[1]
Mbow, M.L.; De Gregorio, E.; Ulmer, J.B. Alum’s adjuvant action: Grease is the word. Nat. Med., 2011, 17, 415-416.
[2]
Faust, S.D.; Aly, O.M. Chemistry of water treatment, 2nd ed Chelsea, MI; Ann Arbor Press, 1999, pp. 51-54.
[3]
Kennedy, C.; Snell, M.E.; Witherow, R.E. Use of alum to control intractable vesical haemorrhage. Br. J. Urol., 1984, 56, 673-675.
[4]
Wassberg, T.N.; Blaug, S.M.; Zopf, L.C. A study of the antibacterial activity of some complex aluminum salts. J. Am. Pharm. Assoc., 1956, 45, 498-500.
[5]
Chisholm, H. “Alum”. Encyclopedia Britannica, 11th ed; Cambridge University Press, 1911, pp. 766-767.
[6]
Patel, K.; Vekariya, R.; Patel, H. KAl(SO4)2.12H2O. (Alum) catalyzed organic synthesis; LAP Lambert Academic Publishing, 2016.
[7]
Paul, G.; Das, A.R. Alum catalyzed synthesis of 3-(1H-pyrrol-2-yl)-2H-chromen-2-ones: A water–PEG 400 binary solvent mediated, one-pot, three-component protocol. Synthesis, 2013, 45, 1191-1200.
[9]
Suresh; Sandhu, J.S. Alum catalyzed efficient one pot synthesis of α-amino nitriles. Rasayan J. Chem., 2009, 2, 182-185.
[10]
Azizian, J.; Mohammadi, A.A.; Karimi, A.R.; Mohammadizadeh, M.R. A stereoselective three-component reaction: KAl (SO4)2.12H2O, an efficient and reusable catalyst for the one-pot synthesis of cis-isoquinolonic acids. J. Org. Chem., 2005, 70, 350-352.
[11]
Mohammadi, A.A.; Rohi, H.; Soorki, A.A. Synthesis and in vitro antibacterial activities of novel 2-aryl-3-(phenylamino)-2,3-dihydroquinazolin-4(1H)-one derivatives. J. Heterocycl. Chem., 2013, 50, 1129-1132.
[13]
Kumar, G.S.S.; Kumaresan, S. Potash alum [KAl(SO4)2.12H2O] catalysed esterification of formylphenoxyaliphatic acids. J. Chem. Sci., 2012, 124, 857-863.
[14]
Azizian, J.; Mohammadi, A.A.; Karimi, A.R.; Mohammadizadeh, M.R. KAl(SO4)2.12H2O as a recyclable Lewis acid catalyst for synthesis of some new oxindoles in aqueous media. J. Chem. Res., 2004, 424-426.
[15]
Azizian, J.; Mohammadi, A.A.; Karimi, A.R.; Mohammadizadeh, M.R.; Koohshari, M. KAl(SO4)2.12H2O: An efficient catalyst for the stereoselective synthesis of cis-isoquinolonic acids. Heterocycles, 2004, 63, 2013-2017.
[16]
Suresh; Kumar, D.; Sandhu, J.S. Alum [KAl(SO4)2.12H2O: An efficient, novel, clean, catalyst for Doebner Knovenagel reaction for the efficient production of α,β-unsaturated acids. Indian J. Chem., 2011, 50B, 1479-1483.
[17]
Longhi, K.; Moreira, D.N.; Marzari, M.R.B.; Floss, V.M.; Bonacorso, H.G.; Zanatta, N.; Martins, M.A.P. An efficient solvent-free synthesis of NH-pyrazoles from dimethylaminovinylketones and hydrazine on grinding. Tetrahedron Lett., 2010, 51, 3193-3196.
[18]
Zare, A.; Merajoddin, M.; Abi, F.; Moosavi-Zare, A.R.; Mokhlesi, M.; Zolfigol, M.A.; Asgari, Z.; Khakyzadeh, V.; Hasaninejad, A.; Khalafi-Nezhad, A. Trityl chloride (TrCl): Efficient and homogeneous organocatalyst for the solvent-free synthesis of 14-aryl-14H-dibenzo [a,j] xanthenes by in situ formation of carbocationic system. J. Chin. Chem. Soc., 2012, 59, 860-865.
[19]
Selvam, C.; Jachak, S.M.; Thilagavathi, R.; Chakraborti, A.K. Design, synthesis, biological evaluation and molecular docking of curcumin analogues as antioxidant, cyclooxygenase inhibitory and anti-inflammatory agents. Bioorg. Med. Chem. Lett., 2005, 15, 1793-1797.
[20]
Zang, H.; Su, Q.; Mo, Y.; Cheng, B. Ionic liquid under ultrasonic irradiation towards a facile synthesis of pyrazolone derivatives. Ultrason. Sonochem., 2011, 18, 68-72.
[21]
Niknam, K.; Saberi, D.; Sadegheyan, M.; Deris, A. Silica-bonded S-sulfonic acid: An efficient and recyclable solid acid catalyst for the synthesis of 4,41-(arylmethylene)bis(1H-pyrazol-5-ols). Tetrahedron Lett., 2010, 51, 692-694.
[22]
Bailey, D.M.; Hansen, P.E.; Hlavac, A.G.; Baizman, E.R.; Pearl, J.; DeFelice, A.F.; Feigenson, M.E. 3,4-Diphenyl-1H-pyrazole-1-propanamine antidepressants. J. Med. Chem., 1985, 28, 256-260.
[23]
Sugiura, S.; Ohno, S.; Ohtani, O.; Izumi, K.; Kitamikado, T.; Asai, H.; Kato, K.; Hori, M.; Fujimura, H. Syntheses and antiinflammatory and hypnotic activity of 5-alkoxy-3-(N-substituted carbamoyl)-1-phenylpyrazoles. J. Med. Chem., 1977, 20, 80-85.
[24]
Rosiere, C.E.; Grossman, M.I. An analog of histamine that stimulates gastric acid secretion without other actions of histamine. Science, 1951, 113, 651.
[25]
Mahajan, R.N.; Havaldar, F.H.; Fernandes, P.S. Syntheses and biological activity of heterocycles derived from 3-methoxy-1-phenyl-1H-pyrazole-5-carboxylate. J. Indian Chem. Soc., 1991, 68, 245-246.
[26]
Chauhan, P.M.S.; Singh, S.; Chatterjee, R.K. Antifilarial profiles of substituted pyrazoles: A new class of antifilarial agents. Indian J. Chem. Sect. B: Org. Chem, 1993, 32, 858-861.
[27]
Londershausen, M. Review: Approaches to new parasiticides. Pestic. Sci., 1996, 48, 269-292.
[28]
Karimi-Jaberi, Z.; Pooladian, B.; Moradi, M.; Ghasemi, E. 1,3,5-Tris(hydrogensulfato) benzene: A new and efficient catalyst for synthesis of 4,41-(arylmethylene)bis(1H-pyrazol-5-ol) derivatives. Chin. J. Catal., 2012, 33, 1945-1949.
[29]
Hasaninejad, A.; Zare, A.; Shekouhy, M.; Golzar, N. Efficient synthesis of 4,4′-(arylmethylene)-bis(3-methyl-1-phenylpyrazol-5-ol) derivatives in PEG-400 under catalyst-free conditions. Org. Prep. Proced. Int., 2011, 43, 131-137.
[30]
Boroujeni, K.P.; Shojaei, P. Poly (4-vinylpyridine)-supported dual acidic ionic liquid: An environmentally friendly heterogeneous catalyst for the one-pot synthesis of 4,4′-(arylmethylene)bis(3-methyl-1-phenyl-1H-pyrazol-5-ols). Turk. J. Chem., 2013, 37, 756-764.
[31]
Baghernejad, M.; Niknam, K. Synthesis of 4,4′-(arylmethylene)bis(1H-pyrazol-5-ols) using silica-bonded ionic liquid as recyclable catalyst. Int. J. Chem., 2012, 4, 52-60.
