Chinese family with febrile seizures. Mol Neurobiol 2016; 53(2): 835-41.
[20]
Deng H, Tan T, He Q, et al. Identification of a missense HOXD13 mutation in a Chinese family with syndactyly type I-c using exome sequencing. Mol Med Rep 2017; 16(1): 473-7.
[21]
Richards S, Aziz N, Bale S, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med 2015; 17(5): 405-24.
[22]
Hu P, Wu S, Yuan L, et al. Compound heterozygous POMT1 mutations in a Chinese family with autosomal recessive muscular dystrophy‐dystroglycanopathy C1. J Cell Mol Med 2017; 21(7): 1388-93.
[23]
Al-Qattan MM, Shamseldin HE, Salih MA, Alkuraya FS. GLI3-related polydactyly: a review. Clin Genet 2017; 92(5): 457-66.
[24]
Verma PK, El-Harouni A. Review of literature: genes related to postaxial polydactyly. Front Pediatr 2015; 3: 8.
[25]
Kang S, Rosenberg M, Ko VD, Biesecker LG. Gene structure and allelic expression assay of the human GLI3 gene. Hum Genet 1997; 101(2): 154-7.
[26]
Patel R, Singh CB, Bhattacharya V, Singh SK, Ali A. GLI3 mutations in syndromic and non-syndromic polydactyly in two Indian families. Congenit Anom (Kyoto) 2016; 56(2): 94-7.
[27]
Jamsheer A, Sowińska A, Trzeciak T, et al. Expanded mutational spectrum of the GLI3 gene substantiates genotype-phenotype correlations. J Appl Genet 2012; 53(4): 415-22.
[28]
Kalff-Suske M, Wild A, Topp J, et al. Point mutations through-out the GLI3 gene cause Greig cephalopolysyndactyly syndrome. Hum Mol Genet 1999; 8(9): 1769-77.
[29]
Wen X, Lai CK, Evangelista M, et al. Kinetics of hedgehog-dependent full-length Gli3 accumulation in primary cilia and subsequent degradation. Mol Cell Biol 2010; 30(8): 1910-22.
[30]
Biesecker LG. What you can learn from one gene: GLI3. J Med Genet 2006; 43(6): 465-9.
[31]
Niida Y, Inoue M, Ozaki M, Takase E. Human malformation syndromes of defective GLI: opposite phenotypes of 2q14.2 (GLI2) and 7p14.2 (GLI3) microdeletions and a GLIA/R balance model. Cytogenet Genome Res 2017; 153(2): 56-65.
[32]
Naruse I, Ueta E, Sumino Y, Ogawa M, Ishikiriyama S. Birth defects caused by mutations in human GLI3 and mouse Gli3 genes. Congenit Anom (Kyoto) 2010; 50(1): 1-7.
[33]
Lopez-Rios J, Speziale D, Robay D, et al. GLI3 constrains digit number by controlling both progenitor proliferation and BMP-dependent exit to chondrogenesis. Dev Cell 2012; 22(4): 837-48.
[34]
Fujioka H, Ariga T, Horiuchi K, et al. Molecular analysis of non-syndromic preaxial polydactyly: preaxial polydactyly type-IV and preaxial polydactyly type-I. Clin Genet 2005; 67(5): 429-33.
[35]
Furniss D, Critchley P, Giele H, Wilkie AO. Nonsense-mediated decay and the molecular pathogenesis of mutations in SALL1 and GLI3. Am J Med Genet A 2007; 143A(24): 3150-60.
[36]
Johnston JJ, Olivos-Glander I, Killoran C, et al. Molecular and clinical analyses of Greig cephalopolysyndactyly and Pallister-Hall syndromes: robust phenotype prediction from the type and position of GLI3 mutations. Am J Hum Genet 2005; 76(4): 609-22.
[37]
Debeer P, Peeters H, Driess S, et al. Variable phenotype in Greig cephalopolysyndactyly syndrome: clinical and radiological findings in 4 independent families and 3 sporadic cases with identified GLI3 mutations. Am J Med Genet A 2003; 120A(1): 49-58.
