[1]
Murphy, M.P.; LeVine, H. Alzheimer’s disease and the β-Amyloid peptide. J. Alzheimers Dis., 2010, 19, 311-327.
[2]
Nelson, R.; Eisenberg, D. Recent atomic models of amyloid fibril structure. Curr. Opin. Struct. Biol., 2006, 16, 260-265.
[3]
Greenwald, J.; Riek, R. Biology of amyloid: Structure, function, and regulation. Structure, 2010, 18, 1244-1260.
[4]
Lee, C.C.; Nayak, A.; Sethuraman, A.; Belfort, G.; McRae, G.J. A three-stage kinetic model of amyloid fibrillation. Biophysics, 2007, J92, 3448-3458.
[5]
Kumar, S.; Udgaonkar, J.B. Mechanism of amyloid fibril formation by proteins. Curr. Sci., 2010, 98, 639-655.
[6]
Chiti, F.; Stefani, M.; Taddei, N.; Ramponi, G.; Dobson, C.M. Rationalization of the effects of mutations on peptide and protein aggregation rates. Nature, 2003, 424, 805-808.
[7]
Gazit, E. A possible role for pi-stacking in the self-assembly of amyloid fibrils. FASEB J., 2002, 16, 77-83.
[8]
Eisenberg, D.; Jucker, M. The amyloid state of proteins in human diseases. Cell, 2012, 148, 1188-1203.
[9]
Invernizzi, G.; Papaleo, E.; Sabate, R.; Ventura, S. Protein aggregation: Mechanisms and functional consequences. Int. J. Biochem. Cell Biol., 2012, 44, 1541-1554.
[10]
Pastore, A.; Temussi, P. Protein aggregation and misfolding: Good or evil? J. Phys. Condens. Matter, 2012, 24, 244101.
[11]
Sgarbossa, A. Natural biomolecules and protein aggregation: Emerging strategies against amyloidogenesis. Int. J. Mol. Sci., 2012, 13, 17121-17137.
[12]
Chaturvedi, S.K.; Siddiqi, M.K.; Alam, P.; Khan, R.H. Protein misfolding and aggregation: Mechanism, factors and detection. Process Biochem., 2016, 51, 1183-1192.
[13]
Ngoungoure, V.L.N.; Schluesener, J.; Moundipa, P.F.; Schluesener, H. Natural polyphenols binding to amyloid: A broad class of compounds to treat different human amyloid diseases. Mol. Nutr. Food Res., 2015, 59, 8-20.
[14]
Porat, Y.; Abramowitz, A.; Gazit, E. Inhibition of amyloid fibril formation by polyphenols: Structural similarity and aromatic interactions as a common inhibition mechanism. Chem. Biol. Drug Des., 2015, 67, 27-37.
[15]
Baptista, F.I.; Henriques, A.G.; Silva, A.M.S.; Wiltfang, J. da Cruz e Silva, O.A. Flavonoids as therapeutic compounds targeting key proteins involved in Alzheimer’s disease. ACS Chem. Neurosci., 2014, 5, 83-92.
[16]
Kook, S.Y.; Lee, K.M.; Kim, Y.; Cha, M.Y.; Kang, S.; Baik, S.H.; Lee, H.; Park, R.; Mook-Jung, I. High-dose of vitamin C supplementation reduces amyloid plaque burden and ameliorates pathological changes in the brain of 5XFAD mice. Cell Death Dis., 2014, 5, 1083.
[17]
Chaturvedi, S.K.; Zaidi, N.; Alam, P.; Khan, J.M.; Qadeer, A.; Siddique, I.A.; Asmat, S.; Zaidi, Y.; Khan, R.H. Unraveling comparative anti-Amyloidogenic behavior of pyrazinamide and D-cycloserine: A mechanistic biophysical insight. PLoS One, 2015, 10, e0136528.
[18]
Necula, M.; Kayed, R.; Milton, S.; Glabe, C.G. Small molecule inhibitors of aggregation indicate that amyloid β oligomerization and fibrillization pathways are independent and distinct. J. Biol. Chem., 2007, 282, 10311-10324.
[19]
Hawkes, C.A.; Ng, V.; McLaurin, J. Small molecule inhibitors of Aβ-aggregation and neurotoxicity. Drug Dev. Res., 2009, 70, 111-124.
