[1]
Phizicky, E.M.; Fields, S. Protein-protein interactions: methods for detection and analysis. Microbiol. Rev., 1995, 59(1), 94-123. [PMID: 7708014].
[2]
Moreira, I.S.; Fernandes, P.A.; Ramos, M.J. Hot spots--A review of the protein-protein interface determinant amino-acid residues. Proteins, 2007, 68(4), 803-812. [http://dx.doi.org/ 10.1002/prot.21396]. [PMID: 17546660].
[3]
Rual, J.F.; Venkatesan, K.; Hao, T.; Hirozane-Kishikawa, T.; Dricot, A.; Li, N.; Berriz, G.F.; Gibbons, F.D.; Dreze, M.; Ayivi-Guedehoussou, N.; Klitgord, N.; Simon, C.; Boxem, M.; Milstein, S.; Rosenberg, J.; Goldberg, D.S.; Zhang, L.V.; Wong, S.L.; Franklin, G.; Li, S.; Albala, J.S.; Lim, J.; Fraughton, C.; Llamosas, E.; Cevik, S.; Bex, C.; Lamesch, P.; Sikorski, R.S.; Vandenhaute, J.; Zoghbi, H.Y.; Smolyar, A.; Bosak, S.; Sequerra, R.; Doucette-Stamm, L.; Cusick, M.E.; Hill, D.E.; Roth, F.P.; Vidal, M. Towards a proteome-scale map of the human protein-protein interaction network. Nature, 2005, 437(7062), 1173-1178. [http://dx.doi.org/ 10.1038/nature04209]. [PMID: 16189514].
[4]
Fletcher, S.; Hamilton, A.D. Protein-protein interaction inhibitors: Small molecules from screening techniques. Curr. Top. Med. Chem., 2007, 7(10), 922-927. [http://dx.doi.org/ 10.2174/ 156802607780906735]. [PMID: 17508923].
[5]
Fletcher, S.; Hamilton, A.D. Targeting protein-protein interactions by rational design: Mimicry of protein surfaces. J. R. Soc. Interface, 2006, 3(7), 215-233. [http://dx.doi.org/ 10.1098/rsif.2006. 0115]. [PMID: 16849232].
[6]
Uetz, P.; Giot, L.; Cagney, G.; Mansfield, T.A.; Judson, R.S.; Knight, J.R.; Lockshon, D.; Narayan, V.; Srinivasan, M.; Pochart, P.; Qureshi-Emili, A.; Li, Y.; Godwin, B.; Conover, D.; Kalbfleisch, T.; Vijayadamodar, G.; Yang, M.; Johnston, M.; Fields, S.; Rothberg, J.M. A comprehensive analysis of protein-protein interactions in Saccharomyces cerevisiae. Nature, 2000, 403(6770), 623-627. [http://dx.doi.org/ 10.1038/35001009]. [PMID: 10688190].
[7]
Modell, A.E.; Blosser, S.L.; Arora, P.S. Systematic targeting of protein–protein interactions. Trends Pharmacol. Sci., 2016, 37(8), 702-713. [http://dx.doi.org/ 10.1016/j.tips.2016.05.008]. [PMID: 27267699].
[8]
Thompson, A.D.; Dugan, A.; Gestwicki, J.E.; Mapp, A.K. Fine-tuning multiprotein complexes using small molecules. ACS Chem. Biol., 2012, 7(8), 1311-1320. [http://dx.doi.org/ 10.1021/ cb300255p]. [PMID: 22725693].
[9]
Stevers, L.M.; Sijbesma, E.; Botta, M.; MacKintosh, C.; Obsil, T.; Landrieu, I.; Cau, Y.; Wilson, A.J.; Karawajczyk, A.; Eickhoff, J.; Davis, J.; Hann, M.; O’Mahony, G.; Doveston, R.G.; Brunsveld, L.; Ottmann, C. Modulators of 14-3-3 protein–protein interactions. J. Med. Chem., 2018, 61(9), 3755-3778. [http://dx.doi.org/ 10.1021/acs.jmedchem.7b00574]. [PMID: 28968506].
[10]
Park, A. Characterization of a novel class of anti-HCV agents targeting
protein-protein interactions, Ph.D. Thesis, Universite de
Montreal, September.. 2017.
[11]
Zinzalla, G.; Thurston, D.E. Targeting protein-protein interactions for therapeutic intervention: A challenge for the future. Future Med. Chem., 2009, 1(1), 65-93. [http://dx.doi.org/ 10.4155/ fmc.09.12]. [PMID: 21426071].
[12]
Mannhold, R.; Kubinyi, H.; Folkers, G. Protein-protein interactions in drug discovery; Wiley & Sons: New York, 2013, Vol. 56, .
[13]
Srinivasa Rao, V.; Srinivas, K.; Kumar, G.N.S.; Sujin, G.N. Protein interaction network for Alzheimer’s disease using computational approach. Bioinformation, 2013, 9(19), 968-972. [http://dx.doi.org/ 10.6026/97320630009968]. [PMID: 24391359].
[14]
Malhotra, A.; Younesi, E.; Sahadevan, S.; Zimmermann, J.; Hofmann-Apitius, M. Exploring novel mechanistic insights in Alzheimer’s disease by assessing reliability of protein interactions. Sci. Rep., 2015, 5, 13634-13634. [http://dx.doi.org/ 10.1038/srep13634]. [PMID: 26346705].
[15]
Karbalaei, R.; Allahyari, M.; Rezaei-Tavirani, M.; Asadzadeh-Aghdaei, H.; Zali, M.R. Protein-protein interaction analysis of Alzheimer’s disease and NAFLD based on systems biology methods unhide common ancestor pathways. Gastroenterol. Hepatol. Bed Bench, 2018, 11(1), 27-33. [PMID: 29564062].
[16]
Mehta, D.; Jackson, R.; Paul, G.; Shi, J.; Sabbagh, M. Why do trials for Alzheimer’s disease drugs keep failing? A discontinued drug perspective for 2010-2015. Expert Opin. Investig. Drugs, 2017, 26(6), 735-739. [http://dx.doi.org/ 10.1080/13543784.2017. 1323868]. [PMID: 28460541].
[17]
Rygiel, K. Novel strategies for Alzheimer’s disease treatment: An overview of anti-amyloid beta monoclonal antibodies. Indian J. Pharmacol., 2016, 48(6), 629-636. [http://dx.doi.org/ 10.4103/ 0253-7613.194867]. [PMID: 28066098].
[18]
Cummings, J.; Lee, G.; Ritter, A.; Zhong, K. Alzheimer’s disease drug development pipeline: 2018. Alzheimers Dement. (N. Y.), 2018, 4, 195-214. [http://dx.doi.org/ 10.1016/j.trci.2018.03.009]. [PMID: 29955663].
[19]
Laraia, L.; McKenzie, G.; Spring, D.R.; Venkitaraman, A.R.; Huggins, D.J. Overcoming chemical, biological, and computational challenges in the development of inhibitors targeting protein-protein interactions. Chem. Biol., 2015, 22(6), 689-703. [http://dx.doi.org/ 10.1016/j.chembiol.2015.04.019]. [PMID: 26091166].
[20]
Valkov, E.; Sharpe, T.; Marsh, M.; Greive, S.; Hyvönen, M. Targeting protein–protein interactions and fragment-based drug discovery. Top. Curr. Chem., 2011, 317, 145-179. [http://dx.doi.org/ 10.1007/128_2011_265].
[21]
Azzarito, V.; Long, K.; Murphy, N.S.; Wilson, A.J. Inhibition of α-helix-mediated protein-protein interactions using designed molecules. Nat. Chem., 2013, 5(3), 161-173. [http://dx.doi.org/ 10.1038/nchem.1568]. [PMID: 23422557].
[22]
Watkins, A.M. An in silico pipeline for the design of peptidomimetic protein-protein interaction inhibitors; ProQuest LLC, 2016.
[23]
Gul, S.; Hadian, K. Protein-protein interaction modulator drug discovery: Past efforts and future opportunities using a rich source of low- and high-throughput screening assays. Expert Opin. Drug Discov., 2014, 9(12), 1393-1404. [http://dx.doi.org/ 10.1517/ 17460441.2014.954544]. [PMID: 25374163].
[24]
Driggers, E.M.; Hale, S.P.; Lee, J.; Terrett, N.K. The exploration of macrocycles for drug discovery-An underexploited structural class. Nat. Rev. Drug Discov., 2008, 7(7), 608-624. [http://dx.doi.org/ 10.1038/nrd2590]. [PMID: 18591981].
[25]
Meireles, L.M.; Mustata, G. Discovery of modulators of protein-protein interactions: Current approaches and limitations. Curr. Top. Med. Chem., 2011, 11(3), 248-257. [http://dx.doi.org/ 10.2174/ 156802611794072632]. [PMID: 21320056].
[26]
González-Ruiz, D.; Gohlke, H. Targeting protein-protein interactions with small molecules: Challenges and perspectives for computational binding epitope detection and ligand finding. Curr. Med. Chem., 2006, 13(22), 2607-2625. [http://dx.doi.org/ 10.2174/ 092986706778201530]. [PMID: 17017914].
[27]
Kuret, J.; Congdon, E.E.; Li, G.; Yin, H.; Yu, X.; Zhong, Q. Evaluating triggers and enhancers of tau fibrillization. Microsc. Res. Tech., 2005, 67(3-4), 141-155. [http://dx.doi.org/ 10.1002/ jemt.20187]. [PMID: 16103995].
[28]
Scott, D.E.; Bayly, A.R.; Abell, C.; Skidmore, J. Small molecules, big targets: drug discovery faces the protein-protein interaction challenge. Nat. Rev. Drug Discov., 2016, 15(8), 533-550. [http://dx.doi.org/ 10.1038/nrd.2016.29]. [PMID: 27050677].
[29]
Whitebread, S.; Hamon, J.; Bojanic, D.; Urban, L. Keynote review: In vitro safety pharmacology profiling: An essential tool for successful drug development. Drug Discov. Today, 2005, 10(21), 1421-1433. [http://dx.doi.org/ 10.1016/S1359-6446(05)03632-9]. [PMID: 16243262].