[32]
Zolfigol, M.A.; Khazaei, A.; Karimitabar, F.; Hamidi, M. Alum as a catalyst for the synthesis of bispyrazole derivatives. Appl. Sci., 2016, 6(1), 27.
[33]
Targum, S.; Zboroaski, J.; Henry, M.; Schmitz, P.; Sebree, T.; Wallin, B. P-4-71 Efficacy and safety of sertindole in two double-blind, placebo-controlled trials of schizophrenic patients. Eur. Neuropsychopharmacol., 1995, 5, 348-349.
[34]
Schotte, A.; Janssen, P.F.; Gommeren, W.; Luyten, W.H.; van Gompel, P.; Lasage, A.S.; De Loore, K.; Leysen, J.E. Risperidone compared with new and reference antipsychotic drugs: In vitro and in vivo receptor binding. Psycholpharmacology (Berl),, 1996, 124, 57-73.
[35]
Petit, S.; Nallet, J.P.; Guillard, M.; Dreux, J.; Chermat, R.; Poncelet, M.; Bulach, C.; Simon, P.; Fontaine, C.; Barthelmebs, M.; Imbs, J.L. Synthesis and psychotropic activity of 3,4-diarylpiperidines. Structure-activity relationship and antihypertensive activity. Eur. J. Med. Chem., 1991, 26, 19-32.
[36]
Misra, M.; Pandey, S.K.; Pandey, V.P.; Pandey, J.; Tripathi, R.; Tripathi, R.P. Organocatalyzed highly atom economic one pot synthesis of tetrahydropyridines as antimalarials. Bioorg. Med. Chem., 2009, 17, 625-633.
[37]
Zhou, Y.; Gregor, V.E.; Ayida, B.K.; Winters, G.C.; Sun, Z.; Murphy, D.; Haley, G.; Bailey, D.; Froelich, J.M.; Fish, S.; Webber, S.E.; Hermann, T.; Wall, D. Synthesis and SAR of 3,5-diamino-piperidine derivatives: Novel antibacterial translation inhibitors as aminoglycoside mimetics. Bioorg. Med. Chem. Lett., 2007, 17, 1206-1210.
[38]
Ho, B.; Crider, A.M.; Stables, J.P. Synthesis and structure–activity relationships of potential anticonvulsants based on 2-piperidinecarboxylic acid and related pharmacophores. Eur. J. Med. Chem., 2001, 36, 265-286.
[39]
Brahmachari, G.; Choo, C.Y.; Ambure, P.; Roy, K. In vitro evaluation and in silico screening of synthetic acetylcholinesterase inhibitors bearing functionalized piperidine pharmacophores. Bioorg. Med. Chem., 2015, 23, 4567-4575.
[40]
Beeler, A.B.; Gadepalli, R.S.V.S.; Steyn, S.; Castagnoli, Jr, N.; Rimoldi, J.M. Synthesis and in vitro biological evaluation of fluoro-substituted-4-phenyl-1,2,3,6-tetrahydropyridines as monoamine oxidase B substrates. Bioorg. Med. Chem., 2003, 11, 5229-5234.
[41]
Deskus, J.A.; Epperson, J.R.; Sloan, C.P.; Cipollina, J.A.; Dextraze, P.; Qian-Cutrone, J.; Gao, Q.; Ma, B.; Beno, B.R.; Mattson, G.K.; Molski, T.F.; Krause, R.G.; Taber, M.T.; Lodge, N.J.; Mattson, R.J. Conformationally restricted homotryptamines 3. indole tetrahydropyridines and cyclohexenylamines as selective serotonin reuptake inhibitors. Bioorg. Med. Chem. Lett., 2007, 17, 3099-3104.
[42]
Kamei, K.; Maeda, N.; Katswagi-Ogino, R.; Koyama, M.; Nakajima, M.; Tatsuoka, T.; Ohno, T.; Inone, T. New piperidinyl- and 1,2,3,6-tetrahydropyridinyl-pyrimidine derivatives as selective 5-HT1A receptor agonists with highly potent anti-ischemic effects. Bioorg. Med. Chem. Lett., 2005, 15, 2990-2993.
[43]
Brahmachari, G.; Das, S. Bismuth nitrate-catalyzed multicomponent reaction for efficient and one-pot synthesis of densely functionalized piperidine scaffolds at room temperature. Tetrahedron Lett., 2012, 53, 1479-1484.
[44]
Clarke, P.A.; Zaytzev, A.V.; Whitwood, A.C. Pot, atom and step economic (PASE) synthesis of highly functionalized piperidines: A five-component condensation. Tetrahedron Lett., 2007, 48, 5209-5212.
[45]
Clarke, P.A.; Zaytzev, A.V.; Whitwood, A.C. Pot, atom, and step economic (PASE) synthesis of highly substituted piperidines: A five-component condensation. Synthesis, 2008, 21, 3530-3532.
[46]
Umamahesh, B.; Sathesh, V.; Ramachandran, G.; Sathishkumar, M.; Sathiyanarayanan, K. LaCl3·7H2O as an efficient catalyst for one-pot synthesis of highly functionalized piperidines via multi-component organic reactions. Catal. Lett., 2012, 142, 895-900.
[47]
Khan, A.T.; Parvin, T.; Choudhury, L.H. Effects of substituents in the β-position of 1,3-dicarbonyl compounds in bromodimethylsulfonium bromide-catalyzed multicomponent reactions: A facile access to functionalized piperidines. J. Org. Chem., 2008, 73, 8398-8402.
[48]
Khan, A.T.; Khan, M.M.; Bannuru, K.K.R. Iodine catalyzed one-pot five-component reactions for direct synthesis of densely functionalized piperidines. Tetrahedron, 2010, 66, 7762-7772.
[49]
Ramachandran, R.; Jayanthi, S.; Jeong, Y.T. One-pot synthesis of highly diversified tetrahydropyridines by tandem condensation of aldehydes, amines, and β-ketoesters. Tetrahedron, 2012, 68, 363-369.
[50]
Chahkamali, F.O.; Faghihi, M.R.; Maghsoodlou, M.T. Introduction of antimony triiodide (SbI3) as a new and efficient catalyst for synthesis of polyfunctionalized piperidines. Res. Chem. Intermed., 2016, 42, 8109-8117.
[51]
Mishra, S.; Ghosh, R. Efficient one-pot synthesis of functionalized piperidine scaffolds via ZrOCl2.8H2O catalyzed tandem reactions of aromatic aldehydes with amines and acetoacetic esters. Tetrahedron Lett., 2011, 52, 2857-2861.
[52]
Khan, A.T.; Lal, M.; Khan, M.M. Synthesis of highly functionalized piperidines by one-pot multicomponent reaction using tetrabutylammonium tribromide (TBATB). Tetrahedron Lett., 2010, 51, 4419-4424.
[53]
Aboonajmi, J.; Maghsoodlou, M.T.; Hazeri, N.; Lashkari, M.; Kangani, M. Tartaric acid: A natural, green and highly efficient catalyst for the one-pot synthesis of functionalized piperidines. Res. Chem. Intermed., 2015, 41, 8057-8065.
[54]
Wang, H.J.; Mo, L.P.; Zhang, Z.H. Cerium ammonium nitrate-catalyzed multicomponent reaction for efficient synthesis of functionalized tetrahydropyridines. ACS Comb. Sci., 2011, 13, 181-185.
[55]
Paul, B.P.; Vadivel, S.; Dhar, S.S. α-Fe2O3 Immobilized benzimidazolium tribromide as novel magnetically retrievable catalyst for one-pot synthesis of highly functionalized piperidines. Chin. Chem. Lett., 2016, 27, 1725-1730.
[56]
Harichandran, G.; Amalraj, S.D.; Shanmugam, P. A Facile and efficient solid supported, one-pot synthesis of functionalized piperidine derivatives catalyzed by amberlite IRA400-Cl Resin/I2/KI via multicomponent reaction. J. Heterocycl. Chem., 2013, 50, 539-543.
