[1]
Akintoye E, Briasoulis A, Egbe A, et al. National trends in admission and in-hospital mortality of patients with heart failure in the united states (2001-2014). J Am Heart Assoc 2017; 6(12)e006955
[2]
Agarwal SK, Wruck L, Quibrera M, et al. Temporal trends in hospitalization for acute decompensated heart failure in the united states, 1998-2011. Am J Epidemiol 2016; 183: 462-70.
[3]
Ghali JK, Cooper R, Ford E. Trends in hospitalization rates for heart failure in the united states, 1973-1986. Evidence for increasing population prevalence. Arch Intern Med 1990; 150: 769-73.
[4]
Mozaffarian D, Benjamin Emelia J, et al. Executive summary: Heart disease and stroke statistics-2016 update. Circulation 2016; 133: 447-54.
[5]
Ambrosy AP, Fonarow GC, Butler J, et al. The global health and economic burden of hospitalizations for heart failure: Lessons learned from hospitalized heart failure registries. J Am Coll Cardiol 2014; 63: 1123-33.
[6]
Heidenreich PA, Albert NM, Allen LA, et al. Forecasting the impact of heart failure in the united states: A policy statement from the American Heart Association. Circ Heart Fail 2013; 6: 606-19.
[7]
Braith RW, Edwards DG. Neurohormonal abnormalities in heart failure: Impact of exercise training. Congest Heart Fail 2003; 9: 70-6.
[8]
Jackson G, Gibbs CR, Davies MK, Lip GY. Abc of heart failure. Pathophysiology. BMJ 2000; 320: 167-70.
[9]
Oster JR, Preston RA, Materson BJ. Fluid and electrolyte disorders in congestive heart failure. Semin Nephrol 1994; 14: 485-505.
[10]
Gheorghiade M, Rossi JS, Cotts W, et al. Characterization and prognostic value of persistent hyponatremia in patients with severe heart failure in the escape trial. Arch Intern Med 2007; 167: 1998-2005.
[11]
Verbrugge FH, Steels P, Grieten L, Nijst P, Tang WH, Mullens W. Hyponatremia in acute decompensated heart failure: Depletion versus dilution. J Am Coll Cardiol 2015; 65: 480-92.
[12]
Holland-Bill L, Christiansen CF, Heide-Jorgensen U, et al. Hyponatremia and mortality risk: A danish cohort study of 279 508 acutely hospitalized patients. Eur J Endocrinol 2015; 173: 71-81.
[13]
Waikar SS, Mount DB, Curhan GC. Mortality after hospitalization with mild, moderate, and severe hyponatremia. Am J Med 2009; 122: 857-65.
[14]
Corona G, Giuliani C, Parenti G, et al. The economic burden of hyponatremia: Systematic review and meta-analysis. Am J Med 2016; 129: 823-35.e824.
[15]
Omar HR, Charnigo R, Guglin M. Prognostic significance of discharge hyponatremia in heart failure patients with normal admission sodium (from the escape trial). Am J Cardiol 2017; 120: 607-15.
[16]
Adrogue HJ, Madias NE. Hyponatremia. N Engl J Med 2000; 342: 1581-9.
[17]
Klein L, O’Connor CM, Leimberger JD, et al. Lower serum sodium is associated with increased short-term mortality in hospitalized patients with worsening heart failure: Results from the outcomes of a prospective trial of intravenous milrinone for exacerbations of chronic heart failure (optime-chf) study. Circulation 2005; 111: 2454-60.
[18]
Sato N, Gheorghiade M, Kajimoto K, et al. Hyponatremia and in-hospital mortality in patients admitted for heart failure (from the attend registry). Am J Cardiol 2013; 111: 1019-25.
[19]
Binanay C, Califf RM, Hasselblad V, et al. Evaluation study of congestive heart failure and pulmonary artery catheterization effectiveness: The escape trial. JAMA 2005; 294: 1625-33.
[20]
Lee SE, Lee HY, Cho HJ, et al. Clinical characteristics and outcome of acute heart failure in korea: Results from the korean acute heart failure registry (korahf). Korean Circ J 2017; 47: 341-53.
[21]
Dunlap ME, Hauptman PJ, Amin AN, et al. Current management of hyponatremia in acute heart failure: A report from the hyponatremia registry for patients with euvolemic and hypervolemic hyponatremia (hn registry). J Am Heart Assoc 2017; 6(8)e005261
[22]
Upadhyay A, Jaber BL, Madias NE. Incidence and prevalence of hyponatremia. Am J Med 2006; 119: S30-5.