[30]
Fry, D.C.; Vassilev, L.T. Targeting protein-protein interactions for cancer therapy. J. Mol. Med. (Berl.), 2005, 83(12), 955-963. [http://dx.doi.org/ 10.1007/s00109-005-0705-x]. [PMID: 16283145].
[31]
Mullard, A. Protein-protein interaction inhibitors get into the groove. Nat. Rev. Drug Discov., 2012, 11(3), 173-175. [http://dx.doi.org/ 10.1038/nrd3680].
[32]
Rao, V.S.; Srinivas, K.; Sujini, G.N.; Kumar, G.N. Protein-protein interaction detection: Methods and analysis. Int. J. Proteomics, 2014, 2014, 147648. [http://dx.doi.org/ 10.1155/2014/147648]. [PMID: 24693427].
[33]
Mason, J.M. Design and development of peptides and peptide mimetics as antagonists for therapeutic intervention. Future Med. Chem., 2010, 2(12), 1813-1822. [http://dx.doi.org/ 10.4155/ fmc.10.259]. [PMID: 21428804].
[34]
Demange, L.; Abdellah, F.N.; Lozach, O.; Ferandin, Y.; Gresh, N.; Meijer, L.; Galons, H. Potent inhibitors of CDK5 derived from roscovitine: synthesis, biological evaluation and molecular modelling. Bioorg. Med. Chem. Lett., 2013, 23(1), 125-131. [http://dx.doi.org/ 10.1016/j.bmcl.2012.10.141]. [PMID: 23218601].
[35]
Baxter, D.; Ullman, C.G.; Mason, J.M. Library construction, selection and modification strategies to generate therapeutic peptide-based modulators of protein-protein interactions. Future Med. Chem., 2014, 6(18), 2073-2092. [http://dx.doi.org/ 10.4155/ fmc.14.134]. [PMID: 25531969].
[36]
Jochim, A.L.; Arora, P.S. Systematic analysis of helical protein interfaces reveals targets for synthetic inhibitors. ACS Chem. Biol., 2010, 5(10), 919-923. [http://dx.doi.org/ 10.1021/cb1001747]. [PMID: 20712375].
[37]
Moradi, S.; Soltani, S.; Ansari, A.M.; Sardari, S. Peptidomimetics and their applications in antifungal drug design. Antiinfect. Agents Med. Chem., 2009, 8, 327-344. [http://dx.doi.org/ 10.2174/ 187152109789760216].
[38]
Sillerud, L.O.; Larson, R.S. Design and structure of peptide and peptidomimetic antagonists of protein-protein interaction. Curr. Protein Pept. Sci., 2005, 6(2), 151-169. [http://dx.doi.org/ 10.2174/1389203053545462]. [PMID: 15853652].
[39]
Lao, B.B.; Drew, K.; Guarracino, D.A.; Brewer, T.F.; Heindel, D.W.; Bonneau, R.; Arora, P.S. Rational design of topographical helix mimics as potent inhibitors of protein-protein interactions. J. Am. Chem. Soc., 2014, 136(22), 7877-7888. [http://dx.doi.org/ 10.1021/ja502310r]. [PMID: 24972345].
[40]
Cumming, J.N.; Smith, E.M.; Wang, L.; Misiaszek, J.; Durkin, J.; Pan, J.; Iserloh, U.; Wu, Y.; Zhu, Z.; Strickland, C.; Voigt, J.; Chen, X.; Kennedy, M.E.; Kuvelkar, R.; Hyde, L.A.; Cox, K.; Favreau, L.; Czarniecki, M.F.; Greenlee, W.J.; McKittrick, B.A.; Parker, E.M.; Stamford, A.W. Structure based design of iminohydantoin BACE1 inhibitors: Identification of an orally available, centrally active BACE1 inhibitor. Bioorg. Med. Chem. Lett., 2012, 22(7), 2444-2449. [http://dx.doi.org/ 10.1016/j.bmcl.2012.02.013]. [PMID: 22390835].
[41]
Volkman, H.M.; Rutledge, S.E.; Schepartz, A. Binding mode and transcriptional activation potential of high affinity ligands for the CBP KIX domain. J. Am. Chem. Soc., 2005, 127(13), 4649-4658. [http://dx.doi.org/ 10.1021/ja042761y]. [PMID: 15796530].
[42]
Phan, T.; Nguyen, H.D.; Göksel, H.; Möcklinghoff, S.; Brunsveld, L. Phage display selection of miniprotein binders of the Estrogen Receptor. Chem. Commun. (Camb.), 2010, 46(43), 8207-8209. [http://dx.doi.org/ 10.1039/c0cc02727h]. [PMID: 20871934].
[43]
Leduc, A-M.; Trent, J.O.; Wittliff, J.L.; Bramlett, K.S.; Briggs, S.L.; Chirgadze, N.Y.; Wang, Y.; Burris, T.P.; Spatola, A.F. Helix-stabilized cyclic peptides as selective inhibitors of steroid receptor-coactivator interactions. Proc. Natl. Acad. Sci. USA, 2003, 100(20), 11273-11278. [http://dx.doi.org/ 10.1073/pnas.1934759100]. [PMID: 13679575].
[44]
Chorev, M.; Roubini, E.; McKee, R.L.; Gibbons, S.W.; Goldman, M.E.; Caulfield, M.P.; Rosenblatt, M. Cyclic parathyroid hormone related protein antagonists: Lysine 13 to aspartic acid 17 [i to (i + 4)] side chain to side chain lactamization. Biochemistry, 1991, 30(24), 5968-5974. [http://dx.doi.org/ 10.1021/bi00238a022]. [PMID: 1646005].
[45]
Blackwell, H.E.; Grubbs, R.H. Highly efficient synthesis of covalently cross‐linked peptide helices by ring‐closing metathesis. Angew. Chem. Int. Ed. Engl., 1998, 37(23), 3281-3284. [http://dx.doi.org/10.1002/(SICI)1521-3773(19981217)37:23<3281:AID-ANIE3281>3.0.CO;2-V]. [PMID: 29711420].
[46]
Patgiri, A.; Jochim, A.L.; Arora, P.S. A hydrogen bond surrogate approach for stabilization of short peptide sequences in α-helical conformation. Acc. Chem. Res., 2008, 41(10), 1289-1300. [http://dx.doi.org/ 10.1021/ar700264k]. [PMID: 18630933].
[47]
Moritz, W.; Helmut, H.; Stefan, A.; Dieter, S. β-Peptides as inhibitors of small-intestinal cholesterol and fat absorption. Helv. Chim. Acta, 1999, 82, 1774-1783. [http://dx.doi.org/ 10.1002/(SICI)1522-2675(19991006)82:10<1774:AID-HLCA1774>3.0.CO;2-O].
[48]
Guharoy, M.; Chakrabarti, P. Secondary structure based analysis and classification of biological interfaces: identification of binding motifs in protein-protein interactions. Bioinformatics, 2007, 23(15), 1909-1918. [http://dx.doi.org/ 10.1093/bioinformatics/btm274]. [PMID: 17510165].
[49]
Villar, E.A.; Beglov, D.; Chennamadhavuni, S.; Porco, J.A., Jr; Kozakov, D.; Vajda, S.; Whitty, A. How proteins bind macrocycles. Nat. Chem. Biol., 2014, 10(9), 723-731. [http://dx.doi.org/ 10.1038/nchembio.1584]. [PMID: 25038790].
[50]
Sperandio, O.; Reynès, C.H.; Camproux, A-C.; Villoutreix, B.O. Rationalizing the chemical space of protein-protein interaction inhibitors. Drug Discov. Today, 2010, 15(5-6), 220-229. [http://dx.doi.org/ 10.1016/j.drudis.2009.11.007]. [PMID: 19969101].
[51]
Murray, J.K.; Gellman, S.H. Targeting protein-protein interactions: Lessons from p53/MDM2. Biopolymers, 2007, 88(5), 657-686. [http://dx.doi.org/ 10.1002/bip.20741]. [PMID: 17427181].
[52]
Wang, S.; Zhao, Y.; Aguilar, A.; Bernard, D.; Yang, C-Y. Targeting the MDM2–p53 protein–protein interaction for new cancer therapy: progress and challenges. Cold Spring Harb. Perspect. Med., 2017, 7(5), a026245. [http://dx.doi.org/ 10.1101/cshperspect. a026245]. [PMID: 28270530].
[53]
Berg, T. Small-molecule inhibitors of protein–protein interactions.In: Protein-protein Complexes; Analysis, Modeling and Drug Design, 2010, pp. 318-339. [http://dx.doi.org/ 10.1142/9781848-163409_0012]
[54]
Srinivasula, S.M.; Hegde, R.; Saleh, A.; Datta, P.; Shiozaki, E.; Chai, J.; Lee, R.A.; Robbins, P.D.; Fernandes-Alnemri, T.; Shi, Y.; Alnemri, E.S. A conserved XIAP-interaction motif in caspase-9 and Smac/DIABLO regulates caspase activity and apoptosis. Nature, 2001, 410(6824), 112-116. [http://dx.doi.org/ 10.1038/3506-5125]. [PMID: 11242052].
[55]
Sgrignani, J.; Garofalo, M.; Matkovic, M.; Merulla, J.; Catapano, C.V.; Cavalli, A. Structural biology of STAT3 and its implications for anticancer therapies development. Int. J. Mol. Sci., 2018, 19(6), 1591-1604. [http://dx.doi.org/ 10.3390/ijms19061591]. [PMID: 29843450].
[56]
Phiel, C.J.; Wilson, C.A.; Lee, V.M.Y.; Klein, P.S. GSK-3α regulates production of Alzheimer’s disease amyloid-β peptides. Nature, 2003, 423(6938), 435-439. [http://dx.doi.org/ 10.1038/nature 01640]. [PMID: 12761548].
[57]
Heinemann, U.; Gawinecka, J.; Schmidt, C.; Zerr, I. Differential diagnosis of rapid progressive dementia. Eur. Neurol. Rev., 2010, 5, 21-28. [http://dx.doi.org/ 10.17925/ENR.2010.05.02.21].
