[1]
Sheth S, Brito R, Mukherjea D, Rybak LP, Ramkumar V. Adenosine receptors: expression, function and regulation. Int J Mol Sci 2014; 15(2): 2024-52.
[2]
Dal Ben D, Lambertucci C, Vittori S, Volpini R, Cristalli G. GPCRs as therapeutic targets: a view on adenosine receptors structure and functions, and molecular modeling support. J Iran Chem Soc 2005; 2: 176-88.
[3]
Fredholm BB, IJzerman AP, Jacobson KA, Klotz K-N, Linden J. International Union of Pharmacology. XXV. Nomenclature and classification of adenosine receptors. Pharmacol Rev 2001; 53: 527-52.
[4]
Valls MD, Cronstein BN, Montesinos MC. Adenosine receptor agonists for promotion of dermal wound healing. Biochem Pharmacol 2009; 77: 1117-24.
[5]
Morelli M, Carta AR, Jenner P. Adenosine A 2A receptors and Parkinson’s disease.In: ed. Adenosine receptors in health and disease.
Springer 2009; pp. 589-615
[6]
Gessi S, Bencivenni S, Battistello E, et al. Inhibition of A2A Adenosine Receptor Signaling in Cancer Cells Proliferation by the Novel Antagonist TP455. Front Pharmacol 2017; 8: 888.
[7]
Field JJ, Nathan DG, Linden J. The role of adenosine signaling in sickle cell therapeutics. Hematol Oncol Clin North Am 2014; 28: 287-99.
[8]
Haskó G, Pacher P. A2A receptors in inflammation and injury: lessons learned from transgenic animals. J Leukoc Biol 2008; 83: 447-55.
[9]
de Lera Ruiz M, Lim Y-H, Zheng J. Adenosine A2A receptor as a drug discovery target. J Med Chem 2013; 57: 3623-50.
[10]
Kishore DP, Balakumar C, Rao AR, Roy PP, Roy K. QSAR of adenosine receptor antagonists: exploring physicochemical requirements for binding of pyrazolo [4, 3-e]-1, 2, 4-triazolo [1, 5-c] pyrimidine derivatives with human adenosine A 3 receptor subtype. Bioorg Med Chem Lett 2011; 21: 818-23.
[11]
Balakumar C, Kishore DP, Rao KV, et al. Design, microwave-assisted synthesis and in silico docking studies of new 4H-pyrimido [2, 1-b] benzothiazole-2-arylamino-3-cyano-4-ones as possible adenosine A2B receptor antagonists. Indian J Chem Sect B 2012; 51B(48): 1105-13.
[12]
Banda V, Chandrasekaran B, Köse M, et al. Synthesis of Novel Pyrido [3, 2‐e][1, 2, 4] triazolo [1, 5‐c] pyrimidine Derivatives: Potent and Selective Adenosine A3 Receptor Antagonists. Arch Pharm 2013; 346: 699-707.
[13]
Lebon G, Warne T, Edwards PC, et al. Agonist-bound adenosine A 2A receptor structures reveal common features of GPCR activation. Nature 2011; 474: 521.
[14]
Xu F, Wu H, Katritch V, et al. Structure of an agonist-bound human A2A adenosine receptor. Science 2011; 332: 322-7.
[15]
Doré AS, Robertson N, Errey JC, et al. Structure of the adenosine A2A receptor in complex with ZM241385 and the xanthines XAC and caffeine. Structure 2011; 19: 1283-93.
[16]
Lebon G, Edwards PC, Leslie AG, Tate CG. Molecular determinants of CGS21680 binding to the human adenosine A2A receptor. Mol Pharmacol 2015; 87(6): 907-15.
[17]
Jaakola V-P, Griffith MT, Hanson MA, et al. The 2.6 angstrom crystal structure of a human A2A adenosine receptor bound to an antagonist. Science 2008; 322: 1211-7.