[23]
Callahan MA, Do HT, Caplan DW, Yoon-Flannery K. Economic impact of hyponatremia in hospitalized patients: A retrospective cohort study. Postgrad Med 2009; 121: 186-91.
[24]
Donze JD, Beeler PE, Bates DW. Impact of hyponatremia correction on the risk for 30-day readmission and death in patients with congestive heart failure. Am J Med 2016; 129: 836-42.
[25]
Albabtain M, Brenner MJ, Nicklas JM, et al. Hyponatremia, cognitive function, and mobility in an outpatient heart failure population. Med Sci Monit 2016; 22: 4978-85.
[26]
Romanovsky A, Bagshaw S, Rosner MH. Hyponatremia and congestive heart failure: A marker of increased mortality and a target for therapy. Int J Nephrol 2011; 2011732746
[27]
De Vecchis R, Di Maio M, Di Biase G, Ariano C. Effects of hyponatremia normalization on the short-term mortality and rehospitalizations in patients with recent acute decompensated heart failure: A retrospective study. J Clin Med 2016; 5: 92.
[28]
Boscoe A, Paramore C, Verbalis JG. Cost of illness of hyponatremia in the United States. Cost Eff Resour Alloc 2006; 4: 10.
[29]
Kazory A. Hyponatremia in heart failure: Revisiting pathophysiology and therapeutic strategies. Clin Cardiol 2010; 33: 322-9.
[30]
Shepshelovich D, Schechter A, Calvarysky B, Diker-Cohen T, Rozen-Zvi B, Gafter-Gvili A. Medication-induced siadh: Distribution and characterization according to medication class. Br J Clin Pharmacol 2017; 83: 1801-7.
[31]
Ramos-Levi AM, Duran Rodriguez-Hervada A, Mendez-Bailon M, Marco-Martinez J. Drug-induced hyponatremia: An updated review. Minerva Endocrinol 2014; 39: 1-12.
[32]
Liamis G, Milionis H, Elisaf M. A review of drug-induced hyponatremia. Am J Kidney Dis 2008; 52: 144-53.
[33]
Uretsky BF, Verbalis JG, Generalovich T, Valdes A, Reddy PS. Plasma vasopressin response to osmotic and hemodynamic stimuli in heart failure. Am J Physiol 1985; 248: H396-402.
[34]
Oren RM. Hyponatremia in congestive heart failure. Am J Cardiol 2005; 95: 2-7.
[35]
Mavani GP, DeVita MV, Michelis MF. A review of the nonpressor and nonantidiuretic actions of the hormone vasopressin. Front Med 2015; 2: 19.
[36]
Filippatos TD, Elisaf MS. Hyponatremia in patients with heart failure. World J Cardiol 2013; 5: 317-28.
[37]
Goldsmith SR, Francis GS, Cowley AW Jr. Arginine vasopressin and the renal response to water loading in congestive heart failure. Am J Cardiol 1986; 58: 295-9.
[38]
Lee CR, Watkins ML, Patterson JH, et al. Vasopressin: A new target for the treatment of heart failure. Am Heart J 2003; 146: 9-18.
[39]
Kalra PR, Anker SD, Coats AJ. Water and sodium regulation in chronic heart failure: The role of natriuretic peptides and vasopressin. Cardiovasc Res 2001; 51: 495-509.
[40]
Goldsmith SR. Congestive heart failure: Potential role of arginine vasopressin antagonists in the therapy of heart failure. Congest Heart Fail 2002; 8: 251-6.
[41]
Ronco C. Cardiorenal syndromes: Definition and classification. Contrib Nephrol 2010; 164: 33-8.
[42]
Ronco C, McCullough P, Anker SD, et al. Cardio-renal syndromes: Report from the consensus conference of the acute dialysis quality initiative. Eur Heart J 2010; 31: 703-11.
[43]
Segall L, Nistor I, Covic A. Heart failure in patients with chronic kidney disease: A systematic integrative review. BioMed Res Int 2014; 2014937398
[44]
Kovesdy CP, Lott EH, Lu JL, et al. Hyponatremia, hypernatremia, and mortality in patients with chronic kidney disease with and without congestive heart failure. Circulation 2012; 125: 677-84.