[58]
Bruggink, K.A.; Müller, M.; Kuiperij, H.B.; Verbeek, M.M. Methods for analysis of amyloid-β aggregates. J. Alzheimers Dis., 2012, 28(4), 735-758. [http://dx.doi.org/ 10.3233/JAD-2011-111421]. [PMID: 22156047].
[59]
Kumari, S.; Mishra, C.B.; Idrees, D.; Prakash, A.; Yadav, R.; Hassan, M.I.; Tiwari, M. Design, synthesis, in silico and biological evaluation of novel 2-(4-(4-substituted piperazin-1-yl)benzylidene)hydrazine carboxamides. Mol. Divers., 2017, 21(1), 163-174. [http://dx.doi.org/ 10.1007/s11030-016-9714-7]. [PMID: 28039637].
[60]
Hansen, R.A.; Gartlehner, G.; Webb, A.P.; Morgan, L.C.; Moore, C.G.; Jonas, D.E. Efficacy and safety of donepezil, galantamine, and rivastigmine for the treatment of Alzheimer’s disease: A systematic review and meta-analysis. Clin. Interv. Aging, 2008, 3(2), 211-225. [PMID: 18686744].
[61]
Reitz, C.; Mayeux, R. Alzheimer disease: epidemiology, diagnostic criteria, risk factors and biomarkers. Biochem. Pharmacol., 2014, 88(4), 640-651. [http://dx.doi.org/ 10.1016/j.bcp.2013.12.024]. [PMID: 24398425].
[62]
Cummings, J.L.; Vinters, H.V.; Cole, G.M.; Khachaturian, Z.S. Alzheimer’s disease: etiologies, pathophysiology, cognitive reserve,
and treatment opportunities. Neurology,, 1998, 51(1), (Suppl.
1), S2-S17. [http://dx.doi.org/ 10.1212/WNL.51.1_Suppl_1.S2]. [PMID:9674758].
[63]
Salomone, S.; Caraci, F.; Leggio, G.M.; Fedotova, J.; Drago, F. New pharmacological strategies for treatment of Alzheimer’s disease: focus on disease modifying drugs. Br. J. Clin. Pharmacol., 2012, 73(4), 504-517. [http://dx.doi.org/ 10.1111/j.1365-2125.2011.04134.x]. [PMID: 22035455].
[64]
Alvarez, A.; Opazo, C.; Alarcón, R.; Garrido, J.; Inestrosa, N.C. Acetylcholinesterase promotes the aggregation of amyloid-beta-peptide fragments by forming a complex with the growing fibrils. J. Mol. Biol., 1997, 272(3), 348-361. [http://dx.doi.org/ 10.1006/jmbi.1997.1245]. [PMID: 9325095].
[65]
Zlokovic, B.V. Clearing amyloid through the blood-brain barrier. J. Neurochem., 2004, 89(4), 807-811. [http://dx.doi.org/ 10.1111/j.1471-4159.2004.02385.x]. [PMID: 15140180].
[66]
Basha, S.J.; Mohan, P.; Yeggoni, D.P.; Babu, Z.R.; Kumar, P.B.; Rao, A.D.; Subramanyam, R.; Damu, A.G. New flavone-cyanoacetamide hybrids with a combination of cholinergic, antioxidant, modulation of β-amyloid aggregation, and neuroprotection properties as innovative multifunctional therapeutic candidates for alzheimer’s disease and unraveling their mechanism of action with acetylcholinesterase. Mol. Pharm., 2018, 15(6), 2206-2223. [http://dx.doi.org/ 10.1021/acs.molpharmaceut.8b00041]. [PMID: 29745222].
[67]
Llorens-Martín, M.; Jurado, J.; Hernández, F.; Avila, J. GSK-3β, A pivotal kinase in Alzheimer disease. Front. Mol. Neurosci., 2014, 7, 46. [PMID: 24904272].
[68]
Lane, R.M.; Kivipelto, M.; Greig, N.H. Acetylcholinesterase and its inhibition in Alzheimer disease. Clin. Neuropharmacol., 2004, 27(3), 141-149. [http://dx.doi.org/ 10.1097/00002826-200405000-00011]. [PMID: 15190239].
[69]
Miguel-Hidalgo, J.J.; Paul, I.A.; Wanzo, V.; Banerjee, P.K. Memantine prevents cognitive impairment and reduces Bcl-2 and caspase 8 immunoreactivity in rats injected with amyloid β1-40. Eur. J. Pharmacol., 2012, 692(1-3), 38-45. [http://dx.doi.org/ 10.1016/j.ejphar.2012.07.032]. [PMID: 22824463].
[70]
Cottrell, D.A.; Borthwick, G.M.; Johnson, M.A.; Ince, P.G.; Turnbull, D.M. The role of cytochrome c oxidase deficient hippocampal neurones in Alzheimer’s disease. Neuropathol. Appl. Neurobiol., 2002, 28(5), 390-396. [http://dx.doi.org/ 10.1046/j.1365-2990.2002.00414.x]. [PMID: 12366820].
[71]
Nicolakakis, N.; Aboulkassim, T.; Ongali, B.; Lecrux, C.; Fernandes, P.; Rosa-Neto, P.; Tong, X.K.; Hamel, E. Complete rescue of cerebrovascular function in aged Alzheimer’s disease transgenic mice by antioxidants and pioglitazone, A peroxisome proliferator-activated receptor gamma agonist. J. Neurosci., 2008, 28(37), 9287-9296. [http://dx.doi.org/ 10.1523/JNEUROSCI.3348-08.2008]. [PMID: 18784309].
[72]
Wang, X.X.; Tan, M.S.; Yu, J.T.; Tan, L. Matrix metalloproteinases and their multiple roles in Alzheimer’s disease. BioMed Res. Int., 2014, 2014, 908636. [PMID: 25050378].
[73]
Swetha, R.; Gayen, C.; Kumar, D.; Singh, T.D.; Modi, G.; Singh, S.K. Biomolecular basis of matrix metallo proteinase-9 activity. Future Med. Chem., 2018, 10(9), 1093-1112. [http://dx.doi.org/ 10.4155/fmc-2017-0236]. [PMID: 29676173].
[74]
Tang, D.; Yeung, J.; Lee, K.Y.; Matsushita, M.; Matsui, H.; Tomizawa, K.; Hatase, O.; Wang, J.H. An isoform of the neuronal cyclin-dependent kinase 5 (CDK5) activator. J. Biol. Chem., 1995, 270(45), 26897-26903. [http://dx.doi.org/ 10.1074/jbc.270.45. 26897]. [PMID: 7592934].
[75]
Niethammer, M.; Smith, D.S.; Ayala, R.; Peng, J.; Ko, J.; Lee, M.S.; Morabito, M.; Tsai, L.H. NUDEL is a novel CDK5 substrate that associates with LIS1 and cytoplasmic dynein. Neuron, 2000, 28(3), 697-711. [http://dx.doi.org/ 10.1016/S0896-6273(00)00147-1]. [PMID: 11163260].
[76]
Larson, M.; Sherman, M.A.; Amar, F.; Nuvolone, M.; Schneider, J.A.; Bennett, D.A.; Aguzzi, A.; Lesné, S.E. The complex PrP(c)-Fyn couples human oligomeric Aβ with pathological tau changes in Alzheimer’s disease. J. Neurosci., 2012, 32(47), 16857-16871a. [http://dx.doi.org/ 10.1523/JNEUROSCI.1858-12.2012]. [PMID: 23175838].
[77]
Mapelli, M.; Massimiliano, L.; Crovace, C.; Seeliger, M.A.; Tsai, L-H.; Meijer, L.; Musacchio, A. Mechanism of CDK5/p25 binding by CDK inhibitors. J. Med. Chem., 2005, 48(3), 671-679. [http://dx.doi.org/ 10.1021/jm049323m]. [PMID: 15689152].
[78]
Tarricone, C.; Dhavan, R.; Peng, J.; Areces, L.B.; Tsai, L.H.; Musacchio, A. Structure and regulation of the CDK5-p25(nck5a) complex. Mol. Cell, 2001, 8(3), 657-669. [http://dx.doi.org/ 10.1016/S1097-2765(01)00343-4]. [PMID: 11583627].
[79]
Zhang, B.; Su, Z.C.; Tay, T.E.; Tan, V.B. Mechanism of CDK5 activation revealed by steered molecular dynamics simulations and energy calculations. J. Mol. Model., 2010, 16(6), 1159-1168. [http://dx.doi.org/ 10.1007/s00894-009-0629-4]. [PMID: 20013135].
[80]
Zhang, B.; Corbel, C.; Guéritte, F.; Couturier, C.; Bach, S.; Tan, V.B. An in silico approach for the discovery of CDK5/p25 interaction inhibitors. Biotechnol. J., 2011, 6(7), 871-881. [http://dx.doi.org/ 10.1002/biot.201100139]. [PMID: 21681969].
[81]
Kishimoto, A.; Kajikawa, N.; Tabuchi, H.; Shiota, M.; Nishizuka, Y. Calcium-dependent neural proteases, widespread occurrence of a species of protease active at lower concentrations of calcium. J. Biochem., 1981, 90(3), 889-892. [http://dx.doi.org/ 10.1093/ oxfordjournals.jbchem.a133547]. [PMID: 7031044].
[82]
Brown, B.A.; Nixon, R.A.; Strocchi, P.; Marotta, C.A. Characterization and comparison of neurofilament proteins from rat and mouse CNS. J. Neurochem., 1981, 36(1), 143-153. [http://dx.doi.org/ 10.1111/j.1471-4159.1981.tb02389.x]. [PMID: 7193240].
[83]
Nixon, R.A. Calcium-activated neutral proteinases as regulators of cellular function. Implications for Alzheimer’s disease pathogenesis. Ann. N. Y. Acad. Sci., 1989, 568, 198-208. [http://dx.doi.org/ 10.1111/j.1749-6632.1989.tb12509.x]. [PMID: 2560900].