[57]
Abbasi, M.; Seyedi, S.M.; Sadeghian, H.; Akhbari, M.; Enayaty, M.; Shiri, A. TiCl2·2H2O catalyzed one-pot synthesis of highly functionalized tetrahydropiperidines and evaluation of their antimicrobial activities. Heterocycl. Commun., 2016, 22, 117-121.
[58]
Palermo, V.; Sathicq, A.; Liberto, N.; Fernandes, S.; Langer, P.; Jios, J.; Romanelli, G. Calix[n]arenes: Active organocatalysts for the synthesis of densely functionalized piperidines by one-pot multicomponent procedure. Tetrahedron Lett., 2016, 57, 2049-2054.
[59]
Shafiee, M.R.M.; Najafabadi, B.H.; Ghashang, M. Multicomponent preparation of highly functionalized piperidines using magnesium hydrogen sulfate as an efficient catalyst. Res. Chem. Intermed., 2013, 39, 3753-3762.
[60]
Kaur, R.; Gupta, A.; Kapoor, K.K. Alum as an efficient catalyst for the multicomponent synthesis of functionalized piperidines. Res. Chem. Intermed., 2017, 43, 6099-6114.
[61]
Llama, E.F.; Campo, C.D.; Capo, M.; Anadon, M. Synthesis and antinociceptive activity of 9-phenyl-oxy or 9-acyl-oxy derivatives of xanthene, thioxanthene and acridine. Eur. J. Med. Chem., 1989, 24, 391-396.
[62]
Poupelin, J.P.; Saint-Ruf, G.; Foussard-Blanpin, O.; Narcisse, G.; Uchida-Ernouf, G.; Lacroix, R. Synthesis and anti inflammatory properties of bis 2-hydroxy-1-naphthyl methane derivatives. Eur. J. Med. Chem., 1978, 13(1), 67-71.
[63]
Nandi, G.C.; Samai, S.; Kumar, R.; Singh, M.S. An efficient one-pot synthesis of tetrahydrobenzo[a]xanthene-11-one and diazabenzo[a]anthracene-9,11-dione derivatives under solvent free condition. Tetrahedron, 2009, 65, 7129-7134.
[64]
Zare, A.; Khanivar, R.; Merajoddin, M.; Kazem-Rostami, M.; Ahmed-Zadeh, M.M.; Moosavi-Zare, A.R.; Hasaninejad, A. Triethylamine-bonded sulfonic acid [Et3N-SO3H]Cl as an efficient and homogeneous catalyst for the synthesis of 12-aryl-8,9,10,12- tetrahydrobenzo[a]xanthen-11-ones. Iranian J. Catal, 2012, 2, 107-114.
[65]
Khurana, J.M.; Magoo, D. pTSA-catalyzed one-pot synthesis of 12-aryl-8,9,10,12-tetrahydrobenzo[a]xanthen-11-ones in ionic liquid and neat conditions. Tetrahedron Lett., 2009, 50, 4777-4780.
[66]
Wang, H.J.; Ren, X.Q.; Zhang, Y.Y.; Zhang, Z.H. Synthesis 12-aryl or 12-alkyl-8,9,10,12-tetrahydrobenzo[a]xanthen-11-one derivatives catalyzed by dodecatungstophosphoric acid. J. Braz. Chem. Soc., 2009, 20, 1939-1943.
[67]
Wang, R.Z.; Zhang, L.F.; Cui, Z.S. Iodine-catalyzed synthesis of 12-aryl-8,9,10,12-tetrahydro-benzo[a]xanthen-11-one derivatives via multicomponent reaction. Synth. Commun., 2009, 39, 2101-2107.
[68]
Mo, L.P.; Chen, H.L. One‐pot, three‐component condensation of aldehydes, 2‐naphthol and 1,3‐dicarbonyl compounds. J. Chin. Chem. Soc., 2010, 57, 157-161.
[69]
Jianjun, L.; Lingmei, L.; Weike, S. A new strategy for the synthesis of benzoxanthenes catalyzed by proline triflate in water. Tetrahedron Lett., 2010, 51, 2434-2437.
[70]
Li, J.; Tang, W.; Lu, L.; Su, W. A new strategy for the synthesis of benzoxanthenes catalyzed by proline triflate in water. Tetrahedron Lett., 2008, 49, 7117-7120.
[71]
Mahdavinia, G.H.; Rostamizadeh, S.; Amani, A.M.; Emdadi, Z. Ultrasound-promoted greener synthesis of aryl-14-H-dibenzo[a,j]xanthenes catalyzed by NH4H2PO4/SiO2 in water. Ultrason. Sonochem., 2009, 16, 7-10.
[72]
Kumar, S.; Goyal, A.; Sohal, H.; Kumar, S. A facile, one pot, solvent free synthesis of 14-alkyl or aryl-14H-dibenzo[a,j]xanthenes and 12-aryl/alkyl-8,9,10,12-tetrahydrobenzo[a]xanthen-11-one derivatives. Chem. Sci. Trans., 2013, 2, 1459-1465.
[73]
Fatma, S.; Singh, P.K.; Ankit, P. Shireen; Singh, M.; Singh, J. Thiamine hydrochloride as a promoter for the efficient and green synthesis of 12-aryl-8,9,10,12 tetrahydrobenzoxanthene-11-one derivatives in aqueous micellar medium. Tetrahedron Lett., 2013, 54, 6732-6736.
[74]
Kumar, A.; Sharma, S.; Maurya, R.A.; Sarkar, J. Diversity oriented synthesis of benzoxanthene and benzochromene libraries via one-pot, three-component reactions and their anti-proliferative activity. J. Comb. Chem., 2010, 12, 20-24.
[75]
Sudha, S.; Pasha, M.A. Ultrasound assisted synthesis of tetrahydrobenzo[c]xanthene-11-ones using CAN as catalyst. Ultrason. Sonochem., 2012, 19, 994-998.
[76]
Sharma, R.K.; Khajuria, R.; Kapoor, K.K. Alum-catalyzed domino synthesis of 12-substituted-8,9,10,12-tetrahydrobenzoxanthen-11-ones under solvent-free conditions. Synth. Commun., 2014, 44, 3538-3551.
[77]
Kumar, S.; Bawa, S.; Gupta, H. Biological activities of quinoline derivatives. Mini Rev. Med. Chem., 2009, 9, 1648-1654.
[78]
Patel, M.; Ko, S.S.; McHugh, Jr, R.J.; Markwalder, J.A.; Srivastava, A.S.; Cordova, B.C. Klabe, R.M.; Erickson-Viitanen, S.; Trainor, G.L.; Seitz, S.P. Bioorg. Med. Chem. Lett., 1999, 9, 2805-2810.
[79]
Latif, N.; Mishriky, N.; Assad, F.M. Carbonyl and thiocarbonyl compounds. XIX. intramolecular cyclization of (2-nitroetheny1)aryl N-arylcarbamates: Synthesis of newer series of 3,4-dihydro-2H-l,3-oxazin-2-ones and their antimicrobial activities. Aust. J. Chem., 1982, 35, 1037-1043.
[80]
Al-Omar, M.A.; Amr, A.E-G.E. Synthesis of some new pyridine-2,6-carboxamide-derived schiff bases as potential antimicrobial agents. Molecules, 2010, 15, 4711-4721.
[84]
Maggio, B.; Daidone, G.; Raffa, D.; Plescia, S.; Mantione, L.; Catena, C.V.M.; Mangano, N.G.; Caruso, A. Synthesis and pharmacological study of ethyl 1-methyl-5-(substituted 3,4-dihydro-4-oxoquinazolin-3-yl)-1H-pyrazole-4-acetates. Eur. J. Med. Chem., 2001, 36, 737-742.
[85]
Johne, S. Quinazoline derivatives in pharmaceutical research. Pharmazie, 1981, 36, 583-596.