[18]
Sun B, Bachhawat P, Chu ML-H, et al. Crystal structure of the adenosine A2A receptor bound to an antagonist reveals a potential allosteric pocket. Proc Natl Acad Sci USA 2017; 114(8): 2066-71.
[19]
Piirainen H, Ashok Y, Nanekar RT, Jaakola V-P. Structural features of adenosine receptors: from crystal to function. Biochim Biophys Acta Biomembr 2011; 1808: 1233-44.
[20]
Thal DM, Vuckovic Z, Draper-Joyce CJ, et al. Recent advances in the determination of G protein-coupled receptor structures. Curr Opin Struct Biol 2018; 51: 28-34.
[21]
Bill RM, Henderson PJ, Iwata S, et al. Overcoming barriers to membrane protein structure determination. Nat Biotechnol 2011; 29: 335.
[22]
Rucktooa P, Cheng RK, Segala E, et al. Towards high throughput GPCR crystallography: in meso soaking of adenosine A 2A Receptor crystals. Sci Rep 2018; 8: 41.
[23]
Weinert T, Olieric N, Cheng R, et al. Serial millisecond crystallography for routine room-temperature structure determination at synchrotrons. Nat Commun 2017; 8: 542.
[24]
Carpenter B, Nehmé R, Warne T, Leslie AG, Tate CG. Structure of the adenosine A 2A receptor bound to an engineered G protein. Nature 2016; 536: 104.
[25]
Hino T, Arakawa T, Iwanari H, et al. G-protein-coupled receptor inactivation by an allosteric inverse-agonist antibody. Nature 2012; 482: 237.
[26]
García-Nafría J, Lee Y, Bai X, Carpenter B, Tate CG. Cryo-EM structure of the adenosine A2A receptor coupled to an engineered heterotrimeric G protein. eLife 2018; 7e35946
[27]
Eddy MT, Lee M-Y, Gao Z-G, et al. Allosteric coupling of drug binding and intracellular signaling in the A2A adenosine receptor. Cell 2018; 172: 68-80.e12.
[28]
Batyuk A, Galli L, Ishchenko A, et al. Native phasing of x-ray free-electron laser data for a G protein–coupled receptor. Sci Adv 2016; 2e1600292
[29]
Cheng RK, Segala E, Robertson N, et al. Structures of human A1 and A2A adenosine receptors with xanthines reveal determinants of selectivity. Structure 2017; 25: 1275-85.e4.
[30]
White KL, Eddy MT, Gao Z-G, et al. Structural Connection between Activation Microswitch and Allosteric Sodium Site in GPCR Signaling. Structure 2018; 26: 259-69.e5.
[31]
Jacobson KA, Gao Z-G. Adenosine receptors as therapeutic targets. Nat Rev Drug Discov 2006; 5: 247.
[32]
Chandrasekaran B, Agrawal N, Kaushik S. Pharmacophore Development.In: Ranganathan S, Gribskov M, Nakai K, Schönbach C,
ed.Encyclopedia of Bioinformatics and Computational Biology. Academic Press Oxford 2019; pp. 677-87.
[33]
Kalva S, Vinod D, Saleena LM. Combined structure-and ligand-based pharmacophore modeling and molecular dynamics simulation studies to identify selective inhibitors of MMP-8. J Mol Model 2014; 20: 2191.
[34]
Kalva S, Vadivelan S, Sanam R, Jagarlapudi SA, Saleena LM. Lead identification and optimization of novel collagenase inhibitors; pharmacophore and structure based studies. Bioinformation 2012; 8: 301.
[35]
Kalva S, Saranyah K, Suganya PR, Nisha M, Saleena LM. Potent inhibitors precise to S1′ loop of MMP-13, a crucial target for osteoarthritis. J Mol Graph Model 2013; 44: 297-310.
[36]
Xu Z, Cheng F, Da C, Liu G, Tang Y. Pharmacophore modeling of human adenosine receptor A 2A antagonists. J Mol Model 2010; 16: 1867-76.