[20]
Nie, Q.; Du, X.; Geng, M. Small molecule inhibitors of amyloid β peptide aggregation as a potential therapeutic strategy for Alzheimer’s disease. Acta Pharmacol. Sin., 2011, 32, 545-551.
[21]
Limpert, A.S.; Mattmann, M.E.; Cosford, N.D.P. Recent progress in the discovery of small molecules for the treatment of Amyotrophic Lateral Sclerosis (ALS). Beilstein J. Org. Chem., 2013, 9, 717-732.
[22]
Aguzzi, A.; O’Connor, T. Protein aggregation diseases: Pathogenicity and therapeutic perspectives. Nat. Rev. Drug Discov., 2010, 9, 237-248.
[23]
Bulic, B.; Pickhardt, M.; Mandelkow, E.M.; Mandelkow, E. Tau protein and tau aggregation inhibitors. Neuropharmacology, 2010, 59, 276-289.
[24]
Alam, J.; Blackburn, K.; Patrick, D. Neflamapimod: Clinical phase 2b-ready oral small molecule inhibitor of p38α to reverse synaptic dysfunction in early Alzheimer’s disease. J. Prev. Alzheimers Dis., 2017, 4, 273-278.
[25]
Hung, S.Y.; Fu, W.M. Drug candidates in clinical trials for Alzheimer’s disease. J. Biomed. Sci., 2017, 24, 47.
[26]
Coelho, T.; Merlini, G.; Bulawa, C.E.; Fleming, J.A.; Judge, D.P.; Kelly, J.W.; Maurer, M.S.; Planté-Bordeneuve, V.; Labaudinière, R.; Mundayat, R.; Riley, S.; Lombardo, I.; Huertas, P. Mechanism of action and clinical application of tafamidis in hereditary transthyretin amyloidosis. Neurol. Ther., 2016, 5, 1-25.
[27]
Eisele, Y.S.; Monteiro, C.; Fearns, C.; Encalada, S.E.; Wiseman, R.L.; Powers, E.T.; Kelly, J.W. Targeting protein aggregation for the treatment of degenerative diseases. Nat. Rev. Drug Discov., 2015, 14, 759-780.
[28]
Ehrnhoefer, D.E.; Bieschke, J.; Boeddrich, A.; Herbst, M.; Masino, L.; Lurz, R.; Engemann, S.; Pastore, A.; Wanker, E.E. EGCG redirects amyloidogenic polypeptides into unstructured, off-pathway oligomers. Nat. Struct. Mol. Biol., 2008, 15, 558-566.
[29]
Bieschke, J.; Russ, J.; Friedrich, R.P.; Ehrnhoefer, D.E.; Wobst, H.; Neugebauer, K.; Wanker, E.E. EGCG remodels mature α-synuclein and amyloid-β fibrils and reduces cellular toxicity. Proc. Natl. Acad. Sci. USA, 2010, 107, 7710-7715.
[30]
Kocisko, D.A.; Baron, G.S.; Rubenstein, R.; Chen, J.; Kuizon, S.; Caughey, B. New inhibitors of scrapie-associated prion protein formation in a library of 2000 drugs and natural products. J. Virol., 2003, 77, 10288-10294.
[31]
Ehrnhoefer, D.E.; Duennwald, M.; Markovic, P.; Wacker, J.L.; Engemann, S.; Roark, M.; Legleiter, J.; Marsh, J.L.; Thompson, L.M.; Lindquist, S. Green tea (−)-epigallocatechin-gallate modulates early events in huntingtin misfolding and reduces toxicity in Huntington’s disease models. Hum. Mol. Genet., 2006, 15, 2743-2751.
[32]
Meng, F.; Abedini, A.; Plesner, A.; Verchere, C.B.; Raleigh, D.P. The flavanol (−)-epigallocatechin 3-gallate inhibits amyloid formation by islet amyloid polypeptide, disaggregates amyloid fibrils, and protects cultured cells against IAPP-induced toxicity. Biochemistry, 2010, 49, 8127-8133.
[33]
Ferreira, N.; Saraiva, M.J.; Almeida, M.R. Epigallocatechin-3-Gallate as a potential therapeutic drug for TTR-related amyloidosis: “in vivo” evidence from FAP mice models. PLoS One, 2012, 7, e29933.