[84]
Seubert, P.; Lee, K.; Lynch, G. Ischemia triggers NMDA receptor-linked cytoskeletal proteolysis in hippocampus. Brain Res., 1989, 492(1-2), 366-370. [http://dx.doi.org/ 10.1016/0006-8993(89) 90921-9]. [PMID: 2546656].
[85]
Arai, A.; Kessler, M.; Lee, K.; Lynch, G. Calpain inhibitors improve the recovery of synaptic transmission from hypoxia in hippocampal slices. Brain Res., 1990, 532(1-2), 63-68. [http://dx.doi.org/ 10.1016/0006-8993(90)91742-Y]. [PMID: 2178038].
[86]
Siman, R.; Noszek, J.C.; Kegerise, C. Calpain I activation is specifically related to excitatory amino acid induction of hippocampal damage. J. Neurosci., 1989, 9(5), 1579-1590. [http://dx.doi.org/ 10.1523/JNEUROSCI.09-05-01579.1989]. [PMID: 2542478].
[87]
Iwamoto, N.; Emson, P.C. Demonstration of neurofibrillary tangles in parvalbumin-immunoreactive interneurones in the cerebral cortex of Alzheimer-type dementia brain. Neurosci. Lett., 1991, 128(1), 81-84. [http://dx.doi.org/ 10.1016/0304-3940(91)90764-K]. [PMID: 1717900].
[88]
Iwamoto, N.; Thangnipon, W.; Crawford, C.; Emson, P.C. Localization of calpain immunoreactivity in senile plaques and in neurones undergoing neurofibrillary degeneration in Alzheimer’s disease. Brain Res., 1991, 561(1), 177-180. [http://dx.doi.org/ 10.1016/0006-8993(91)90766-O]. [PMID: 1797346].
[89]
Shimohama, S.; Suenaga, T.; Araki, W.; Yamaoaka, Y.; Shimizu, K.; Kimura, J. Presence of calpain II immunoreactivity in senile plaques in Alzheimer’s disease. Brain Res., 1991, 558(1), 105-108. [http://dx.doi.org/ 10.1016/0006-8993(91)90722-8]. [PMID: 1718565].
[90]
Patrick, G.N.; Zukerberg, L.; Nikolic, M.; de la Monte, S.; Dikkes, P.; Tsai, L.H. Conversion of p35 to p25 deregulates CDK5 activity and promotes neurodegeneration. Nature, 1999, 402(6762), 615-622. [http://dx.doi.org/ 10.1038/45159]. [PMID: 10604467].
[91]
Nath, R.; Davis, M.; Probert, A.W.; Kupina, N.C.; Ren, X.; Schielke, G.P.; Wang, K.K. Processing of CDK5 activator p35 to its truncated form (p25) by calpain in acutely injured neuronal cells. Biochem. Biophys. Res. Commun., 2000, 274(1), 16-21. [http://dx.doi.org/ 10.1006/bbrc.2000.3070]. [PMID: 10903889].
[92]
Ahlijanian, M.K.; Barrezueta, N.X.; Williams, R.D.; Jakowski, A.; Kowsz, K.P.; McCarthy, S.; Coskran, T.; Carlo, A.; Seymour, P.A.; Burkhardt, J.E.; Nelson, R.B.; McNeish, J.D. Hyperphosphorylated tau and neurofilament and cytoskeletal disruptions in mice overexpressing human p25, an activator of CDK5. Proc. Natl. Acad. Sci. USA, 2000, 97(6), 2910-2915. [http://dx.doi.org/ 10.1073/ pnas.040577797]. [PMID: 10706614].
[93]
Saitoh, T.; Masliah, E.; Jin, L.W.; Cole, G.M.; Wieloch, T.; Shapiro, I.P. Protein kinases and phosphorylation in neurologic disorders and cell death. Lab. Invest., 1991, 64(5), 596-616. [PMID: 2030574].
[94]
Rapoport, M.; Ferreira, A. PD98059 prevents neurite degeneration induced by fibrillar β-amyloid in mature hippocampal neurons. J. Neurochem., 2000, 74(1), 125-133. [http://dx.doi.org/ 10.1046/j. 1471-4159.2000.0740125.x]. [PMID: 10617113].
[95]
Canu, N.; Dus, L.; Barbato, C.; Ciotti, M.T.; Brancolini, C.; Rinaldi, A.M.; Novak, M.; Cattaneo, A.; Bradbury, A.; Calissano, P. Tau cleavage and dephosphorylation in cerebellar granule neurons undergoing apoptosis. J. Neurosci., 1998, 18(18), 7061-7074. [http://dx.doi.org/10.1523/JNEUROSCI.18-18-07061.1998]. [PMID: 9736630].
[96]
Park, S.Y.; Ferreira, A. The generation of a 17 kDa neurotoxic fragment: An alternative mechanism by which tau mediates β-amyloid-induced neurodegeneration. J. Neurosci., 2005, 25(22), 5365-5375. [http://dx.doi.org/ 10.1523/JNEUROSCI.1125-05. 2005]. [PMID: 15930385].
[97]
Liang, B.; Duan, B.Y.; Zhou, X.P.; Gong, J.X.; Luo, Z.G. Calpain activation promotes BACE1 expression, amyloid precursor protein processing, and amyloid plaque formation in a transgenic mouse model of Alzheimer disease. J. Biol. Chem., 2010, 285(36), 27737-27744. [http://dx.doi.org/ 10.1074/jbc.M110.117960]. [PMID: 20595388].
[98]
Liang, Z.; Liu, F.; Grundke-Iqbal, I.; Iqbal, K.; Gong, C.X. Down-regulation of cAMP-dependent protein kinase by over-activated calpain in Alzheimer disease brain. J. Neurochem., 2007, 103(6), 2462-2470. [http://dx.doi.org/ 10.1111/j.1471-4159.2007.04942.x]. [PMID: 17908236].
[99]
Saftig, P.; Peters, C.; von Figura, K.; Craessaerts, K.; Van Leuven, F.; De Strooper, B. Amyloidogenic processing of human amyloid precursor protein in hippocampal neurons devoid of cathepsin D. J. Biol. Chem., 1996, 271(44), 27241-27244. [http://dx.doi.org/ 10.1074/jbc.271.44.27241]. [PMID: 8910296].
[100]
Citron, M.; Diehl, T.S.; Capell, A.; Haass, C.; Teplow, D.B.; Selkoe, D.J. Inhibition of amyloid β-protein production in neural cells by the serine protease inhibitor AEBSF. Neuron, 1996, 17(1), 171-179. [http://dx.doi.org/ 10.1016/S0896-6273(00)80290-1]. [PMID: 8755488].
[101]
Steinhilb, M.L.; Turner, R.S.; Gaut, J.R. The protease inhibitor, MG132, blocks maturation of the amyloid precursor protein Swedish mutant preventing cleavage by beta-Secretase. J. Biol. Chem., 2001, 276(6), 4476-4484. [http://dx.doi.org/ 10.1074/jbc. M008793200]. [PMID: 11084038].
[102]
Sinha, S.; Anderson, J.P.; Barbour, R.; Basi, G.S.; Caccavello, R.; Davis, D.; Doan, M.; Dovey, H.F.; Frigon, N.; Hong, J.; Jacobson-Croak, K.; Jewett, N.; Keim, P.; Knops, J.; Lieberburg, I.; Power, M.; Tan, H.; Tatsuno, G.; Tung, J.; Schenk, D.; Seubert, P.; Suomensaari, S.M.; Wang, S.; Walker, D.; Zhao, J.; McConlogue, L.; John, V. Purification and cloning of amyloid precursor protein β-secretase from human brain. Nature, 1999, 402(6761), 537-540. [http://dx.doi.org/ 10.1038/990114]. [PMID: 10591214].
[103]
Hong, L.; Koelsch, G.; Lin, X.; Wu, S.; Terzyan, S.; Ghosh, A.K.; Zhang, X.C.; Tang, J. Structure of the protease domain of memapsin 2 (β-secretase) complexed with inhibitor. Science, 2000, 290(5489), 150-153. [http://dx.doi.org/ 10.1126/science.290. 5489.150]. [PMID: 11021803].
[104]
Vetrivel, K.S.; Zhang, Y.W.; Xu, H.; Thinakaran, G. Pathological and physiological functions of presenilins. Mol. Neurodegener., 2006, 1, 4. [http://dx.doi.org/ 10.1186/1750-1326-1-4]. [PMID: 16930451].
[105]
Walter, J.; Fluhrer, R.; Hartung, B.; Willem, M.; Kaether, C.; Capell, A.; Lammich, S.; Multhaup, G.; Haass, C. Phosphorylation regulates intracellular trafficking of β-secretase. J. Biol. Chem., 2001, 276(18), 14634-14641. [http://dx.doi.org/ 10.1074/jbc. M01111-6200]. [PMID: 11278841].
[106]
Haniu, M.; Denis, P.; Young, Y.; Mendiaz, E.A.; Fuller, J.; Hui, J.O.; Bennett, B.D.; Kahn, S.; Ross, S.; Burgess, T.; Katta, V.; Rogers, G.; Vassar, R.; Citron, M. Characterization of Alzheimer’s beta -secretase protein BACE. A pepsin family member with unusual properties. J. Biol. Chem., 2000, 275(28), 21099-21106. [http://dx.doi.org/ 10.1074/jbc.M002095200]. [PMID: 10887202].
[107]
Westmeyer, G.G.; Willem, M.; Lichtenthaler, S.F.; Lurman, G.; Multhaup, G.; Assfalg-Machleidt, I.; Reiss, K.; Saftig, P.; Haass, C. Dimerization of β-site β-amyloid precursor protein-cleaving enzyme. J. Biol. Chem., 2004, 279(51), 53205-53212. [http://dx.doi.org/ 10.1074/jbc.M410378200]. [PMID: 15485862].
[108]
Chakraborty, S.; Kumar, S.; Basu, S. Conformational transition in the substrate binding domain of β-secretase exploited by NMA and its implication in inhibitor recognition: BACE1-myricetin a case study. Neurochem. Int., 2011, 58(8), 914-923. [http://dx.doi.org/ 10.1016/j.neuint.2011.02.021]. [PMID: 21354237].