[86]
Cizmarik, J.; Trupl, J. Antimicrobial action of quaternary ammonium salts of heptacaine. Pharmazie, 1987, 42, 139-140.
[87]
Buyuktimkin, S.; Ekinci, A.C.; Buyuktimkin, N.; Otuk, G. Pharmacological studies on quaternized 4(3H)-quinazolinones. J. Pharm. Sci., 1992, 81, 1092-1094.
[88]
Tani, J.; Yamada, Y.; Ochiai, T.; Ishida, R.; Inoue, I.; Oine, T. Studies on biologically active halogenated compounds. II. Chemical modifications of 6-amino-2-fluoromethyl-3-(o-tolyl)-4(3H)-quinazolinone and the CNS depressant activities of related compounds. Chem. Pharm. Bull. (Tokyo), 1979, 27, 2675-2687.
[89]
Corbett, J.W.; Ko, S.S.; Rodgers, J.D.; Gearhart, L.A.; Magnus, N.A.; Bacheler, L.T.; Diamond, S.; Jeffrey, S.; Klabe, R.M.; Cordova, B.C.; Garber, S.; Logue, K.; Trainor, G.L.; Anderson, P.S.; Erickson-Viitanen, S.K. Inhibition of clinically relevant mutant variants of HIV-1 by quinazolinone non-nucleoside reverse transcriptase inhibitors. J. Med. Chem., 2000, 43, 2019-2030.
[90]
Lu, L.; Zhang, M-M.; Jiang, H.; Wang, X-S. Structurally diversified products from the reactions of 2-aminobenzamides with 1,3-cyclohexanediones catalyzed by iodine. Tetrahedron Lett., 2013, 54, 757-760.
[91]
Moghimi, A.; Khanmiri, R.H.; Omrani, I.; Shaabani, A. A new library of 4(3H)- and 4,4′(3H,3H′)-quinazolinones and 2-(5-alkyl-1,2,4-oxadiazol-3-yl)quinazolin-4(3H)-one obtained from diaminoglyoxime. Tetrahedron Lett., 2013, 54, 3956-3959.
[92]
Wang, X.S.; Yang, K.; Zhou, J.; Tu, S.J. Facile method for the combinatorial synthesis of 2,2-disubstituted quinazolin-4(1H)-one derivatives catalyzed by iodine in ionic liquids. J. Comb. Chem., 2010, 12, 417-421.
[93]
El-Sharief, A.M.S.; Ammar, Y.A.; Zahran, M.A.; Sabet, H.K. 1,4-Phenylenediisothiocyanate in the synthesis of bis-(thiourea, benzothiazole, quinazoline, 1,3-benzoxazine and imidazolidineiminothiones) derivatives. Phosphorus Sulfur Silicon Relat. Elem., 2004, 179, 267-275.
[94]
Yang, X-H.; Wu, M-H.; Sun, S-F.; Xie, J-L.; Ding, M-W.; Xia, Q-H. Synthesis of 3-aminoalkyl-2-arylaminoquiazolin-4(3H)-ones and 3,3′-disubstituted bis-2-arylaminoquinazolin-4(3H)-ones via reactions of 1-aryl-3-(2-ethoxycarbonylphenyl)carbodiimides with diamines. J. Heterocycl. Chem., 2008, 45, 1365-1369.
[96]
Mohammadi, A.A.; Taheri, S.; Askari, S. One-pot pseudo five-component synthesis of some new bis(quinazolinon-4(1H)-one) derivatives. J. Heterocycl. Chem., 2017, 54, 484-488.
[97]
Birch, H.L.; Buckley, G.M.; Davies, N.; Dyke, H.J.; Frost, E.J.; Gilbert, P.J.; Hannah, D.R.; Haughan, A.F.; Madigan, M.J.; Morgan, T.; Pitt, W.R.; Ratcliffe, A.J.; Ray, N.C.; Richard, M.D.; Sharpe, A.; Taylor, A.J.; Whitworth, J.M.; Williams, S.C. Novel 7-methoxy-6-oxazol-5-yl-2,3-dihydro-1H-quinazolin-4-ones as IMPDH inhibitors. Bioorg. Med. Chem. Lett., 2005, 15, 5335-5339.
[98]
Hour, M-J.; Huang, L-J.; Kuo, S-C.; Xia, Y.; Bastow, K.; Nakanishi, Y.; Hamel, E.; Lee, K-H. 6-Alkylamino- and 2,3-dihydro-3′-methoxy-2-phenyl-4-quinazolinones and related compounds: Their synthesis, cytotoxicity, and inhibition of tubulin polymerization. J. Med. Chem., 2000, 43, 4479-4487.
[99]
Cohen, E.; Klarberg, B.; Vaughan, Jr, J.R. Quinazolinone sulfonamides as diuretic agents. J. Am. Chem. Soc., 1959, 81, 5508-5509.
[100]
Levin, J.I.; Chan, P.S.; Bailey, T.; Katocs, A.S. Jr. Venkatesan, A.M. The synthesis of 2,3-dihydro-4(1H) -quinazolinone angiotensin II receptor antagonists. Bioorg. Med. Chem. Lett., 1994, 4, 1141-1146.
[102]
Bonola, G.; Re, P.D.; Magistretti, M.J.; Massarani, E.; Setnikar, I. 1-Aminoacyl-2,3-dihydro-4(1H)-quinazolinone derivatives with choleretic and antifibrillatory activity. J. Med. Chem., 1968, 11, 1136-1139.
[103]
Hirose, N.; Kuriyama, S.; Sohda, S.; Sakaguchi, K.; Yamamoto, H. Studies on benzoheterocyclic derivatives. XIV. synthesis of spiro[cycloalkane-1′,2(1H)quinazolin]-4(3H)-ones and the related compounds. Chem. Pharm. Bull., 1973, 21, 1005-1013.
[104]
Mohammadi, A.A.; Tahery, S.; Askary, S. One-pot five component reaction for synthesis of some novel bis-dihydroquinazolinone derivatives. ARKIVOC, 2014, 5, 310-318.
[105]
da Silva, J.F.M.; Garden, S.J.; Pinto, A.C. The chemistry of isatins: A review from 1975 to 1999. J. Braz. Chem. Soc., 2001, 12, 273-324.
[106]
Sebahar, P.R.; Williams, R.M. The asymmetric total synthesis of (+)- and (−)-spirotryprostatin B. J. Am. Chem. Soc., 2000, 122, 5666-5667.
[107]
Cui, C-B.; Kakeya, H.; Osada, H. Novel mammalian cell cycle inhibitors, spirotryprostatins A and B, produced by Aspergillus fumigatus, which inhibit mammalian cell cycle at G2/M phase. Tetrahedron, 1996, 52, 12651-12666.
[108]
Jossang, A.; Jossang, P.; Hadi, H.A.; Sevenet, T.; Bodo, B. Horsfiline, an oxindole alkaloid from Horsfieldia superba. J. Org. Chem., 1991, 56, 6527-6530.
[109]
Anderton, N.; Cockrum, P.A.; Colegate, S.M.; Edgar, J.A.; Flower, K.; Vit, I.; Willing, R.I. Oxindoles from Phalaris coerulescens. Phytochemistry, 1998, 48, 437-439.
[110]
Jaegli, S.; Vors, J-P.; Neuville, L.; Zhu, J. Total synthesis of horsfiline: A palladium-catalyzed Domino Heck-cyanation srategy. Synlett, 2009, 18, 2997-2999.
[111]
Sharma, M.; Pandey, S.; Chauhan, K.; Sharma, D.; Kumar, B.; Chauhan, P.M.S. Cyanuric chloride catalyzed mild protocol for synthesis of biologically active dihydro/spiro quinazolinones and quinazolinone-glycoconjugates. J. Org. Chem., 2012, 77, 929-937.
[112]
Rueping, M.; Antonchick, A.P.; Sugiono, E.; Grenader, K. Asymmetric Brønsted acid catalysis: Catalytic enantioselective synthesis of highly biologically active dihydroquinazolinones. Angew. Chem. Int. Ed., 2009, 48, 908-910.