[37]
Wei J, Wang S, Gao S, Dai X, Gao Q. 3D-pharmacophore models for selective A2A and A2B adenosine receptor antagonists. J Chem Inf Model 2007; 47: 613-25.
[38]
Khanfar MA, Al-Qtaishat S, Habash M, Taha MO. Discovery of potent adenosine A2a antagonists as potential anti-Parkinson disease agents. Non-linear QSAR analyses integrated with pharmacophore modeling. Chem Biol Interact 2016; 254: 93-101.
[39]
Bacilieri M, Ciancetta A, Paoletta S, et al. Revisiting a receptor-based pharmacophore hypothesis for human A2a adenosine receptor antagonists. J Chem Inf Model 2013; 53: 1620-37.
[40]
Mantri M, de Graaf O, van Veldhoven J, et al. 2-Amino-6-furan-2-yl-4-substituted nicotinonitriles as A2A adenosine receptor antagonists. J Med Chem 2008; 51: 4449-55.
[41]
Chen JB, Liu EM, Chern TR, et al. Design and Synthesis of Novel Dual‐Action Compounds Targeting the Adenosine A2A Receptor and Adenosine Transporter for Neuroprotection. ChemMedChem 2011; 6: 1390-400.
[42]
Shoichet BK. Virtual screening of chemical libraries. Nature 2004; 432: 862.
[43]
Lionta E, Spyrou GK, Vassilatis D, Cournia Z. Structure-based virtual screening for drug discovery: principles, applications and recent advances. Curr Top Med Chem 2014; 14: 1923-38.
[44]
Taddese B, Simpson LM, Wall ID, Blaney FE, Reynolds CA. Modeling active GPCR conformations. In: ed. Methods in enzymology.
Elsevier, 2013; pp. 21-35.
[46]
Langmead CJ, Andrews SP, Congreve M, et al. Identification of novel adenosine A2A receptor antagonists by virtual screening. J Med Chem 2012; 55: 1904-9.
[47]
Congreve M, Andrews SP, Doré AS, et al. Discovery of 1, 2, 4-triazine derivatives as adenosine A2A antagonists using structure based drug design. J Med Chem 2012; 55: 1898-903.
[48]
Wei J, Qu W, Ye Y, Gao Q. 3D pharmacophore based virtual screening of A2A adenosine receptor antagonists. Protein Pept Lett 2010; 17: 332-9.
[49]
Katritch V, Jaakola V-P, Lane JR, et al. Structure-based discovery of novel chemotypes for adenosine A2A receptor antagonists. J Med Chem 2010; 53: 1799-809.
[50]
Lagarias P, Vrontaki E, Lambrinidis G, et al. Discovery of Novel Adenosine Receptor Antagonists through a Combined Structure-and Ligand-Based Approach Followed by Molecular Dynamics Investigation of Ligand Binding Mode. J Chem Inf Model 2018; 58: 794-815.
[51]
Carlsson J, Yoo L, Gao Z-G, Irwin JJ, Shoichet BK, Jacobson KA. Structure-based discovery of A2A adenosine receptor ligands. J Med Chem 2010; 53: 3748-55.
[52]
Chen D, Ranganathan A, IJzerman AP, Siegal G, Carlsson J. Complementarity between in silico and biophysical screening approaches in fragment-based lead discovery against the A2A adenosine receptor. J Chem Inf Model 2013; 53: 2701-14.
[53]
Rodríguez D, Gao Z-G, Moss SM, Jacobson KA, Carlsson J. Molecular docking screening using agonist-bound GPCR structures: probing the A2A adenosine receptor. J Chem Inf Model 2015; 55: 550-63.
[54]
Deb PK, Mailavaram R, Chandrasekaran B, et al. Synthesis, adenosine receptor binding and molecular modelling studies of novel thieno [2, 3‐d] pyrimidine derivatives. Chem Biol Drug Des 2018; 91: 962-9.
[55]
Agrawal N, Skelton AA. 12-crown-4 ether disrupts the patient brain-derived amyloid-β-fibril trimer: Insight from all-atom molecular dynamics simulations. ACS Chem Neurosci 2016; 7: 1433-41.