[34]
Hudson, S.A.; Ecroyd, H.; Dehle, F.C.; Musgrave, I.F.; Carver, J.A. (−)-Epigallocatechin-3-gallate (EGCG) maintains κ-casein in its pre-fibrillar state without redirecting its aggregation pathway. J. Mol. Biol., 2009, 392, 689-700.
[35]
Taniguchi, S.; Suzuki, N.; Masuda, M.; Hisanaga, S.; Iwatsubo, T.; Goedert, M.; Hasegawa, M. Inhibition of heparin-induced tau filament formation by phenothiazines, polyphenols, and porphyrins. J. Biol. Chem., 2005, 280, 7614-7623.
[36]
Ghosh, S.; Pandey, N.K.; Dasgupta, S. (−)-Epicatechin gallate prevents alkali-salt mediated fibrillogenesis of hen egg white lysozyme. Int. J. Biol. Macromol., 2013, 54, 90-98.
[37]
Ono, K.; Hasegawa, K.; Naiki, H.; Yamada, M. Curcumin has potent anti-amyloidogenic effects for Alzheimer’s beta-amyloid fibrils in vitro. J. Neurosci. Res., 2004, 75, 742-750.
[38]
Yang, F.; Lim, G.P.; Begum, A.N.; Ubeda, O.J.; Simmons, M.R.; Ambegaokar, S.S.; Chen, P.P.; Kayed, R.; Glabe, C.G.; Frautschy, S.A.; Cole, G.M. Curcumin inhibits formation of amyloid beta oligomers and fibrils, binds plaques, and reduces amyloid in vivo. J. Biol. Chem., 2005, 280, 5892-5901.
[39]
Ahmad, B.; Lapidus, L.J. Curcumin prevents aggregation in α-synuclein by increasing the reconfiguration rate. J. Biol. Chem., 2012, 287, 9193-9199.
[40]
Pandey, N.; Strider, J.; Nolan, W.C.; Yan, S.X.; Galvin, J.E. Curcumin inhibits aggregation of α-synuclein. Acta Neuropathol., 2008, 115, 479-489.
[41]
Hafner-Bratkovic, I.; Gaspersic, J.; Smid, L.M.; Bresjanac, M.; Jerala, R. Curcumin binds to the α-helical intermediate and to the amyloid form of prion protein -A new mechanism for the inhibition of PrPSc accumulation. J. Neurochem., 2008, 104, 1553-1564.
[42]
Sgarbossa, A.; Buselli, D.; Lenci, F. In vitro perturbation of aggregation processes in beta-amyloid peptides: A spectroscopic study. FEBS Lett., 2008, 582, 3288-3292.
[43]
Masuda, M.; Suzuki, N.; Taniguchi, S.; Oikawa, T.; Nonaka, T.; Iwatsubo, T.; Hisanaga, S.; Goedert, M.; Hasegawa, M. Small molecule inhibitors of alpha-synuclein filament assembly. Biochemistry, 2006, 45, 6085-6094.
[44]
Sahebkar, A. Neuroprotective effects of resveratrol: Potential mechanisms. Neurochem. Int., 2010, 57, 621-622.
[45]
Huang, T.C.; Lu, K.T.; Wo, Y.Y.; Wu, Y.J.; Yang, Y.L. Resveratrol protects rats from Abeta-induced neurotoxicity by the reduction of iNOS expression and lipid peroxidation. PLoS One, 2011, 6, e29102.
[46]
Marambaud, P.; Zhao, H.; Davies, P. Resveratrol promotes clearance of Alzheimer’s disease amyloid-beta peptides. J. Biol. Chem., 2005, 280, 37377-37382.
[47]
Han, Y.S.; Zheng, W.H.; Bastianetto, S.; Chabot, J.G.; Quirion, R. Neuroprotective effects of resveratrol against beta-amyloid-induced neurotoxicity in rathippocampal neurons: involvement of protein kinase C. Br. J. Pharmacol., 2004, 141, 997-1005.