[45]
Fukushima A, Kinugawa S. Hyponatremia as a surrogate marker for optimal diuretic selection in acute heart failure. J Cardiol 2018; 71: 547-9.
[46]
Liamis G, Filippatos TD, Elisaf MS. Thiazide-associated hyponatremia in the elderly: What the clinician needs to know. J Geriatr Cardiol 2016; 13: 175-82.
[47]
Peacock WF, Costanzo MR, De Marco T, et al. Impact of intravenous loop diuretics on outcomes of patients hospitalized with acute decompensated heart failure: Insights from the adhere registry. Cardiology 2009; 113: 12-9.
[48]
Felker GM, O’Connor CM, Braunwald E. Loop diuretics in acute decompensated heart failure: Necessary? Evil? A necessary evil? Circ Heart Fail 2009; 2: 56-62.
[49]
Spital A. Diuretic-induced hyponatremia. Am J Nephrol 1999; 19: 447-52.
[50]
Moranville MP, Choi S, Hogg J, Anderson AS, Rich JD. Comparison of metolazone versus chlorothiazide in acute decompensated heart failure with diuretic resistance. Cardiovasc Ther 2015; 33: 42-9.
[51]
Jentzer JC, DeWald TA, Hernandez AF. Combination of loop diuretics with thiazide-type diuretics in heart failure. J Am Coll Cardiol 2010; 56: 1527.
[52]
Kroger N, Szuba J, Frenzel H. Metolazone in the treatment of advanced therapy-resistant dilated cardiomyopathy. Med Klin 1991; 86: 305-8.
[53]
De Vecchis R, Ariano C, Esposito C, Giasi A, Cioppa C, Cantatrione S. In right or biventricular chronic heart failure addition of thiazides to loop diuretics to achieve a sequential blockade of the nephron is associated with increased risk of dilutional hyponatremia: Results of a case-control study. Minerva Cardioangiol 2012; 60: 517-29.
[54]
Goland S, Naugolny V, Korbut Z, Rozen I, Caspi A, Malnick S. Appropriateness and complications of the use of spironolactone in patients treated in a heart failure clinic. Eur J Intern Med 2011; 22: 424-7.
[55]
Spasovski G, Vanholder R, Allolio B, et al. Clinical practice guideline on diagnosis and treatment of hyponatraemia. Eur J Endocrinol 2014; 170: G1-G47.
[56]
Spasovski G, Vanholder R, Allolio B, et al. Hyponatraemia diagnosis and treatment clinical practice guidelines. Nefrologia 2017; 37: 370-80.
[57]
Hoorn EJ, Zietse R. Diagnosis and treatment of hyponatremia: Compilation of the guidelines. J Am Soc Nephrol 2017; 28: 1340-9.
[58]
Spasovski G, Vanholder R, Allolio B, et al. Clinical practice guideline on diagnosis and treatment of hyponatraemia. Nephrol Dial Transplant 2014; 29(Suppl. 2): i1-i39.
[59]
Wan Y, Li L, Niu H, et al. Impact of compound hypertonic saline solution on decompensated heart failure. Int Heart J 2017; 58: 601-7.
[60]
Lafrenière G, Béliveau P, Bégin JY, et al. Effects of hypertonic saline solution on body weight and serum creatinine in patients with acute decompensated heart failure. World J Cardiol 2017; 9: 685-92.
[61]
Bikdeli B, Strait KM, Dharmarajan K, et al. Intravenous fluids in acute decompensated heart failure. JACC Heart Fail 2015; 3: 127-33.
[62]
Renneboog B, Musch W, Vandemergel X, Manto MU, Decaux G. Mild chronic hyponatremia is associated with falls, unsteadiness, and attention deficits. Am J Med 2006; 119: 71.e71-8.
[63]
Licata G, Di Pasquale P, Parrinello G, et al. Effects of high-dose furosemide and small-volume hypertonic saline solution infusion in comparison with a high dose of furosemide as bolus in refractory congestive heart failure: Long-term effects. Am Heart J 2003; 145: 459-66.
[64]
Vinod P, Krishnappa V, Chauvin AM, Khare A, Raina R. Cardiorenal syndrome: Role of arginine vasopressin and vaptans in heart failure. Cardiol Res 2017; 8: 87-95.