[109]
Yan, R.; Bienkowski, M.J.; Shuck, M.E.; Miao, H.; Tory, M.C.; Pauley, A.M.; Brashier, J.R.; Stratman, N.C.; Mathews, W.R.; Buhl, A.E.; Carter, D.B.; Tomasselli, A.G.; Parodi, L.A.; Heinrikson, R.L.; Gurney, M.E. Membrane-anchored aspartyl protease with Alzheimer’s disease β-secretase activity. Nature, 1999, 402(6761), 533-537. [http://dx.doi.org/ 10.1038/990107]. [PMID: 10591213].
[110]
Lahiri, D.K.; Maloney, B.; Ge, Y.W. Functional domains of the BACE1 and BACE2 promoters and mechanisms of transcriptional suppression of the BACE2 promoter in normal neuronal cells. J. Mol. Neurosci., 2006, 29(1), 65-80. [http://dx.doi.org/ 10.1385/JMN:29:1:65]. [PMID: 16757811].
[111]
Venugopal, C.; Demos, C.M.; Rao, K.S.; Pappolla, M.A.; Sambamurti, K. Beta-secretase: Structure, function, and evolution. CNS Neurol. Disord. Drug Targets, 2008, 7(3), 278-294. [http://dx.doi.org/10.2174/187152708784936626]. [PMID: 18673212].
[112]
Huse, J.T.; Pijak, D.S.; Leslie, G.J.; Lee, V.M.; Doms, R.W. Maturation and endosomal targeting of beta-site amyloid precursor protein-cleaving enzyme. The Alzheimer’s disease beta-secretase. J. Biol. Chem., 2000, 275(43), 33729-33737. [http://dx.doi.org/ 10.1074/jbc.M004175200]. [PMID: 10924510].
[113]
Capell, A.; Steiner, H.; Willem, M.; Kaiser, H.; Meyer, C.; Walter, J.; Lammich, S.; Multhaup, G.; Haass, C. Maturation and pro-peptide cleavage of beta-secretase. J. Biol. Chem., 2000, 275(40), 30849-30854. [http://dx.doi.org/ 10.1074/jbc.M003202200]. [PMID: 10801872].
[114]
Riemenschneider, M.; Klopp, N.; Xiang, W.; Wagenpfeil, S.; Vollmert, C.; Müller, U.; Förstl, H.; Illig, T.; Kretzschmar, H.; Kurz, A. Prion protein codon 129 polymorphism and risk of Alzheimer disease. Neurology, 2004, 63(2), 364-366. [http://dx.doi.org/10.1212/01.WNL.0000130198.72589.69]. [PMID: 15277640].
[115]
He, W.; Lu, Y.; Qahwash, I.; Hu, X.Y.; Chang, A.; Yan, R. Reticulon family members modulate BACE1 activity and amyloid-beta peptide generation. Nat. Med., 2004, 10(9), 959-965. [http://dx.doi.org/ 10.1038/nm1088]. [PMID: 15286784].
[116]
Hattori, C.; Asai, M.; Oma, Y.; Kino, Y.; Sasagawa, N.; Saido, T.C.; Maruyama, K.; Ishiura, S. BACE1 interacts with nicastrin. Biochem. Biophys. Res. Commun., 2002, 293(4), 1228-1232. [http://dx.doi.org/ 10.1016/S0006-291X(02)00351-0]. [PMID: 12054507].
[117]
Hébert, S.S.; Bourdages, V.; Godin, C.; Ferland, M.; Carreau, M.; Lévesque, G. Presenilin-1 interacts directly with the beta-site amyloid protein precursor cleaving enzyme (BACE1). Neurobiol. Dis., 2003, 13(3), 238-245. [http://dx.doi.org/ 10.1016/S0969-9961(03)00035-4]. [PMID: 12901838].
[118]
Bush, A.I.; Masters, C.L.; Tanzi, R.E. Copper, beta-amyloid, and Alzheimer’s disease: Tapping a sensitive connection. Proc. Natl. Acad. Sci. USA, 2003, 100(20), 11193-11194. [http://dx.doi.org/ 10.1073/pnas.2135061100]. [PMID: 14506299].
[119]
He, X.; Li, F.; Chang, W.P.; Tang, J. GGA proteins mediate the recycling pathway of memapsin 2 (BACE). J. Biol. Chem., 2005, 280(12), 11696-11703. [http://dx.doi.org/ 10.1074/jbc.M411296200]. [PMID: 15615712].
[120]
Xie, J.; Guo, Q. PAR-4 is involved in regulation of beta-secretase cleavage of the Alzheimer amyloid precursor protein. J. Biol. Chem., 2005, 280(14), 13824-13832. [http://dx.doi.org/ 10.1074/jbc.M411933200]. [PMID: 15671026].
[121]
Hussain, I.; Powell, D.J.; Howlett, D.R.; Chapman, G.A.; Gilmour, L.; Murdock, P.R.; Tew, D.G.; Meek, T.D.; Chapman, C.; Schneider, K.; Ratcliffe, S.J.; Tattersall, D.; Testa, T.T.; Southan, C.; Ryan, D.M.; Simmons, D.L.; Walsh, F.S.; Dingwall, C.; Christie, G. ASP1 (BACE2) cleaves the amyloid precursor protein at the β-secretase site. Mol. Cell. Neurosci., 2000, 16(5), 609-619. [http://dx.doi.org/ 10.1006/mcne.2000.0884]. [PMID: 11083922].
[122]
Laird, F.M.; Cai, H.; Savonenko, A.V.; Farah, M.H.; He, K.; Melnikova, T.; Wen, H.; Chiang, H-C.; Xu, G.; Koliatsos, V.E.; Borchelt, D.R.; Price, D.L.; Lee, H.K.; Wong, P.C. BACE1, a major determinant of selective vulnerability of the brain to amyloid-β amyloidogenesis, is essential for cognitive, emotional, and synaptic functions. J. Neurosci., 2005, 25(50), 11693-11709. [http://dx.doi.org/ 10.1523/JNEUROSCI.2766-05.2005]. [PMID: 16354928].
[123]
Kumar, D.; Ganeshpurkar, A.; Kumar, D.; Modi, G.; Gupta, S.K.; Singh, S.K. Secretase inhibitors for the treatment of Alzheimer’s disease: Long road ahead. Eur. J. Med. Chem., 2018, 148, 436-452. [http://dx.doi.org/ 10.1016/j.ejmech.2018.02.035]. [PMID: 29477076].
[124]
Roberds, S.L.; Anderson, J.; Basi, G.; Bienkowski, M.J.; Branstetter, D.G.; Chen, K.S.; Freedman, S.B.; Frigon, N.L.; Games, D.; Hu, K.; Johnson-Wood, K.; Kappenman, K.E.; Kawabe, T.T.; Kola, I.; Kuehn, R.; Lee, M.; Liu, W.; Motter, R.; Nichols, N.F.; Power, M.; Robertson, D.W.; Schenk, D.; Schoor, M.; Shopp, G.M.; Shuck, M.E.; Sinha, S.; Svensson, K.A.; Tatsuno, G.; Tintrup, H.; Wijsman, J.; Wright, S.; McConlogue, L. BACE knockout mice are healthy despite lacking the primary β-secretase activity in brain: Implications for Alzheimer’s disease therapeutics. Hum. Mol. Genet., 2001, 10(12), 1317-1324. [http://dx.doi.org/ 10.1093/hmg/10.12.1317]. [PMID: 11406613].
[125]
Holsinger, R.M.; McLean, C.A.; Beyreuther, K.; Masters, C.L.; Evin, G. Increased expression of the amyloid precursor β-secretase in Alzheimer’s disease. Ann. Neurol., 2002, 51(6), 783-786. [http://dx.doi.org/ 10.1002/ana.10208]. [PMID: 12112088].
[126]
Sullivan, S.E.; Dillon, G.M.; Sullivan, J.M.; Ho, A. Mint proteins are required for synaptic activity-dependent amyloid precursor protein (APP) trafficking and amyloid β generation. J. Biol. Chem., 2014, 289(22), 15374-15383. [http://dx.doi.org/ 10.1074/jbc.M113.541003]. [PMID: 24742670].
[127]
Hill, K.; Li, Y.; Bennett, M.; McKay, M.; Zhu, X.; Shern, J.; Torre, E.; Lah, J.J.; Levey, A.I.; Kahn, R.A. Munc18 interacting proteins: ADP-ribosylation factor-dependent coat proteins that regulate the traffic of β-Alzheimer’s precursor protein. J. Biol. Chem., 2003, 278(38), 36032-36040. [http://dx.doi.org/ 10.1074/jbc.M301632200]. [PMID: 12842896].
[128]
Belluti, F.; Piazzi, L.; Bisi, A.; Gobbi, S.; Bartolini, M.; Cavalli, A.; Valenti, P.; Rampa, A. Design, synthesis, and evaluation of benzophenone derivatives as novel acetylcholinesterase inhibitors. Eur. J. Med. Chem., 2009, 44(3), 1341-1348. [http://dx.doi.org/ 10.1016/j.ejmech.2008.02.035]. [PMID: 18396354].
[129]
Xie, X.; Yan, X.; Wang, Z.; Zhou, H.; Diao, W.; Zhou, W.; Long, J.; Shen, Y. Open-closed motion of Mint2 regulates APP metabolism. J. Mol. Cell Biol., 2013, 5(1), 48-56. [http://dx.doi.org/ 10.1093/jmcb/mjs033]. [PMID: 22730553].
[130]
Müller, U.C.; Deller, T.; Korte, M. Not just amyloid: physiological functions of the amyloid precursor protein family. Nat. Rev. Neurosci., 2017, 18(5), 281-298. [http://dx.doi.org/ 10.1038/nrn.2017.29]. [PMID: 28360418].