[113]
Mohammadi, A.A.; Taheri, S.; Askari, S.; Ahdenov, R. KAl(SO4)2.12H2O (Alum): An efficient catalyst for the synthesis of novel bis[spiro(quinazoline-oxindole)] derivatives via one-pot pseudo five-component reactions. J. Heterocycl. Chem., 2015, 52, 1871-1875.
[114]
Alagarsamy, V.; Murugesan, S. Synthesis and pharmacological evaluation of some 3-(4-methoxyphenyl)-2-substitutedamino-quinazolin-4(3H)-ones as analgesic and anti-inflammatory agents. Chem. Pharm. Bull., 2007, 55, 76-80.
[116]
Xu, L.; Russu, W.A. Molecular docking and synthesis of novel quinazoline analogues as inhibitors of transcription factors NF-kappaB activation and their anti-cancer activities. Bioorg. Med. Chem., 2013, 21, 540-546.
[117]
Wang, Z.; Wang, M.; Yao, X.; Li, Y.; Tan, J.; Wang, L.; Qiao, W.; Geng, Y.; Liu, Y.; Wang, Q. Design, synthesis, and antiviral activity of novel quinazolinones. Eur. J. Med. Chem., 2012, 53, 275-282.
[118]
Tiwari, S.; Mujalda, V.; Sharma, V.; Saxena, P.; Shrivastava, M. Synthesis and evaluation of Schiff’s base of 4-quinazolinone analogues as antimicrobial agents. Asian J. Pharm. Clin. Res, 2012, 5, 98-100.
[119]
Yao, C.; Xiao, Z.; Liu, R.; Li, T.; Jiao, W.; Yu, C. N-Heterocyclic-carbene-catalyzed reaction of α-bromo-α,β-unsaturated aldehyde or α,β-dibromoaldehyde with isatins: An efficient synthesis of spirocyclic oxindole-dihydropyranones. Chem. Eur. J., 2013, 19, 456-459.
[121]
Rana, S.; Natarajan, A. Face selective reduction of the exocyclic double bond in isatin derived spirocyclic lactones. Org. Biomol. Chem., 2013, 11, 244-247.
[122]
Tisseh, Z.N.; Ahmadi, F.; Dabiri, M.; Khavasi, H.R.; Bazgir, A. A novel organocatalytic multicomponent reaction: An efficient synthesis of polysubstituted pyrano-fused spirooxindoles. Tetrahedron Lett., 2012, 53, 3603-3606.
[123]
Mohammadi, A.A.; Askari, S.; Rohi, H.; Soorki, A.A. Design, synthesis, and antibacterial evaluation of some novel 3′-(phenylamino)-1‘H-spiro[indoline-3,2’-quinazoline]-2,4‘(3’H)-dione derivatives. Synth. Commun., 2014, 44, 457-467.
[124]
Sirisha, K.; Bikshapathi, D.; Achaiah, G.; Reddy, V.M. Synthesis, antibacterial and antimycobacterial activities of some new 4-aryl/heteroaryl-2,6-dimethyl-3,5-bis-N-(aryl)-carbamoyl-1,4-dihydropyridines. Eur. J. Med. Chem., 2011, 46, 1564-1571.
[125]
Ahirrao, P. Recent developments in antitubercular drugs. Mini Rev. Med. Chem., 2008, 8, 1441-1451.
[128]
Abbas, H.A.S.; Hafez, H.N.; El-Gazzar, A.R.B.A. Synthesis, in vitro antimicrobial and in vivo antitumor evaluation of novel pyrimidoquinolines and its nucleoside derivatives. Eur. J. Med. Chem., 2011, 46, 21-30.
[129]
Marco-Contelles, J.; León, R.; De Los Ríos, C.; Samadi, A.; Bartolini, M.; Andrisano, V.; Huertas, O.; Barril, X.; Luque, F.J.; Rodríguez-Franco, M.I.; López, B.; López, M.G.; García, A.G.; Carreiras, M.D.C.; Villarroya, M. Tacripyrines, the first Tacrine−Dihydropyridine hybrids, as multitarget-directed ligands for the treatment of Alzheimer’s disease. J. Med. Chem., 2009, 52, 2724-2732.
[131]
Banerjee, D.; Kayal, U.; Karmakar, R.; Maiti, G. 3,4-Dihydro-2H-pyran promoted aerobic oxidative aromatization of 1,3,5-trisubstituted pyrazolines and Hantzsch 1,4-dihydropyridines. Tetrahedron Lett., 2014, 55, 5333-5337.
[132]
Prasanthi, G.; Prasad, K.V.S.R.G.; Bharathi, K. Synthesis, anticonvulsant activity and molecular properties prediction of dialkyl 1-(di(ethoxycarbonyl)methyl)-2,6-dimethyl-4-substituted-1,4-dihydropyridine-3,5-dicarboxylates. Eur. J. Med. Chem., 2014, 73, 97-104.
[134]
Naik, M.; Raichurkar, A.; Bandodkar, B.S.; Varun, B.V.; Bhat, S.; Kalkhambkar, R.; Murugan, K.; Menon, R.; Bhat, J.; Paul, B.; Iyer, H.; Hussein, S.; Tucker, J.A.; Vogtherr, M.; Embrey, K.J.; McMiken, H.; Prasad, S.; Gill, A.; Ugarkar, B.G.; Venkatraman, J.; Read, J.; Panda, M. Structure guided lead generation for M. tuberculosis thymidylate kinase (Mtb TMK): Discovery of 3-cyanopyridone and 1,6-naphthyridin-2-one as potent inhibitors. J. Med. Chem., 2015, 58, 753-766.
[135]
Bai, M.; Cui, B-D.; Zuo, J.; Zhao, J-Q.; You, Y.; Chen, Y-Z.; Xu, X-Y.; Zhang, X-M.; Yuan, W-C. Quinine-catalyzed asymmetric domino Mannich-cyclization reactions of 3-isothiocyanato oxindoles with imines for the synthesis of spirocyclic oxindoles. Tetrahedron, 2015, 71, 949-955.
[137]
Niu, B.; Xie, P.; Bian, Z.; Zhao, W.; Zhang, M.; Zhou, Y.; Feng, L.; Pittman, Jr, C.U.; Zhou, A. Synthesis of nitromethyl-substituted oxindole derivatives via a desulfonylation cascade. Synlett, 2015, 26, 635-638.
[138]
Bazgir, A.; Tisseh, Z.N.; Mirzaei, P. An efficient synthesis of spiro[dibenzo[b,i]xanthene-13,3′-indoline]-pentaones and 5H-dibenzo[b,i]xanthene-tetraones. Tetrahedron Lett., 2008, 49, 5165-5168.
[139]
Alizadeh, A.; Zohreh, N. A unique approach to catalyst-free, one-pot synthesis of spirooxindole-pyrazolines. Synlett, 2012, 3, 428-432.
[140]
Chen, X-B.; Liu, X-M.; Huang, R.; Yan, S-J.; Lin, J. Three‐component synthesis of indanone‐fused spirooxindole derivatives. Eur. J. Org. Chem., 2013, 21, 4607-4613.
[141]
Mohammadi, A.A.; Taheri, S.; Amouzegar, A. An efficient one-pot four-component synthesis of some new spirooxindoledihydropyridine using alum as a heterogeneous green catalyst. J. Heterocycl. Chem., 2017, 54, 2085-2089.
[142]
Peterson, E.A.; Boezio, A.A.; Andrews, P.S.; Boezio, C.M.; Bush, T.L.; Cheng, A.C.; Choquette, D.; Coats, J.R.; Colletti, A.E.; Copeland, K.W.; DuPont, M.; Graceffa, R.; Grubinska, B.; Kim, J.L.; Lewis, R.T.; Liu, J.; Mullady, E.L.; Potashman, M.H.; Romero, K.; Shaffer, P.L.; Stanton, M.K.; Stellwagen, J.C.; Teffera, Y.; Yi, S.; Cai, T.; La, D.S. Discovery and optimization of potent and selective imidazopyridine and imidazopyridazine mTOR inhibitors. Bioorg. Med. Chem. Lett., 2012, 22, 4967-4974.