[48]
Riviere, C.; Richard, T.; Vitrac, X.; Me’rillon, J.M.; Valls, J.; Monti, J.P. New polyphenols active on β-amyloid aggregation. Bioorg. Med. Chem. Lett., 2008, 18, 828-831.
[49]
Savaskan, E.; Olivieri, G.; Meier, F.; Seifritz, E.; Wirz-Justice, A.; Muller-Spahn, F. Red wine ingredient resveratrol protects from beta-amyloid neurotoxicity. Gerontology, 2003, 49, 380-383.
[50]
Ladiwala, A.R.; Lin, J.C.; Bale, S.S.; Marcelino-Cruz, A.M.; Bhattacharya, M.; Dordick, J.S.; Tessier, P.M. Resveratrol selectively remodels soluble oligomers and fibrils of amyloid Abeta into off-pathway conformers. J. Biol. Chem., 2010, 285, 24228-24237.
[51]
Mishra, R.; Sellin, D.; Radovan, D.; Gohlke, A.; Winter, R. Inhibiting islet amyloid polypeptide fibril formation by the red wine compound resveratrol. ChemBioChem, 2009, 10, 445-449.
[52]
Zhu, M.; Rajamani, S.; Kaylor, J.; Han, S.; Zhou, F.; Fink, A.L. The flavonoid baicalein inhibits fibrillation of alpha-synuclein and disaggregates existing fibrils. J. Biol. Chem., 2004, 279, 26846-26857.
[53]
Matsuzaki, K.; Noguch, T.; Wakabayashi, M.; Ikeda, K.; Okada, T.; Ohashi, Y.; Hoshino, M.; Naiki, H. Inhibitors of amyloid β-protein aggregation mediated by GM1-contain in graft-like membranes. Biochim. Biophys. Acta, 2007, 1768, 122-130.
[54]
Liu, Y.; Pukala, T.L.; Musgrave, I.F.; Williams, D.M.; Dehle, F.C.; Carver, J.A. Gallic acid is the major component of grape seed extract that inhibits amyloid fibril formation. Bioorg. Med. Chem. Lett., 2013, 23, 6336-6340.
[55]
Ban, J.Y.; Nguyen, H.T.; Lee, H.J.; Cho, S.O.; Ju, H.S.; Kim, J.Y.; Bae, K.; Song, K.S.; Seong, Y.H. Neuroprotective properties of gallic acid from Sanguisorbae radix on amyloid beta protein (25-35)-induced toxicity in cultured rat cortical neurons. Biol. Pharm. Bull., 2008, 31, 149-153.
[56]
Liu, Y.; Carver, J.A.; Calabrese, A.N.; Pukala, T.L. Gallic acid interacts with α-synuclein to prevent the structural collapse necessary for its aggregation. Biochim. Biophys. Acta, 2014, 1844, 1481-1485.
[57]
Jayamani, J.; Shanmugam, G. Gallic acid, one of the components in many plant tissues, is a potential inhibitor for insulin amyloid fibril formation. Eur. J. Med. Chem., 2014, 85, 352-358.
[58]
Ono, K.; Yoshiike, Y.; Takashima, A.; Hasegawa, K.; Naiki, H.; Yamada, M. Potent anti-amyloidogenic and fibril-destabilizing effects of polyphenols in vitro: Implications for the prevention and therapeutics of Alzheimer’s disease. J. Neurochem., 2003, 87, 172-18.
[59]
Wang, J.B.; Wang, Y.M.; Zeng, C.M. Quercetin inhibits amyloid fibrillation of bovine insulin and destabilizes preformed fibrils. Biochem. Biophys. Res. Commun., 2011, 415, 675-679.
[60]
Lemkul, J.A.; Bevan, D.R. Destabilizing Alzheimer’s Aβ42 protofibrils with morin: Mechanistic insights from molecular dynamics simulations. Biochemistry, 2010, 49, 3935-3946.
[61]
Ahn, J.H.; Hu, Y.; Hernandez, M.; Kim, J.R. Crocetin inhibits beta-amyloid fibrillization and stabilizes beta-amyloid oligomers. Biochem. Biophys. Res. Commun., 2011, 414, 79-83.
[62]
Tu, Y.; Ma, S.; Liu, F.; Sun, Y.; Dong, X. Hematoxylin inhibits amyloid β-protein fibrillation and alleviates amyloid-induced cytotoxicity. J. Phys. Chem. B, 2016, 120, 11360-11368.