[131]
Rogelj, B.; Mitchell, J.C.; Miller, C.C.J.; McLoughlin, D.M. The X11/Mint family of adaptor proteins. Brain Res. Brain Res. Rev., 2006, 52(2), 305-315. [http://dx.doi.org/ 10.1016/j. brainresrev.2006.04.005]. [PMID: 16764936].
[132]
Lee, J-H.; Lau, K.F.; Perkinton, M.S.; Standen, C.L.; Shemilt, S.J.A.; Mercken, L.; Cooper, J.D.; McLoughlin, D.M.; Miller, C.C.J. The neuronal adaptor protein X11α reduces Abeta levels in the brains of Alzheimer’s APPswe Tg2576 transgenic mice. J. Biol. Chem., 2003, 278(47), 47025-47029. [http://dx.doi.org/ 10.1074/jbc.M300503200]. [PMID: 12970358].
[133]
Lee, J.H.; Lau, K.F.; Perkinton, M.S.; Standen, C.L.; Rogelj, B.; Falinska, A.; McLoughlin, D.M.; Miller, C.C.J. The neuronal adaptor protein X11β reduces amyloid β-protein levels and amyloid plaque formation in the brains of transgenic mice. J. Biol. Chem., 2004, 279(47), 49099-49104. [http://dx.doi.org/ 10.1074/jbc. M405602200]. [PMID: 15347685].
[134]
Araki, Y.; Tomita, S.; Yamaguchi, H.; Miyagi, N.; Sumioka, A.; Kirino, Y.; Suzuki, T. Novel cadherin-related membrane proteins, Alcadeins, enhance the X11-like protein-mediated stabilization of amyloid β-protein precursor metabolism. J. Biol. Chem., 2003, 278(49), 49448-49458. [http://dx.doi.org/ 10.1074/ jbc.M3060-24200]. [PMID: 12972431].
[135]
McLoughlin, D.M.; Standen, C.L.; Lau, K.F.; Ackerley, S.; Bartnikas, T.P.; Gitlin, J.D.; Miller, C.C.J. The neuronal adaptor protein X11α interacts with the copper chaperone for SOD1 and regulates SOD1 activity. J. Biol. Chem., 2001, 276(12), 9303-9307. [http://dx.doi.org/ 10.1074/jbc.M010023200]. [PMID: 11115513].
[136]
Biederer, T.; Südhof, T.C. Mints as adaptors. Direct binding to neurexins and recruitment of munc18. J. Biol. Chem., 2000, 275(51), 39803-39806. [http://dx.doi.org/ 10.1074/jbc. C000656200]. [PMID: 11036064].
[137]
Cumming, J.; Babu, S.; Huang, Y.; Carrol, C.; Chen, X.; Favreau, L.; Greenlee, W.; Guo, T.; Kennedy, M.; Kuvelkar, R.; Le, T.; Li, G.; McHugh, N.; Orth, P.; Ozgur, L.; Parker, E.; Saionz, K.; Stamford, A.; Strickland, C.; Tadesse, D.; Voigt, J.; Zhang, L.; Zhang, Q. Piperazine sulfonamide BACE1 inhibitors: design, synthesis, and in vivo characterization. Bioorg. Med. Chem. Lett., 2010, 20(9), 2837-2842. [http://dx.doi.org/ 10.1016/j.bmcl.2010.03.050]. [PMID: 20347593].
[138]
Long, J-F.; Feng, W.; Wang, R.; Chan, L-N.; Ip, F.C.F.; Xia, J.; Ip, N.Y.; Zhang, M. Autoinhibition of X11/Mint scaffold proteins revealed by the closed conformation of the PDZ tandem. Nat. Struct. Mol. Biol., 2005, 12(8), 722-728. [http://dx.doi.org/ 10.1038/nsmb958]. [PMID: 16007100].
[139]
Duquesne, A.E.; Ruijter, Md.; Brouwer, J.; Drijfhout, J.W.; Nabuurs, S.B.; Spronk, C.A.E.M.; Vuister, G.W.; Ubbink, M.; Canters, G.W. Solution structure of the second PDZ domain of the neuronal adaptor X11α and its interaction with the C-terminal peptide of the human copper chaperone for superoxide dismutase. J. Biomol. NMR, 2005, 32(3), 209-218. [http://dx.doi.org/ 10.1007/s10858-005-7333-1]. [PMID: 16132821].
[140]
Joshi, M.; Vargas, C.; Boisguerin, P.; Diehl, A.; Krause, G.; Schmieder, P.; Moelling, K.; Hagen, V.; Schade, M.; Oschkinat, H. Discovery of low-molecular-weight ligands for the AF6 PDZ domain. Angew. Chem. Int. Ed. Engl., 2006, 45(23), 3790-3795. [http://dx.doi.org/ 10.1002/anie.200503965]. [PMID: 16671149].
[141]
Manczak, M.; Calkins, M.J.; Reddy, P.H. Impaired mitochondrial dynamics and abnormal interaction of amyloid beta with mitochondrial protein Drp1 in neurons from patients with Alzheimer’s disease: implications for neuronal damage. Hum. Mol. Genet., 2011, 20(13), 2495-2509. [http://dx.doi.org/ 10.1093/hmg/ddr139]. [PMID: 21459773].
[142]
Chang, K.H.; Multani, P.S.; Sun, K.H.; Vincent, F.; de Pablo, Y.; Ghosh, S.; Gupta, R.; Lee, H.P.; Lee, H.G.; Smith, M.A.; Shah, K. Nuclear envelope dispersion triggered by deregulated CDK5 precedes neuronal death. Mol. Biol. Cell, 2011, 22(9), 1452-1462. [http://dx.doi.org/ 10.1091/mbc.e10-07-0654]. [PMID: 21389115].
[143]
Meuer, K.; Suppanz, I.E.; Lingor, P.; Planchamp, V.; Göricke, B.; Fichtner, L.; Braus, G.H.; Dietz, G.P.; Jakobs, S.; Bähr, M.; Weishaupt, J.H. Cyclin-dependent kinase 5 is an upstream regulator of mitochondrial fission during neuronal apoptosis. Cell Death Differ., 2007, 14(4), 651-661. [http://dx.doi.org/ 10.1038/sj.cdd.4402087]. [PMID: 17218957].
[144]
Velayos, J.L.; Irujo, A.; Cuadrado-Tejedor, M.; Paternain, B.; Moleres, F.J.; Ferrer, V. The cellular prion protein and its role in Alzheimer disease. Prion, 2009, 3(2), 110-117. [http://dx.doi.org/ 10.4161/pri.3.2.9135]. [PMID: 19556894].
[145]
Chen, S.; Yadav, S.P.; Surewicz, W.K. Interaction between human prion protein and amyloid-β (Abeta) oligomers: role OF N-terminal residues. J. Biol. Chem., 2010, 285(34), 26377-26383. [http://dx.doi.org/ 10.1074/jbc.M110.145516]. [PMID: 20576610].
[146]
Barry, A.E.; Klyubin, I.; Mc Donald, J.M.; Mably, A.J.; Farrell, M.A.; Scott, M.; Walsh, D.M.; Rowan, M.J. Alzheimer’s disease brain-derived amyloid-β-mediated inhibition of LTP in vivo is prevented by immunotargeting cellular prion protein. J. Neurosci., 2011, 31(20), 7259-7263. [http://dx.doi.org/10.1523/JNEUROSCI.6500-10.2011]. [PMID: 21593310].
[147]
Freir, D.B.; Nicoll, A.J.; Klyubin, I.; Panico, S.; Mc Donald, J.M.; Risse, E.; Asante, E.A.; Farrow, M.A.; Sessions, R.B.; Saibil, H.R.; Clarke, A.R.; Rowan, M.J.; Walsh, D.M.; Collinge, J. Interaction between prion protein and toxic amyloid β assemblies can be therapeutically targeted at multiple sites. Nat. Commun., 2011, 2, 336. [http://dx.doi.org/ 10.1038/ncomms1341]. [PMID: 21654636].
[148]
Renner, M.; Lacor, P.N.; Velasco, P.T.; Xu, J.; Contractor, A.; Klein, W.L.; Triller, A. Deleterious effects of amyloid beta oligomers acting as an extracellular scaffold for mGluR5. Neuron, 2010, 66(5), 739-754. [http://dx.doi.org/10.1016/j.neuron.2010.04.029]. [PMID: 20547131].
[149]
Albasanz, J.L.; Dalfó, E.; Ferrer, I.; Martín, M. Impaired metabotropic glutamate receptor/phospholipase C signaling pathway in the cerebral cortex in Alzheimer’s disease and dementia with Lewy bodies correlates with stage of Alzheimer’s-disease-related changes. Neurobiol. Dis., 2005, 20(3), 685-693. [http://dx.doi.org/ 10.1016/j.nbd.2005.05.001]. [PMID: 15949941].
[150]
Snyder, E.M.; Nong, Y.; Almeida, C.G.; Paul, S.; Moran, T.; Choi, E.Y.; Nairn, A.C.; Salter, M.W.; Lombroso, P.J.; Gouras, G.K.; Greengard, P. Regulation of NMDA receptor trafficking by amyloid-β. Nat. Neurosci., 2005, 8(8), 1051-1058. [http://dx.doi.org/ 10.1038/nn1503]. [PMID: 16025111].
[151]
Shankar, G.M.; Bloodgood, B.L.; Townsend, M.; Walsh, D.M.; Selkoe, D.J.; Sabatini, B.L. Natural oligomers of the Alzheimer amyloid-beta protein induce reversible synapse loss by modulating an NMDA-type glutamate receptor-dependent signaling pathway. J. Neurosci., 2007, 27(11), 2866-2875. [http://dx.doi.org/ 10.1523/JNEUROSCI.4970-06.2007]. [PMID: 17360908].
[152]
Lechward, K.; Awotunde, O.S.; Swiatek, W.; Muszyńska, G. Protein phosphatase 2A: Variety of forms and diversity of functions. Acta Biochim. Pol., 2001, 48(4), 921-933. [PMID: 11996003].