[65]
Lin TE, Adams KF Jr, Patterson JH. Potential roles of vaptans in heart failure: Experience from clinical trials and considerations for optimizing therapy in target patients. Heart Fail Clin 2014; 10: 607-20.
[66]
Hashim T, Sanam K, Revilla-Martinez M, et al. Clinical characteristics and outcomes of intravenous inotropic therapy in advanced heart failure. Circ Heart Fail 2015; 8: 880-6.
[67]
Mebazaa A, Motiejunaite J, Gayat E, et al. Long-term safety of intravenous cardiovascular agents in acute heart failure: Results from the European society of cardiology heart failure long-term registry. Eur J Heart Fail 2018; 20: 332-41.
[68]
Vaduganathan M, Pallais JC, Fenves AZ, Butler J, Gheorghiade M. Serum chloride in heart failure: A salty prognosis. Eur J Heart Fail 2016; 18: 669-71.
[69]
Ghali JK, Tam SW. The critical link of hypervolemia and hyponatremia in heart failure and the potential role of arginine vasopressin antagonists. J Card Fail 2010; 16: 419-31.
[70]
Albert NM, Nutter B, Forney J, Slifcak E, Tang WH. A randomized controlled pilot study of outcomes of strict allowance of fluid therapy in hyponatremic heart failure (salt-hf). J Card Fail 2013; 19: 1-9.
[71]
Gheorghiade M, Gottlieb SS, Udelson JE, et al. Vasopressin v(2) receptor blockade with tolvaptan versus fluid restriction in the treatment of hyponatremia. Am J Cardiol 2006; 97: 1064-7.
[72]
Allida SM, Hayward CS, Newton PJ. Thirst in heart failure: What do we know so far? Curr Opin Support Palliat Care 2018; 12: 4-9.
[73]
Sica DA. Hyponatremia and heart failure--treatment considerations. Congest Heart Fail 2006; 12: 55-60.
[74]
Goldsmith SR. Current treatments and novel pharmacologic treatments for hyponatremia in congestive heart failure. Am J Cardiol 2005; 95: 14b-23b.
[75]
Omar HR, Guglin M. Higher diuretic requirements in acute heart failure with admission hyponatraemia versus normonatraemia. Heart Lung Circ 2019. [Epub ahead of print].
[76]
Omar HR, Guglin M. Etiology of discharge hyponatremia in decompensated heart failure and normal admission na(+): Effect of diuretics. Eur J Intern Med 2018; 48: e15-7.
[77]
Gandhi S, Mosleh W, Myers RB. Hypertonic saline with furosemide for the treatment of acute congestive heart failure: A systematic review and meta-analysis. Int J Cardiol 2014; 173: 139-45.
[78]
Paterna S, Parrinello G, Amato P, et al. Tolerability and efficacy of high-dose furosemide and small-volume hypertonic saline solution in refractory congestive heart failure. Adv Ther 1999; 16: 219-28.
[79]
Okuhara Y, Hirotani S, Ando T, et al. Comparison of salt with low-dose furosemide and carperitide for treating acute decompensated heart failure: A single-center retrospective cohort study. Heart Vessels 2017; 32: 419-27.
[80]
Kazory A. Haemodialysis, not ultrafiltration, can correct hyponatraemia in heart failure. Eur J Heart Fail 2010; 12: 208.
[81]
Elisaf M, Theodorou J, Pappas C, Siamopoulos K. Successful treatment of hyponatremia with angiotensin-converting enzyme inhibitors in patients with congestive heart failure. Cardiology 1995; 86: 477-80.
[82]
Balling L, Kober L, Schou M, Torp-Pedersen C, Gustafsson F. Efficacy and safety of angiotensin-converting enzyme inhibitors in patients with left ventricular systolic dysfunction and hyponatremia. J Card Fail 2013; 19: 725-30.
[83]
Oster JR, Materson BJ. Renal and electrolyte complications of congestive heart failure and effects of therapy with angiotensin-converting enzyme inhibitors. Arch Intern Med 1992; 152: 704-10.
[84]
Baldasseroni S, Urso R, Orso F, et al. Relation between serum sodium levels and prognosis in outpatients with chronic heart failure: Neutral effect of treatment with beta-blockers and angiotensin-converting enzyme inhibitors: Data from the Italian network on congestive heart failure (in-chf database). J Cardiovasc Med 2011; 12: 723-31.