[63]
Cohen, T.; Frydman-Marom, A.; Rechter, M.; Gazit, E. Inhibition of amyloid fibril formation and cytotoxicity by hydroxyindole derivatives. Biochemistry, 2006, 45, 4727-4735.
[64]
Soto-Ortega, D.D.; Murphy, B.P.; Gonzalez-Velasquez, F.J.; Wilson, K.A.; Xie, F.; Wang, Q.; Moss, M.A. Inhibition of amyloid-β aggregation by coumarin analogs can be manipulated by functionalization of the aromatic center. Bioorg. Med. Chem., 2011, 19, 2596-2602.
[65]
Jayaram, D.T.; Shankar, B.H.; Ramaiah, D. Effective amyloid defibrillation by polyhydroxyl substituted squaraine dyes. Chem. Asian J., 2015, 10, 2689-2694.
[66]
Kuo, C.T.; Chen, Y.L.; Hsu, W.T.; How, S.C.; Cheng, Y.H.; Hsueh, S.S.; Liu, H.S.; Lin, T.H.; Wu, J.W.; Wang, S.S. Investigating the effects of erythrosine B on amyloid fibril formation derived from lysozyme. Int. J. Biol. Macromol., 2017, 98, 159-168.
[67]
Lendel, C.; Bertoncini, C.W.; Cremades, N.; Waudby, C.A.; Vendruscolo, M.; Dobson, C.M.; Schenk, D.; Christodoulou, J.; Toth, G. On the mechanism of nonspecific inhibitors of protein aggregation: Dissecting the interactions of α-synuclein with congo red and lacmoid. Biochemistry, 2009, 48, 8322-8334.
[68]
Lorenzo, A.; Yankner, B.A. Beta-amyloid neurotoxicity requires fibril formation and is inhibited by congo red. Proc. Natl. Acad. Sci. USA, 1994, 91, 12243-12247.
[69]
Sharma, V.; Ghosh, K.S. Inhibition of amyloid fibrillation and destabilization of fibrils of human γD-crystallin by direct red 80 and orange G. Int. J. Biol. Macromol., 2017, 105, 956-964.
[70]
Korth, C.; May, B.C.; Cohen, H.F.E.; Prusiner, S.B. Acridine and phenothiazine derivatives as pharmacotherapeutics for prion disease. Proc. Natl. Acad. Sci. USA, 2001, 98, 9836-9841.
[72]
Raju, G.; Vishwanath, S.; Prasad, A.; Patel, B.K.; Prabusankar, G. Imidazolium tagged acridines: Synthesis, characterization and applications in DNA binding and anti-microbial activities. J. Mol. Struct., 2016, 1107, 291-299.
[73]
Palmal, S.; Jana, N.R. Inhibition of amyloid fibril growth by nanoparticle coated with histidine-based polymer. J. Phys. Chem. C, 2014, 118, 21630-21638.
[74]
Skaat, H.; Chen, R.; Grinberg, I.; Margel, S. Engineered polymer nanoparticles containing hydrophobic dipeptide for inhibition of amyloid-β fibrillation. Biomacromolecules, 2012, 13, 2662-2670.
[75]
Fei, L.; Perrett, S. Effect of nanoparticles on protein folding and fibrillogenesis. Int. J. Mol. Sci., 2009, 10, 646-655.
[76]
Sudhakar, S.; Kalipillai, P.; Santhosh, P.B.; Mani, E. Role of surface charge of inhibitors on amyloid beta fibrillation. J. Phys. Chem., 2017, 121, 6339-6348.
[77]
Moore, K.A.; Pate, K.M.; Soto-Ortega, D.D.; Lohse, S. van der, M.N.; Lim, M.; Jackson, K.S.; Lyles, V.D.; Jones, L.; Glassgow, N.; Napumecheno, V.M.; Mobley, S.; Uline, M.J.; Mahtab, R.; Murphy, C.J.; Moss, M.A. Influence of gold nanoparticle surface chemistry and diameter upon Alzheimer’s disease amyloid-β protein aggregation. J. Biol. Eng., 2017, 11, 1-11.