[143]
Li, G-Y.; Jung, K.H.; Lee, H.; Son, M.K.; Seo, J.; Hong, S-W.; Jeong, Y.; Hong, S.; Hong, S-S. A novel imidazopyridine derivative, HS-106, induces apoptosis of breast cancer cells and represses angiogenesis by targeting the PI3K/mTOR pathway. Cancer Lett., 2013, 329, 59-67.
[144]
Lee, H.; Li, G-Y.; Jeong, Y.; Jung, K.H.; Lee, J-H.; Ham, K.; Hong, S.; Hong, S-S. A novel imidazopyridine analogue as a phosphatidylinositol 3-kinase inhibitor against human breast cancer. Cancer Lett., 2012, 318, 68-75.
[146]
Alizadeh, A.; Mikaeili, A.; Firuzyar, T. One-pot, pseudo five-component synthesis of spirooxindole derivatives containing fused 1,4-dihydropyridines in water. Synthesis, 2012, 44, 1380-1384.
[148]
Strakov, A.Y.; Petrova, M.V.; Gurkovskii, A.I.; Neiland, O.Y. Reaction of 2-formyl-1,3-cyclanediones with N,N′-substituted 1,1′-diamino-2-nitroethylenes. Chem. Heterocycl. Compd., 1999, 35, 286-289.
[150]
Arrayas, R.G.; Adrido, J.; Carretero, J.C. Recent applications of chiral ferrocene ligands in asymmetric catalysis. Angew. Chem. Int. Ed., 2006, 45, 7674-7715.
[151]
Barlow, S.; Marderin, S.R. In Functional Organic Materials; Muller, T.J.J.; Bunz, U.H.F., Eds.; Wiley-VCH: Weinheim, 2007, p. 393.
[152]
Hamels, D.; Dansette, P.M.; Hillard, E.A.; Top, S.; Vessières, A.; Herson, P.; Jaouen, G.; Mansuy, D. Ferrocenylquinonemethides as strong antiproliferative agents: formation by metabolic and chemical oxidation of ferrocenyl phenols. Angew. Chem. Int. Ed., 2009, 48, 9124-9126.
[153]
Du, Y.; Qiao, H.; Han, L.; Zhu, N.; Suo, Q. A facile synthesis and ring-opening reactions of novel 2-ferrocenyl-3,4-dihydropyrans. Heterocycles, 2014, 89, 1463-1471.
[155]
Pramod, K. Calcium oxide catalyzed synthesis of chalcone under microwave condition. Curr. Microw. Chem., 2015, 2, 144-149.
[156]
Sheldon, R.A. Green solvents for sustainable organic synthesis: State of the art. Green Chem., 2005, 7, 267-278.
[157]
Walsh, P.J.; Li, H.; Anaya, P.C. A green chemistry approach to asymmetric catalysis: Solvent-free and highly concentrated reactions. Chem. Rev., 2007, 107, 2503-2545.
[158]
Caddic, K.S. Microwave assisted organic reactions. Tetrahedron, 1995, 51, 10403-10432.
[159]
Madje, B.R.; Ubale, M.B.; Bharad, J.V.; Shingare, M.S. Alum an efficient catalyst for Erlenmeyer synthesis. S. Afr. J. Chem., 2010, 63, 158-161.
[160]
Mohammadi, A.A.; Qaraat, H. An efficient and convenient protocol for the synthesis of novel 1′H-spiro[isoindoline-1,2′-quinazoline]-3,4′(3′H)-dione derivatives. Monatsh. Chem., 2009, 140, 401-404.
[161]
Dabiri, M.; Salehi, P.; Otokesh, S.; Baghbanzadeh, M.; Bahramnejad, M. Alum (KAl(SO4)2 · 12H2O): An efficient and inexpensive catalyst for the one-pot synthesis of 1,3,4-oxadiazoles under solvent-free conditions. Monatsh. Chem., 2007, 138, 1253-1255.
[162]
Azizian, J.; Mohammadi, A.A.; Karimi, A.R.; Mohammadizadeh, M.R. KAl(SO4)2·12H2O supported on silica gel as a novel heterogeneous system catalyzed biginelli reaction: One-pot synthesis of di-hydropyrimidinones under solvent-free conditions. Appl. Catal., 2006, 300, 85-88.
[163]
Dabiri, M.; Baghbanzadeh, M.; Kiani, S.; Vakilzadeh, Y. Alum (KAl(SO4)2 · 12H2O)- catalyzed one-pot synthesis of coumarins under solvent-free conditions. Monatsh. Chem., 2007, 138, 997-999.
[164]
Butler, R.N.; Coyne, A.G. Water: nature’s reaction enforcer comparative effects for organic synthesis “in-water” and “on-water”. Chem. Rev., 2010, 110, 6302-6337.
[165]
Kumaravel, K.; Vasuki, G. Multi-component reactions in water. Curr. Org. Chem., 2009, 13, 1820-1841.
[166]
Chandrappa, S.; Kavitha, C.V.; Shahabuddin, M.S.; Vinaya, K.; Ananda, C.S.; Ranganatha, S.R.; Raghavan, S.C.; Rangappa, K.S. Synthesis of 2-(5-((5-(4-chlorophenyl)furan-2-yl)methylene)-4-oxo-2-thioxothiazolidin-3-yl)acetic acid derivatives and evaluation of their cytotoxicity and induction of apoptosis in human leukemia cells. Bioorg. Med. Chem., 2009, 17, 2576-2584.
[167]
Lesyk, R.; Zimenkovsky, B.; Subtelna, I.; Nektegayev, I.; Kazmirchuk, G. Synthe and anti inflammatory activity of some 2-arylamino-2-thiazoline-4-ones. Acta Pol. Pharm. Drug Res., 2003, 6, 457-466.
[168]
Lesyk, R.B.; Zimenkovsky, B.S. 4-Thiazolidones: centenarian history, current status and perspectives for modern organic and medicinal chemistry. Curr. Org. Chem., 2004, 8, 1547-1577.
[169]
Marko, R.; Botta, L.; Gianni, C.; Martino, B.; Botta, M. Practical one-pot two-step protocol for the microwave-assisted synthesis of highly functionalized rhodanine derivatives. J. Comb. Chem., 2010, 12, 200-205.
[170]
Taylor, Jr, E.C.; Wolinsky, J.; Lee, H-H. The reaction of α-cyanobenzyl benzenesulfonate with dithiocarbamates. J. Am. Chem. Soc., 1954, 76, 1870-1872.
[171]
Hu, B.; Malamas, M.; Ellingboe, J.; Largis, E.; Han, S.; Mulvey, R.; Tillett, J. New oxadiazolidinedione derivatives as potent and selective human β3 agonists. Bioorg. Med. Chem. Lett., 2001, 11, 981-984.
[172]
Pulici, M.; Quartieri, F. Traceless solid-phase synthesis of 2-amino-5-alkylidene-thiazol-4-ones. Tetrahedron Lett., 2005, 46, 2387-2391.
[173]
Pansare, N.D.; Shinde, D.B. A facile synthesis of (Z)-5-(substituted)-2-(methylthio)thiazol-4(5H)-one using microwave irradiation and conventional method. Tetrahedron Lett., 2014, 55, 1107-1110.
[174]
Jadhav, S.; Shioorkar, M.; Chavan, O.; Sarkate, A.; Shinde, D.; Pardeshi, R. Alum [KAl(SO4)2·12H2O] catalyzed Microwave assisted synthesis of 5-arylidine-2-(methylthio)-thiazolone derivatives in water. Eur. J. Chem., 2015, 6, 410-416.