[85]
Cheungpasitporn W, Erickson SB, Rule AD, Enders F, Lieske JC. Short-term tolvaptan increases water intake and effectively decreases urinary calcium oxalate, calcium phosphate and uric acid supersaturations. J Urol 2016; 195: 1476-81.
[86]
Ali F, Guglin M, Vaitkevicius P, Ghali JK. Therapeutic potential of vasopressin receptor antagonists. Drugs 2007; 67: 847-58.
[87]
Schrier RW, Gross P, Gheorghiade M, et al. Tolvaptan, a selective oral vasopressin v2-receptor antagonist, for hyponatremia. N Engl J Med 2006; 355: 2099-112.
[88]
Konstam MA, Gheorghiade M, Burnett JC Jr, et al. Effects of oral tolvaptan in patients hospitalized for worsening heart failure: The everest outcome trial. JAMA 2007; 297: 1319-31.
[89]
McGreal K, Budhiraja P, Jain N, Yu AS. Current challenges in the evaluation and management of hyponatremia. Kidney Dis 2016; 2: 56-63.
[90]
Hauptman PJ, Burnett J, Gheorghiade M, et al. Clinical course of patients with hyponatremia and decompensated systolic heart failure and the effect of vasopressin receptor antagonism with tolvaptan. J Card Fail 2013; 19: 390-7.
[91]
Felker GM, Mentz RJ, Cole RT, et al. Efficacy and safety of tolvaptan in patients hospitalized with acute heart failure. J Am Coll Cardiol 2017; 69: 1399-406.
[92]
Wu MY, Chen TT, Chen YC, et al. Effects and safety of oral tolvaptan in patients with congestive heart failure: A systematic review and network meta-analysis. PLoS One 2017; 12e0184380
[93]
Goldsmith SR, Gilbertson DT, Mackedanz SA, Swan SK. Renal effects of conivaptan, furosemide, and the combination in patients with chronic heart failure. J Card Fail 2011; 17: 982-9.
[94]
Udelson JE, Smith WB, Hendrix GH, et al. Acute hemodynamic effects of conivaptan, a dual v(1a) and v(2) vasopressin receptor antagonist, in patients with advanced heart failure. Circulation 2001; 104: 2417-23.
[95]
Annane D, Decaux G, Smith N. Efficacy and safety of oral conivaptan, a vasopressin-receptor antagonist, evaluated in a randomized, controlled trial in patients with euvolemic or hypervolemic hyponatremia. Am J Med Sci 2009; 337: 28-36.
[96]
Cajaiba MM, Parks WT, Fuhrer K, Randhawa PS. Evaluation of human polyomavirus bk as a potential cause of villitis of unknown etiology and spontaneous abortion. J Med Virol 2011; 83: 1031-3.
[97]
Der-Nigoghossian C, Lesch C, Berger K. Effectiveness and tolerability of conivaptan and tolvaptan for the treatment of hyponatremia in neurocritically ill patients. Pharmacotherapy 2017; 37: 528-34.
[98]
Izumi Y, Miura K, Iwao H. Therapeutic potential of vasopressin-receptor antagonists in heart failure. J Pharmacol Sci 2014; 124: 1-6.
[99]
Abraham WT, Aranda JM, Boehmer JP, et al. Rationale and design of the treatment of hyponatremia based on lixivaptan in nyha class III/IV cardiac patient evaluation (the balance) study. Clin Transl Sci 2010; 3: 249-53.
[100]
Flaegstad T, Traavik T, Kristiansen BE. Age-dependent prevalence of bk virus igg and igm antibodies measured by enzyme-linked immunosorbent assays (ELISA). J Hyg 1986; 96: 523-8.
[101]
Yancy CW, Jessup M, Bozkurt B, et al. 2013 ACCF/AHA guideline for the management of heart failure: A report of the American college of cardiology foundation/American heart association task force on practice guidelines. J Am Coll Cardiol 2013; 62: e147-239.
[102]
Doumouras BS, Lee DS, Levy WC, Alba AC. An appraisal of biomarker-based risk-scoring models in chronic heart failure: Which one is best? Curr Heart Fail Rep 2018; 15: 24-36.
[103]
Hamaguchi S, Kinugawa S, Tsuchihashi-Makaya M, et al. Hyponatremia is an independent predictor of adverse clinical outcomes in hospitalized patients due to worsening heart failure. J Cardiol 2014; 63: 182-8.