[56]
Agrawal N, Skelton AA. Binding of 12-crown-4 with Alzheimer’s Aβ40 and Aβ42 monomers and its effect on their conformation: insight from molecular dynamics simulations. Mol Pharm 2017; 15: 289-99.
[57]
Tewatia P, Agrawal N, Gaur M, Sahi S. Insights into the conformational perturbations of novel agonists with β3-adrenergic receptor using molecular dynamics simulations. Biochimie 2014; 101: 168-82.
[58]
Kalva S, Agrawal N, Skelton AA, Saleena LM. Identification of novel selective MMP-9 inhibitors as potential anti-metastatic lead using structure-based hierarchical virtual screening and molecular dynamics simulation. Mol Biosyst 2016; 12: 2519-31.
[59]
Al-Qattan MN, Deb PK, Tekade RK. Molecular dynamics simulation strategies for designing carbon-nanotube-based targeted drug delivery. Drug Discov Today 2018; 23: 235-50.
[60]
Omolo CA, Kalhapure RS, Agrawal N, Rambharose S, Mocktar C, Govender T. Formulation and Molecular Dynamics Simulations of a Fusidic Acid Nanosuspension for Simultaneously Enhancing Solubility and Antibacterial Activity. Mol Pharm 2018; 15: 3512-26.
[61]
Omolo CA, Kalhapure RS, Agrawal N, et al. A hybrid of mPEG-b-PCL and G1-PEA dendrimer for enhancing delivery of antibiotics. J Control Release 2018; 290: 112-28.
[62]
Ng HW, Laughton CA, Doughty SW. Molecular dynamics simulations of the adenosine A2a receptor: structural stability, sampling, and convergence. J Chem Inf Model 2013; 53: 1168-78.
[63]
Pang X, Yang M, Han K. Antagonist binding and induced conformational dynamics of GPCR A2A adenosine receptor. Proteins 2013; 81: 1399-410.
[64]
Guo D, Pan AC, Dror RO, et al. Molecular basis of ligand dissociation from the adenosine A2A receptor. Mol Pharmacol 2016; 89(5): 485-91.
[65]
Cao R, Giorgetti A, Bauer A, Neumaier B, Rossetti G, Carloni P. Role of Extracellular Loops and Membrane Lipids for Ligand Recognition in the Neuronal Adenosine Receptor Type 2A: An Enhanced Sampling Simulation Study. Molecules 2018; 23: 2616.
[66]
Cao R, Rossetti G, Bauer A. CarIoni P. Binding of the Antagonist Caffeine to the Human Adenosine Receptor hA2AR in Nearly Physiological Conditions. PLoS One 2015; 10e0126833
[67]
Liu Y, Burger SK, Ayers PW, Vöhringer-Martinez E. Computational study of the binding modes of caffeine to the adenosine A2A receptor. J Phys Chem B 2011; 115: 13880-90.
[68]
Lee JY, Lyman E. Agonist dynamics and conformational selection during microsecond simulations of the A2A adenosine receptor. Biophys J 2012; 102: 2114-20.
[69]
Sabbadin D, Ciancetta A, Deganutti G, Cuzzolin A, Moro S. Exploring the recognition pathway at the human A 2A adenosine receptor of the endogenous agonist adenosine using supervised molecular dynamics simulations. MedChemComm 2015; 6: 1081-5.
[70]
Guixà-González R, Albasanz JL, Rodriguez-Espigares I, et al. Membrane cholesterol access into a G-protein-coupled receptor. Nat Commun 2017; 8: 14505.
[71]
Rouviere E, Arnarez C, Yang L, Lyman E. Identification of Two New Cholesterol Interaction Sites on the A 2A Adenosine Receptor. Biophys J 2017; 113: 2415-24.
[72]
Lee JY, Lyman E. Predictions for cholesterol interaction sites on the A2A adenosine receptor. J Am Chem Soc 2012; 134: 16512-5.