[153]
Janssens, V.; Goris, J. Protein phosphatase 2A: A highly regulated family of serine/threonine phosphatases implicated in cell growth and signalling. Biochem. J., 2001, 353(Pt 3), 417-439. [http://dx.doi.org/ 10.1042/bj3530417]. [PMID: 11171037].
[154]
Sontag, E.; Luangpirom, A.; Hladik, C.; Mudrak, I.; Ogris, E.; Speciale, S.; White, C.L., III Altered expression levels of the protein phosphatase 2A ABalphaC enzyme are associated with Alzheimer disease pathology. J. Neuropathol. Exp. Neurol., 2004, 63(4), 287-301. [http://dx.doi.org/ 10.1093/jnen/63.4.287]. [PMID: 15099019].
[155]
Gong, C.X.; Singh, T.J.; Grundke-Iqbal, I.; Iqbal, K. Phosphoprotein phosphatase activities in Alzheimer disease brain. J. Neurochem., 1993, 61(3), 921-927. [http://dx.doi.org/ 10.1111/j.1471-4159.1993.tb03603.x]. [PMID: 8395566].
[156]
Tanimukai, H.; Grundke-Iqbal, I.; Iqbal, K. Up-regulation of inhibitors of protein phosphatase-2A in Alzheimer’s disease. Am. J. Pathol., 2005, 166(6), 1761-1771. [http://dx.doi.org/ 10.1016/S0002-9440(10)62486-8]. [PMID: 15920161].
[157]
Voronkov, M.; Braithwaite, S.P.; Stock, J.B. Phosphoprotein phosphatase 2A: A novel druggable target for Alzheimer’s disease. Future Med. Chem., 2011, 3(7), 821-833. [http://dx.doi.org/ 10.4155/fmc.11.47]. [PMID: 21644827].
[158]
Kang, S.W.; Chae, H.Z.; Seo, M.S.; Kim, K.; Baines, I.C.; Rhee, S.G. Mammalian peroxiredoxin isoforms can reduce hydrogen peroxide generated in response to growth factors and tumor necrosis factor-alpha. J. Biol. Chem., 1998, 273(11), 6297-6302. [http://dx.doi.org/ 10.1074/jbc.273.11.6297]. [PMID: 9497357].
[159]
Cho, K.J.; Park, Y.; Khan, T.; Lee, J.H.; Kim, S.; Seok, J.H.; Chung, Y.B.; Cho, A.E.; Choi, Y.; Chang, T.S.; Kim, K.H. Crystal structure of dimeric human peroxiredoxin-1 C83S mutant. Bull. Korean Chem. Soc., 2015, 36, 1543-1545. [http://dx.doi.org/ 10.1002/bkcs.10284].
[160]
Chang, T.S.; Jeong, W.; Choi, S.Y.; Yu, S.; Kang, S.W.; Rhee, S.G. Regulation of peroxiredoxin I activity by Cdc2-mediated phosphorylation. J. Biol. Chem., 2002, 277(28), 25370-25376. [http://dx.doi.org/ 10.1074/jbc.M110432200]. [PMID: 11986303].
[161]
Sun, K.H.; de Pablo, Y.; Vincent, F.; Johnson, E.O.; Chavers, A.K.; Shah, K. Novel genetic tools reveal CDK5's major role in Golgi fragmentation in Alzheimer’s disease. Mol. Biol. Cell, 2008, 19(7), 3052-3069. [http://dx.doi.org/ 10.1091/mbc.e07-11-1106]. [PMID: 18480410].
[162]
Meijer, L.; Borgne, A.; Mulner, O.; Chong, J.P.; Blow, J.J.; Inagaki, N.; Inagaki, M.; Delcros, J.G.; Moulinoux, J.P. Biochemical and cellular effects of roscovitine, A potent and selective inhibitor of the cyclin-dependent kinases cdc2, CDK2 and CDK5. Eur. J. Biochem., 1997, 243(1-2), 527-536. [http://dx.doi.org/ 10.1111/j.1432-1033.1997.t01-2-00527.x]. [PMID: 9030781].
[163]
Ruan, J.; Xu, C.; Bian, C.; Lam, R.; Wang, J.P.; Kania, J.; Min, J.; Zang, J. Crystal structures of the coil 2B fragment and the globular tail domain of human lamin B1. FEBS Lett., 2012, 586(4), 314-318. [http://dx.doi.org/ 10.1016/j.febslet.2012.01.007]. [PMID: 22265972].
[164]
Yeh, C.H.; Kuo, P.L.; Wang, Y.Y.; Wu, Y.Y.; Chen, M.F.; Lin, D.Y.; Lai, T.H.; Chiang, H.S.; Lin, Y.H. SEPT12/SPAG4/LAMINB1 complexes are required for maintaining the integrity of the nuclear envelope in postmeiotic male germ cells. PLoS One, 2015, 10(3), e0120722. [http://dx.doi.org/ 10.1371/journal.pone.0120722]. [PMID: 25775403].
[165]
Black, W.; Vasiliou, V. The aldehyde dehydrogenase gene superfamily resource center. Hum. Genomics, 2009, 4(2), 136-142. [http://dx.doi.org/ 10.1186/1479-7364-4-2-136]. [PMID: 20038501].
[166]
Farrés, J.; Wang, T.T.; Cunningham, S.J.; Weiner, H. Investigation of the active site cysteine residue of rat liver mitochondrial aldehyde dehydrogenase by site-directed mutagenesis. Biochemistry, 1995, 34(8), 2592-2598. [http://dx.doi.org/ 10.1021/bi00008a025]. [PMID: 7873540].
[167]
Nikhil, K.; Viccaro, K.; Shah, K. Multifaceted regulation of ALDH1A1 by CDK5 in Alzheimer’s disease pathogenesis. Mol. Neurobiol., 2019, 56(2), 1366-1390. [PMID: 29948941].
[168]
Knudsen, K.A.; Rosand, J.; Karluk, D.; Greenberg, S.M. Clinical diagnosis of cerebral amyloid angiopathy: Validation of the Boston criteria. Neurology, 2001, 56(4), 537-539. [http://dx.doi.org/ 10.1212/WNL.56.4.537]. [PMID: 11222803].
[169]
Vinters, H.V. Cerebral amyloid angiopathy. A critical review. Stroke, 1987, 18(2), 311-324. [http://dx.doi.org/10.1161/01.STR.18.2.311]. [PMID: 3551211].
[170]
Hawkes, C.A.; Sullivan, P.M.; Hands, S.; Weller, R.O.; Nicoll, J.A.; Carare, R.O. Disruption of arterial perivascular drainage of amyloid-β from the brains of mice expressing the human APOE ε4 allele. PLoS One, 2012, 7, 1-11. [http://dx.doi.org/ 10.1371/journal.pone.0041636].
[171]
Zekonyte, J.; Sakai, K.; Nicoll, J.A.R.; Weller, R.O.; Carare, R.O. Quantification of molecular interactions between ApoE, amyloid-beta (Aβ) and laminin: Relevance to accumulation of Aβ in Alzheimer’s disease. Biochim. Biophys. Acta, 2016, 1862(5), 1047-1053. [http://dx.doi.org/ 10.1016/j.bbadis.2015.08.025]. [PMID: 26327683].
[172]
Yang, L.B.; Lindholm, K.; Yan, R.; Citron, M.; Xia, W.; Yang, X.L.; Beach, T.; Sue, L.; Wong, P.; Price, D.; Li, R.; Shen, Y. Elevated β-secretase expression and enzymatic activity detected in sporadic Alzheimer disease. Nat. Med., 2003, 9(1), 3-4. [http://dx.doi.org/ 10.1038/nm0103-3]. [PMID: 12514700].
[173]
Tarassishin, L.; Yin, Y.I.; Bassit, B.; Li, Y-M. Processing of Notch and amyloid precursor protein by γ-secretase is spatially distinct. Proc. Natl. Acad. Sci. USA, 2004, 101(49), 17050-17055. [http://dx.doi.org/ 10.1073/pnas.0408007101]. [PMID: 15563588].
[174]
Kojro, E.; Fahrenholz, F. The non-amyloidogenic pathway In: Structure and function of α-Secretases.Alzheimer’s Disease: Cellular
and Molecular Aspects of Amyloid β, Springer,, 2005, pp. 105-
127. [http://dx.doi.org/ 10.1007/0-387-23226-5_5]
[175]
Hartmann, T.; Bieger, S.C.; Brühl, B.; Tienari, P.J.; Ida, N.; Allsop, D.; Roberts, G.W.; Masters, C.L.; Dotti, C.G.; Unsicker, K.; Beyreuther, K. Distinct sites of intracellular production for Alzheimer’s disease A β40/42 amyloid peptides. Nat. Med., 1997, 3(9), 1016-1020. [http://dx.doi.org/ 10.1038/nm0997-1016]. [PMID: 9288729].
[176]
Greenfield, J.P.; Tsai, J.; Gouras, G.K.; Hai, B.; Thinakaran, G.; Checler, F.; Sisodia, S.S.; Greengard, P.; Xu, H. Endoplasmic reticulum and trans-Golgi network generate distinct populations of Alzheimer β-amyloid peptides. Proc. Natl. Acad. Sci. USA, 1999, 96(2), 742-747. [http://dx.doi.org/ 10.1073/pnas.96.2.742]. [PMID: 9892704].
[177]
Koo, E.H.; Sisodia, S.S.; Archer, D.R.; Martin, L.J.; Weidemann, A.; Beyreuther, K.; Fischer, P.; Masters, C.L.; Price, D.L. Precursor of amyloid protein in Alzheimer disease undergoes fast anterograde axonal transport. Proc. Natl. Acad. Sci. USA, 1990, 87(4), 1561-1565. [http://dx.doi.org/ 10.1073/pnas.87.4.1561]. [PMID: 1689489].
[178]
Burdick, D.; Soreghan, B.; Kwon, M.; Kosmoski, J.; Knauer, M.; Henschen, A.; Yates, J.; Cotman, C.; Glabe, C. Assembly and aggregation properties of synthetic Alzheimer’s A4/beta amyloid peptide analogs. J. Biol. Chem., 1992, 267(1), 546-554. [PMID: 1730616].