[38]
Volodarsky M, Langer Y, Birk OS. A novel GLI3 mutation affecting the zinc finger domain leads to preaxial-postaxial polydactyly-syndactyly complex. BMC Med Genet 2014; 15: 110.
[39]
Radhakrishna U, Bornholdt D, Scott HS, et al. The phenotypic spectrum of GLI3 morphopathies includes autosomal dominant preaxial polydactyly type-IV and postaxial polydactyly type-A/B; No phenotype prediction from the position of GLI3 mutations. Am J Hum Genet 1999; 65(3): 645-55.
[40]
Baraitser M, Winter RM, Brett EM. Greig cephalopolysyndactyly: report of 13 affected individuals in three families. Clin Genet 1983; 24(4): 257-65.
[41]
Gu S, Yang H, Qi Y, et al. Novel ATPase Cu(2+) transporting beta polypeptide mutations in Chinese families with Wilson’s disease. PLoS One 2013; 8(7)e66526
[42]
Démurger F, Ichkou A, Mougou-Zerelli S, et al. New insights into genotype-phenotype correlation for GLI3 mutations. Eur J Hum Genet 2015; 23(1): 92-102.
[43]
McPherson E, Cold C. Severe Pallister-Hall syndrome with persistent urogenital sinus, renal agenesis, imperforate anus, bilateral hypothalamic hamartomas, and severe skeletal anomalies. Am J Med Genet A 2013; 161A(10): 2666-9.
[44]
Johnston JJ, Sapp JC, Turner JT, et al. Molecular analysis expands the spectrum of phenotypes associated with GLI3 mutations. Hum Mutat 2010; 31(10): 1142-54.
[45]
Freese K, Driess S, Bornholdt D, et al. Gene symbol: GLI3. Disease: Pallister-Hall syndrome. Hum Genet 2003; 112(1): 103.
[46]
Narumi Y, Kosho T, Tsuruta G, et al. Genital abnormalities in Pallister-Hall syndrome: Report of two patients and review of the literature. Am J Med Genet A 2010; 152A(12): 3143-7.
[47]
Ng D, Johnston JJ, Turner JT, et al. Gonadal mosaicism in severe Pallister-Hall syndrome. Am J Med Genet A 2004; 124A(3): 296-302.
[48]
Turner C, Killoran C, Thomas NS, et al. Human genetic disease caused by de novo mitochondrial-nuclear DNA transfer. Hum Genet 2003; 112(3): 303-9.
[49]
Galasso C, Scirè G, Fabbri F, et al. Long-term treatment with growth hormone improves final height in a patient with Pallister-Hall syndrome. Am J Med Genet 2001; 99(2): 128-31.
[50]
Kang S, Graham JM Jr, Olney AH, Biesecker LG. GLI3 frameshift mutations cause autosomal dominant Pallister-Hall syndrome. Nat Genet 1997; 15(3): 266-8.
[51]
Kalff-Suske M, Paparidis Z, Bornholdt D, et al. Gene symbol: GLI3. Disease: Pallister-Hall syndrome. Hum Genet 2004; 114(4): 403.
[52]
Killoran CE, Abbott M, McKusick VA, Biesecker LG. Overlap of PIV syndrome, VACTERL and Pallister-Hall syndrome: clinical and molecular analysis. Clin Genet 2000; 58(1): 28-30.
[53]
Biesecker LG, Graham JM Jr. Pallister-Hall syndrome. J Med Genet 1996; 33(7): 585-9.
[54]
Kang S, Allen J, Graham JM Jr, et al. Linkage mapping and phenotypic analysis of autosomal dominant Pallister-Hall syndrome. J Med Genet 1997; 34(6): 441-6.
[55]
Saitsu H, Sonoda M, Higashijima T, et al. Somatic mutations in GLI3 and OFD1 involved in sonic hedgehog signaling cause hypothalamic hamartoma. Ann Clin Transl Neurol 2016; 3(5): 356-65.
[56]
Shin SH, Kogerman P, Lindstrom E, Toftgard R, Biesecker LG. GLI3 mutations in human disorders mimic Drosophila cubitus interruptus protein functions and localization. Proc Natl Acad Sci USA 1999; 96(6): 2880-4.