[78]
Dubey, K.; Anand, B.G.; Badhwar, R.; Bagler, G.; Navya, P.N.; Daima, H.K.; Kar, K. Tyrosine- and tryptophan-coated gold nanoparticles inhibit amyloid aggregation of insulin. Amino Acids, 2015, 47, 2551-2560.
[79]
Liao, Y.H.; Chang, Y.J.; Yoshiike, Y.; Chang, Y.C.; Chen, Y.R. Negatively charged gold nanoparticles inhibit Alzheimer’s amyloid-β fibrillization, induce fibril dissociation, and mitigate neurotoxicity. Small, 2012, 8, 3631-3639.
[80]
Sardar, S.; Pal, S.; Maity, S.; Chakraborty, J.; Halder, U.C. Amyloid fibril formation by β-lactoglobulin is inhibited by gold nanoparticles. Int. J. Biol. Macromol., 2014, 69, 137-145.
[81]
Luthuli, S.D.; Chili, M.M.; Revaprasadu, N.; Shonhai, A. Cysteine-capped gold nanoparticles suppress aggregation of proteins exposed to heat stress. IUBMB Life, 2013, 65, 454-461.
[82]
Das, T.; Kolli, V.; Karmakar, S.; Sarkar, N. Functionalisation of polyvinylpyrrolidone on gold nanoparticles enhances its anti-amyloidogenic propensity towards hen egg white lysozyme. Biomedicines, 2017, 5, 1-19.
[83]
Palmal, S.; Maity, A.R.; Singh, B.K.; Basu, S.; Jana, N.R. Inhibition of amyloid fibril growth and dissolution of amyloid fibrils by curcumin-gold nanoparticles. Chem. A. Eur. J., 2014, 20, 6184-6191. B
[84]
Anand, B.G.; Dubey, K.; Shekhawat, D.S.; Kar, K. Capsaicin-coated silver nanoparticles inhibit amyloid fibril formation of serum albumin. Biochemistry, 2016, 55, 3345-3348.
[85]
Wang, M.; Kakinen, A.; Pilkington, E.H.; Davis, T.P.; Ke, P.C. Differential effects of silver and iron oxide nanoparticles on IAPP amyloid aggregation. Biomater. Sci., 2017, 5, 485-493.
[86]
Ban, D.K.; Paul, S. Nano zinc oxide inhibits fibrillar growth and suppresses cellular toxicity of lysozyme amyloid. ACS Appl. Mater. Interfaces, 2016, 8, 31587-31601.
[87]
Ishtikhar, M.; Usmani, S.S.; Gull, N.; Badr, G.; Mahmoud, M.H.; Khan, R.H. Inhibitory effect of copper nanoparticles on rosin modified surfactant induced aggregation of lysozyme. Int. J. Biol. Macromol., 2015, 78, 379-388. A
[88]
Taebnia, N.; Morshedi, D.; Yaghmaei, S.; Aliakbari, F.; Rahimi, F.; Arpanaei, A. Curcumin-loaded amine-functionalized mesoporous silica nanoparticles inhibit the α-synuclein fibrillation and reduce its cytotoxicity associated effects. Langmuir, 2016, 32, 13394-13402.
[89]
Bellova, A.; Bystrenova, E.; Koneracka, M.; Kopcansky, P.; Valle, F.; Tomasovicova, N.; Timko, M.; Bagelova, J.; Biscarini, F.; Gazova, Z. Effect of Fe3O4 magnetic nanoparticles on lysozyme amyloid aggregation. Nanotechnology, 2010, 21, 065103.
[90]
Pradhan, N.; Jana, N.R. Inhibition of protein aggregation by iron oxide nanoparticles conjugated with glutamine- and proline-based osmolytes. ACS Appl. Nano. Mater, 2018, 1, 1094-1103.
[91]
Sen, S.; Konar, S.; Pathak, A.; Dasgupta, S.; DasGupta, S. Effect of functionalized magnetic MnFe2O4 nanoparticles on fibrillation of human serum albumin. J. Phys. Chem. B, 2014, 118, 11667-11676.
[92]
Bag, S.; Mitra, R.; DasGupta, S. Inhibition of HSA fibrillation by two dimensional nanoparticles. J. Phys. Chem. B, 2017, 121, 5474-5482.