[104]
Yoo BS, Park JJ, Choi DJ, et al. Prognostic value of hyponatremia in heart failure patients: An analysis of the clinical characteristics and outcomes in the relation with serum sodium level in asian patients hospitalized for heart failure (coast) study. Korean J Intern Med 2015; 30: 460-70.
[105]
Lu DY, Cheng HM, Cheng YL, et al. Hyponatremia and worsening sodium levels are associated with long-term outcome in patients hospitalized for acute heart failure. J Am Heart Assoc 2016; 5e002668
[106]
Agostoni P, Corra U, Cattadori G, et al. Metabolic exercise test data combined with cardiac and kidney indexes, the mecki score: A multiparametric approach to heart failure prognosis. Int J Cardiol 2013; 167: 2710-8.
[107]
Aaronson KD, Schwartz JS, Chen TM, Wong KL, Goin JE, Mancini DM. Development and prospective validation of a clinical index to predict survival in ambulatory patients referred for cardiac transplant evaluation. Circulation 1997; 95: 2660-7.
[108]
Levy WC, Mozaffarian D, Linker DT, et al. The seattle heart failure model: Prediction of survival in heart failure. Circulation 2006; 113: 1424-33.
[109]
Oh C, Chang HJ, Sung JM, et al. Prognostic estimation of advanced heart failure with low left ventricular ejection fraction and wide qrs interval. Korean Circ J 2012; 42: 659-67.
[110]
Alba AC, Walter SD, Guyatt GH, et al. Predicting survival in patients with heart failure with an implantable cardioverter defibrillator: The heart failure meta-score. J Card Fail 2018; 24: 735-45.
[111]
Krittanawong C, Kukin ML. Current management and future directions of heart failure with preserved ejection fraction: A contemporary review. Curr Treat Options Cardiovasc Med 2018; 20: 28.
[112]
Omar HR, Guglin M. Rise of first follow-up sodium in patients hospitalized with acute heart failure is associated with better outcomes. Int J Cardiol 2018; 269: 201-6.
[113]
Omar HR, Guglin M. Community acquired versus hospital acquired hyponatremia in acute heart failure: Association with clinical characteristics and outcomes. Int J Cardiol 2016; 225: 247-9.
[114]
Krittanawong C, Zhang H, Wang Z, Aydar M, Kitai T. Artificial intelligence in precision cardiovascular medicine. J Am Coll Cardiol 2017; 69: 2657-64.
[115]
Krittanawong C, Johnson KW, Hershman SG, Tang WHW. Big data, artificial intelligence, and cardiovascular precision medicine. Expert Rev Precis Med Drug Dev 2018; 3: 305-17.
[117]
Ronco C, Haapio M, House AA, Anavekar N, Bellomo R. Cardiorenal syndrome. J Am Coll Cardiol 2008; 52: 1527-39.
[118]
Aliti GB, Rabelo ER, Clausell N, Rohde LE, Biolo A, Beck-da-Silva L. Aggressive fluid and sodium restriction in acute decompensated heart failure: A randomized clinical trial. JAMA Intern Med 2013; 173: 1058-64.
[119]
Gheorghiade M, Konstam MA, Burnett JC Jr, et al. Short-term clinical effects of tolvaptan, an oral vasopressin antagonist, in patients hospitalized for heart failure: The everest clinical status trials. JAMA 2007; 297: 1332-43.
[120]
Gheorghiade M, Gattis WA, O’Connor CM, et al. Effects of tolvaptan, a vasopressin antagonist, in patients hospitalized with worsening heart failure: A randomized controlled trial. JAMA 2004; 291: 1963-71.
[121]
Ghali JK, Koren MJ, Taylor JR, et al. Efficacy and safety of oral conivaptan: A v1a/v2 vasopressin receptor antagonist, assessed in a randomized, placebo-controlled trial in patients with euvolemic or hypervolemic hyponatremia. J Clin Endocrinol Metab 2006; 91: 2145-52.
[122]
Zeltser D, Rosansky S, van Rensburg H, Verbalis JG, Smith N. Assessment of the efficacy and safety of intravenous conivaptan in euvolemic and hypervolemic hyponatremia. Am J Nephrol 2007; 27: 447-57.
[123]
Konstam MA, Kiernan M, Chandler A, et al. Short-term effects of tolvaptan in patients with acute heart failure and volume overload. J Am Coll Cardiol 2017; 69: 1409-19.