[175]
Jin, G.; Lee, S.; Choi, M. Son. S.; Kim, G.-W.; Oh, J.-W.; Lee, C.; Lee, K. Chemical genetics-based discovery of indole derivatives as HCV NS5B polymerase inhibitors. Eur. J. Med. Chem., 2014, 75, 413-425.
[176]
Madadi, N.R.; Penthala, N.R.; Janganati, V.; Crooks, P.A. Synthesis and anti-proliferative activity of aromatic substituted 5-((1-benzyl-1H-indol-3-yl)methylene)-1,3-dimethylpyrimidine-2,4,6(1H,3H,5H)-trione analogs against human tumor cell lines. Bioorg. Med. Chem. Lett., 2014, 24, 601-603.
[177]
Faulkner, D.J. Marine natural products. Nat. Prod. Rep., 2001, 18, 1-49.
[178]
Ahuja, P.; Siddiqui, N. Anticonvulsant evaluation of clubbed indole-1,2,4-triazine derivatives: A synthetic approach. Eur. J. Med. Chem., 2014, 80, 509-522.
[179]
Zhang, M-Z.; Chen, Q.; Yang, G-F. A review on recent developments of indole-containing antiviral agents. Eur. J. Med. Chem., 2015, 89, 421-441.
[180]
Alvarez, R.; Puebla, P.; Diaz, J.F.; Bento, A.C.; Garcia-Navas, R.; de la Iglesia-Vicente, J.; Mollinedo, F.; Andreu, J.M.; Medarde, M.; Peláez, R. Endowing indole-based tubulin inhibitors with an anchor for derivatization: Highly potent 3-substituted indolephenstatins and indoleisocombretastatins. J. Med. Chem., 2013, 56, 2813-2827.
[181]
Mielczarek, M.; Thomas, V.; Cong, M.; Kandemir, H.; Yang, X.; Bhadbhade, M.; Griffith, R.; Lewis, P.J.; Kumar, N. Synthesis and biological activity of novel mono-indole and mono-benzofuran inhibitors of bacterial transcription initiation complex formation. Bioorg. Med. Chem., 2015, 23, 1763-1775.
[182]
Panathur, N.; Gokhale, N. kumar, U.; Pulla, D.; Koushik, V.; Yogeeswari, P.; Sriram, D. New indole–isoxazolone derivatives: synthesis, characterisation and in vitro SIRT1 inhibition studies. Bioorg. Med. Chem. Lett., 2015, 25, 2768-2772.
[183]
Banik, B.K.; Fernandez, M.; Alvarez, C. Iodine-catalyzed highly efficient Michael reaction of indoles under solvent-free condition. Tetrahedron Lett., 2005, 46, 2479-2482.
[184]
Nayak, S.K. Copper (II) bromide–catalyzed conjugate addition of indoles to α,β‐enones. Synth. Commun., 2006, 36, 1307-1315.
[185]
Bandini, M.; Cozzi, P.G.; Giacomini, M.; Melchiorre, P.; Selva, S.; Umani-Ronchi, A. Sequential one-pot InBr3-catalyzed 1,4- then 1,2-nucleophilic addition to enones. J. Org. Chem., 2002, 67, 3700-3704.
[186]
Huang, Z-H.; Zou, J-P.; Jiang, W-Q. Gallium (III) triiodide catalyzed conjugate addition of indoles with α,β-unsaturated ketones. Tetrahedron Lett., 2006, 47, 7965-7968.
[187]
Bartoli, G.; Bartolacci, M.; Bosco, M.; Foglia, G.; Giuliani, A.; Marcantoni, E.; Sambri, L.; Torregiani, E. The Michael addition of indoles to α, β-unsaturated ketones catalyzed by CeCl3·7H2O−NaI combination supported on silica gel. J. Org. Chem., 2003, 68, 4594-4597.
[188]
Zhan, Z-P.; Yang, R-F.; Lang, K. Samarium triiodide-catalyzed conjugate addition of indoles with electron-deficient olefins. Tetrahedron Lett., 2005, 46, 3859-3862.
[189]
Kumar, V.; Kaur, S.; Kumar, S. ZrCl4 catalyzed highly selective and efficient Michael addition of heterocyclic enamines with α,β-unsaturated olefins. Tetrahedron Lett., 2006, 47, 7001-7005.
[190]
Ko, S.; Lin, C.; Tu, Z.; Wang, Y-F.; Wang, C-C.; Yao, C-F. CAN and iodine-catalyzed reaction of indole or 1-methylindole with α,β-unsaturated ketone or aldehyde. Tetrahedron Lett., 2006, 47, 487-492.
[191]
Gu, Y.; Ogawa, C.; Kobayashi, S. Silica-supported sodium sulfonate with ionic liquid: A neutral catalyst system for Michael reactions of indoles in water. Org. Lett., 2007, 9, 175-178.
[192]
Jafari, A.A.; Moradgholi, F.; Tamaddon, F. A highly efficient michael addition of indoles to α,β-unsaturated electron-deficient compounds in acidic SDS micellar media. J. Iran. Chem. Soc, 2009, 6, 588-593.
[193]
Harrington, P.E.; Kerr, M.A. Reaction of indoles with electron deficient olefins catalyzed by Yb(OTf)3.3H2O. Synlett, 1996, 11, 1047-1048.
[194]
Mori, Y.; Kakumoto, K.; Manabe, K.; Kobayashi, S. Michael reactions in water using Lewis acid–surfactant-combined catalysts. Tetrahedron Lett., 2000, 41, 3107-3111.
[195]
Pardeshi, R.K. On water: alum catalyzed synthesis of 3-(1H-indol-3-yl)-1,3-diphenylpropan-1-ones under microwave irradiation method. J. Chem. Pharm. Res., 2016, 8, 275-278.
[196]
Hesse, S.; Kirsch, G. A rapid access to coumarin derivatives (using Vilsmeier–Haack and Suzuki cross-coupling reactions). Tetrahedron Lett., 2002, 43, 1213-1215.
[197]
Melagraki, G.; Afantitis, A.; Igglessi-Markopouloua, O.; Detsi, A.; Koufaki, M.; Kontogiorgis, C.; Hadjipavlou-Litinac, D.J. Synthesis and evaluation of the antioxidant and anti-inflammatory activity of novel coumarin-3-aminoamides and their alpha-lipoic acid adducts. Eur. J. Med. Chem., 2009, 44, 3020-3026.
[198]
Jung, J-C.; Jung, Y-J.; Park, O-S. A convenient one-pot synthesis of 4-hydroxycoumarin, 4-hydroxythiocoumarin, and 4-hydroxyquinolin-2(1H)-one. Synth. Commun., 2001, 31, 1195-1200.
[199]
Lee, B.H.; Clothier, M.F.; Dutton, F.E.; Conder, G.A.; Johnson, S.S. Anthelmintic β-hydroxyketoamides (BKAs). Bioorg. Med. Chem. Lett., 1998, 8, 3317-3320.
[200]
Jung, J.C.; Lee, J.H.; Oh, S.; Lee, J.G.; Park, O.S. Synthesis and antitumor activity of 4-hydroxycoumarin derivatives. Bioorg. Med. Chem. Lett., 2004, 14, 5527-5531.
[201]
Brufola, G.; Fringuelli, F.; Piermatti, O.; Pizzo, F. Simple and efficient one-pot preparation of 3-substituted coumarins in water. Heterocycles, 1996, 43, 1257-1266.
[202]
Yadav, J.S.; Reddy, B.V.S.; Basak, A.K.; Visali, B.; Narsaiah, A.V.; Nagaiah, K. Phosphane‐catalyzed Knoevenagel condensation: A facile synthesis of α‐cyanoacrylates and α‐cyanoacrylonitriles. Eur. J. Org. Chem., 2004, 3, 546-551.
[203]
Narsaiah, A.V.; Nagaiah, K. An efficient Knoevenagel condensation catalyzed by LaCl3.7H2O in heterogeneous medium. Synth. Commun., 2003, 33, 3825-3832.
[204]
Jadhav, S.A.; Shioorkar, M.G.; Chavan, O.S.; Sarkate, A.P.; Shinde, D.B.; Pardeshi, R.K. An alum [KAl(SO4)2.12H2O] catalyzed microwave assisted multicomponent synthesis of bioactive functionalized benzylpyrazolyl coumarin and quinolinone derivatives in PEG. Chem. Mat. Res, 2015, 7, 105-111.
[205]
Alafeefy, A.M.; Ashour, A.E.; Prasad, O.; Sinha, L.; Pathak, S.; Alasmari, F.A.; Rishi, A.K.; Abdel-Aziz, H.A. Development of certain novel N-(2-(2-(2-oxoindolin-3-ylidene)hydrazinecarbonyl) phenyl)-benzamides and 3-(2-oxoindolin-3-ylideneamino)-2-substituted quinazolin-4(3H)-ones as CFM-1 analogs: Design, synthesis, QSAR analysis and anticancer activity. Eur. J. Med. Chem., 2015, 92, 191-201.
[206]
Alagarsamy, V.; Murugesan, S.; Dhanabal, K.; Murugan, M.; De Clercq, E. Anti-HIV, antibacterial and antifungal activities of some novel 2-methyl-3-(substituted methylamino)-(3H)-quinazolin- 4-ones. Indian J. Pharm. Sci., 2007, 69, 304-307.
[207]
Hussain, M.A.; Chiu, A.T.; Price, W.A.; Timmermans, P.B.; Shefter, E. Antihypertensive activity of 2[(2-hydroxyphenyl) amino]-4(3H)-quinazolinone. Pharm. Res., 1988, 5, 242-244.
[208]
Ramamohan, M.; Raghavendrarao, K.; Sridhar, R.; Nagaraju, G.; Chandrasekhar, K.B.; Jayapraksh, S. A concise approach to substituted quinazolin-4(3H)-one natural products catalyzed by iron (III) chloride. Tetrahedron Lett., 2016, 57, 1418-1420.
[209]
Ma, C.; Li, Y.; Niu, S.; Zhang, H.; Liu, X.; Che, Y. N-Hydroxypyridones, phenylhydrazones, and a quinazolinone from isaria farinosa. J. Nat. Prod., 2011, 74, 32-37.
[210]
Zhuang, Y.; Teng, X.; Wang, Y.; Liu, P.; Li, G.; Zhu, W. New quinazolinone alkaloids within rare amino acid residue from coral-associated fungus, Aspergillus versicolor LCJ-5-4. Org. Lett., 2011, 13, 1130-1133.
[211]
Bergman, J.; Brynolf, A. Synthesis of chrysogine, a metabolite of Penicillium chrysogenum and some related 2-substituted 4-(3H)-quinazolin. Tetrahedron, 1990, 46, 1295-1310.
[212]
Eguchi, S.; Suzuki, T.; Okawa, T.; Matsushita, Y.; Yashima, E.; Okamoto, Y. Synthesis of optically active vasicinone based on intramolecular Aza-Wittig reaction and asymmetric oxidation. J. Org. Chem., 1996, 61, 7316-7319.
[213]
Kobayashi, S.; Ueno, M.; Suzuki, R.; Ishitani, H.; Kim, H.S.; Wataya, Y. Catalytic asymmetric synthesis of antimalarial alkaloids febrifugine and isofebrifugine and their biological activity. J. Org. Chem., 1999, 64, 6833-6841.
[214]
Takaya, Y.; Tasaka, H.; Chiba, T.; Uwai, K.; Tanitsu, M.A.; Kim, H.S.; Wataya, Y.; Miura, M.; Takeshita, M.; Oshima, Y. New type of febrifugine analogues, bearing a quinolizidine moiety, show potent antimalarial activity against Plasmodium malaria parasite. J. Med. Chem., 1999, 42, 3163-3166.
[215]
Kacker, I.K.; Zaheer, S.H. Potential analgesics. Part I. synthesis of substituted 4-quinazolones. J. Indian Chem. Soc., 1951, 28, 253-260.
[216]
Mirza, B. An efficient metal-free synthesis of 2-amino-substituted-4(3H)-quinazolinones. Tetrahedron Lett., 2016, 57, 146-147.
[217]
Zhu, X.; Kang, S.R.; Xia, L.; Lee, J.; Basavegowda, N.; Lee, Y.R. Efficient Cu(OTf)2-catalyzed synthesis of novel and diverse 2,3-dihydroquinazolin-4(1H)-ones. Mol. Divers., 2015, 19, 67-75.
[218]
Saad, S.M.; Saleem, M.; Perveen, S.; Alam, M.T.; Khan, K.M.; Choudhary, M.I. Synthesis and biological potential assessment of 2-substituted quinazolin-4(3H)-ones as inhibitors of phosphodiesterase-I and carbonic anhydrase-II. Med. Chem., 2015, 11, 336-341.
[219]
Mohammadi, A.A.; Ahdenov, R.; Sooki, A.A. Design, synthesis and antibacterial evaluation of 2-alkyl- and 2-aryl-3-(phenylamino)quinazolin-4(3H)-one derivatives. Heterocycl. Commun., 2017, 23, 105-108.
[220]
Baeza, A.; Nájera, C.; Retamosa, M.G.; Sansano, J.M. Solvent-free synthesis of cyanohydrin derivatives catalysed by triethylamine. Synthesis, 2005, 16, 2787-2797.
[221]
Antonchick, A.P.; Gerding-Reimers, C.; Catarinella, M.; Schürmann, M.; Preut, H.; Ziegler, S.; Rauh, D.; Waldmann, H. Highly enantioselective synthesis and cellular evaluation of spirooxindoles inspired by natural products. Nat. Chem., 2010, 2, 735-740.
[222]
Pajouhesh, H.; Parsons, R.; Popp, F.D. Potential anticonvulsants VI: Condensation of isatins with cyclohexanone and other cyclic ketones. J. Pharm. Sci., 1983, 72, 318-321.
[223]
Yong, S.R.; Ung, A.T.; Pyne, S.G.; Skelton, B.W.; White, A.H. Synthesis of novel 3′-spirocyclic-oxindole derivatives and assessment of their cytostatic activities. Tetrahedron, 2007, 63, 5579-5586.
[225]
Rao, B.M.; Reddy, G.N.; Reddy, T.V.; Prabhavathi Devi, B.L.A.; Prasad, R.B.N.; Yadav, J.S.; Subba Reddy, B.V. Carbon–SO3H: a novel and recyclable solid acid catalyst for the synthesis of spiro [4H-pyran-3,3′-oxindoles]. Tetrahedron Lett., 2013, 54, 2466-2471.
[226]
Chai, S-J.; Lai, Y-F.; Xu, J-C.; Zheng, H.; Zhu, Q.; Zhang, P-F. One‐pot synthesis of spirooxindole derivatives catalyzed by lipase in the presence of water. Adv. Synth. Catal., 2011, 353, 371-375.
[227]
Rad-Moghadam, K.; Youseftabar-Miri, L. Synthesis of novel spiro[dihydropyridine-oxindole] compounds in water. Synlett, 2010, 13, 1969-1973.
[228]
Wang, L-M.; Jiao, N.; Qiu, J.; Yu, J-J.; Liu, J-Q.; Guo, F-L.; Liu, Y. Sodium stearate-catalyzed multicomponent reactions for efficient synthesis of spirooxindoles in aqueous micellar media. Tetrahedron, 2010, 66, 339-343.
[229]
Paul, S.; Das, A. Dual role of the polymer supported catalyst PEG-OSO3H in aqueous reaction medium: Synthesis of highly substituted structurally diversified coumarin and uracil fused spirooxindoles. Tetrahedron Lett., 2013, 54, 1149-1154.
[230]
Ghahremanzadeh, R.; Rashid, Z.; Zarnani, A.H.; Naeimi, H. A rapid and high efficient microwave promoted multicomponent domino reaction for the synthesis of spirooxindole derivatives. J. Ind. Eng. Chem., 2014, 20, 4076-4084.