[179]
Prior, R.; D’Urso, D.; Frank, R.; Prikulis, I.; Cleven, S.; Ihl, R.; Pavlakovic, G. Selective binding of soluble Abeta1-40 and Abeta1-42 to a subset of senile plaques. Am. J. Pathol., 1996, 148(6), 1749-1756. [PMID: 8669461].
[180]
Bitan, G.; Kirkitadze, M.D.; Lomakin, A.; Vollers, S.S.; Benedek, G.B.; Teplow, D.B. Amyloid β -protein (Abeta) assembly: Abeta 40 and Abeta 42 oligomerize through distinct pathways. Proc. Natl. Acad. Sci. USA, 2003, 100(1), 330-335. [http://dx.doi.org/ 10.1073/pnas.222681699]. [PMID: 12506200].
[181]
Haass, C.; Selkoe, D.J. Soluble protein oligomers in neurodegeneration: Lessons from the Alzheimer’s amyloid β-peptide. Nat. Rev. Mol. Cell Biol., 2007, 8(2), 101-112. [http://dx.doi.org/ 10.1038/nrm2101]. [PMID: 17245412].
[182]
Hartley, D.M.; Walsh, D.M.; Ye, C.P.; Diehl, T.; Vasquez, S.; Vassilev, P.M.; Teplow, D.B.; Selkoe, D.J. Protofibrillar intermediates of amyloid β-protein induce acute electrophysiological changes and progressive neurotoxicity in cortical neurons. J. Neurosci., 1999, 19(20), 8876-8884. [http://dx.doi.org/ 10.1523/JNEUROSCI.19-20-08876.1999]. [PMID: 10516307].
[183]
Lashuel, H.A.; Hartley, D.; Petre, B.M.; Walz, T.; Lansbury, P.T., Jr Neurodegenerative disease: Amyloid pores from pathogenic mutations. Nature, 2002, 418(6895), 291. [http://dx.doi.org/ 10.1038/418291a]. [PMID: 12124613].
[184]
Gong, Y.; Chang, L.; Viola, K.L.; Lacor, P.N.; Lambert, M.P.; Finch, C.E.; Krafft, G.A.; Klein, W.L. Alzheimer’s disease-affected brain: presence of oligomeric A β ligands (ADDLs) suggests a molecular basis for reversible memory loss. Proc. Natl. Acad. Sci. USA, 2003, 100(18), 10417-10422. [http://dx.doi.org/ 10.1073/pnas.1834302100]. [PMID: 12925731].
[185]
Lesné, S.; Koh, M.T.; Kotilinek, L.; Kayed, R.; Glabe, C.G.; Yang, A.; Gallagher, M.; Ashe, K.H. A specific amyloid-β protein assembly in the brain impairs memory. Nature, 2006, 440(7082), 352-357. [http://dx.doi.org/ 10.1038/nature04533]. [PMID: 16541076].
[186]
Podlisny, M.B.; Ostaszewski, B.L.; Squazzo, S.L.; Koo, E.H.; Rydell, R.E.; Teplow, D.B.; Selkoe, D.J. Aggregation of secreted amyloid beta-protein into sodium dodecyl sulfate-stable oligomers in cell culture. J. Biol. Chem., 1995, 270(16), 9564-9570. [http://dx.doi.org/ 10.1074/jbc.270.16.9564]. [PMID: 7721886].
[187]
Walsh, D.M.; Tseng, B.P.; Rydel, R.E.; Podlisny, M.B.; Selkoe, D.J. The oligomerization of amyloid β-protein begins intracellularly in cells derived from human brain. Biochemistry, 2000, 39(35), 10831-10839. [http://dx.doi.org/ 10.1021/bi001048s]. [PMID: 10978169].
[188]
Lansbury, P.T., Jr; Costa, P.R.; Griffiths, J.M.; Simon, E.J.; Auger, M.; Halverson, K.J.; Kocisko, D.A.; Hendsch, Z.S.; Ashburn, T.T.; Spencer, R.G.S.; Tidor, B.; Griffin, R.G. Structural model for the β-amyloid fibril based on interstrand alignment of an antiparallel-sheet comprising a C-terminal peptide. Nat. Struct. Biol., 1995, 2(11), 990-998. [http://dx.doi.org/ 10.1038/nsb1195-990]. [PMID: 7583673].
[189]
Petkova, A.T.; Ishii, Y.; Balbach, J.J.; Antzutkin, O.N.; Leapman, R.D.; Delaglio, F.; Tycko, R. A structural model for Alzheimer’s β -amyloid fibrils based on experimental constraints from solid state NMR. Proc. Natl. Acad. Sci. USA, 2002, 99(26), 16742-16747. [http://dx.doi.org/ 10.1073/pnas.262663499]. [PMID: 12481027].
[190]
Pike, C.J.; Burdick, D.; Walencewicz, A.J.; Glabe, C.G.; Cotman, C.W. Neurodegeneration induced by beta-amyloid peptides in vitro: the role of peptide assembly state. J. Neurosci., 1993, 13(4), 1676-1687. [http://dx.doi.org/ 10.1523/JNEUROSCI.13-04-01676.1993]. [PMID: 8463843].
[191]
Pike, C.J.; Walencewicz-Wasserman, A.J.; Kosmoski, J.; Cribbs, D.H.; Glabe, C.G.; Cotman, C.W. Structure-activity analyses of β-amyloid peptides: contributions of the β 25-35 region to aggregation and neurotoxicity. J. Neurochem., 1995, 64(1), 253-265. [http://dx.doi.org/ 10.1046/j.1471-4159.1995.64010253.x]. [PMID: 7798921].
[192]
Lührs, T.; Ritter, C.; Adrian, M.; Riek-Loher, D.; Bohrmann, B.; Döbeli, H.; Schubert, D.; Riek, R. 3D structure of Alzheimer’s amyloid-β(1-42) fibrils. Proc. Natl. Acad. Sci. USA, 2005, 102(48), 17342-17347. [http://dx.doi.org/ 10.1073/pnas.0506723102]. [PMID: 16293696].
[193]
Balducci, C.; Beeg, M.; Stravalaci, M.; Bastone, A.; Sclip, A.; Biasini, E.; Tapella, L.; Colombo, L.; Manzoni, C.; Borsello, T.; Chiesa, R.; Gobbi, M.; Salmona, M.; Forloni, G. Synthetic amyloid-β oligomers impair long-term memory independently of cellular prion protein. Proc. Natl. Acad. Sci. USA, 2010, 107(5), 2295-2300. [http://dx.doi.org/ 10.1073/pnas.0911829107]. [PMID: 20133875].
[194]
Struble, R.G.; Cork, L.C.; Whitehouse, P.J.; Price, D.L. Cholinergic innervation in neuritic plaques. Science, 1982, 216(4544), 413-415. [http://dx.doi.org/ 10.1126/science.6803359]. [PMID: 6803359].
[195]
Morán, M.A.; Mufson, E.J.; Gómez-Ramos, P. Colocalization of cholinesterases with β amyloid protein in aged and Alzheimer’s brains. Acta Neuropathol., 1993, 85(4), 362-369. [http://dx.doi.org/ 10.1007/BF00334445]. [PMID: 8480510].
[196]
Carson, K.A.; Geula, C.; Mesulam, M.M. Electron microscopic localization of cholinesterase activity in Alzheimer brain tissue. Brain Res., 1991, 540(1-2), 204-208. [http://dx.doi.org/ 10.1016/0006-8993(91)90508-S]. [PMID: 2054612].
[197]
Inestrosa, N.C.; Alvarez, A.; Pérez, C.A.; Moreno, R.D.; Vicente, M.; Linker, C.; Casanueva, O.I.; Soto, C.; Garrido, J. Acetylcholinesterase accelerates assembly of amyloid-β-peptides into Alzheimer’s fibrils: Possible role of the peripheral site of the enzyme. Neuron, 1996, 16(4), 881-891. [http://dx.doi.org/ 10.1016/S0896-6273(00)80108-7]. [PMID: 8608006].
[198]
Bartolini, M.; Bertucci, C.; Cavrini, V.; Andrisano, V. β-Amyloid aggregation induced by human acetylcholinesterase: inhibition studies. Biochem. Pharmacol., 2003, 65(3), 407-416. [http://dx.doi.org/10.1016/S0006-2952(02)01514-9]. [PMID: 12527333].
[199]
Lee, G.; Neve, R.L.; Kosik, K.S. The microtubule binding domain of tau protein. Neuron, 1989, 2(6), 1615-1624. [http://dx.doi.org/ 10.1016/0896-6273(89)90050-0]. [PMID: 2516729].
[200]
Binder, L.I.; Frankfurter, A.; Rebhun, L.I. The distribution of tau in the mammalian central nervous system. J. Cell Biol., 1985, 101(4), 1371-1378. [http://dx.doi.org/ 10.1083/jcb.101.4.1371]. [PMID: 3930508].
[201]
Kampers, T.; Pangalos, M.; Geerts, H.; Wiech, H.; Mandelkow, E. Assembly of paired helical filaments from mouse tau: implications for the neurofibrillary pathology in transgenic mouse models for Alzheimer’s disease. FEBS Lett., 1999, 451(1), 39-44. [http://dx.doi.org/ 10.1016/S0014-5793(99)00522-0]. [PMID: 10356980].
[202]
Takashima, A.; Murayama, M.; Murayama, O.; Kohno, T.; Honda, T.; Yasutake, K.; Nihonmatsu, N.; Mercken, M.; Yamaguchi, H.; Sugihara, S.; Wolozin, B. Presenilin 1 associates with glycogen synthase kinase-3β and its substrate tau. Proc. Natl. Acad. Sci. USA, 1998, 95(16), 9637-9641. [http://dx.doi.org/ 10.1073/pnas.95.16.9637]. [PMID: 9689133].
[203]
Mazanetz, M.P.; Fischer, P.M. Untangling tau hyperphosphorylation in drug design for neurodegenerative diseases. Nat. Rev. Drug Discov., 2007, 6(6), 464-479. [http://dx.doi.org/ 10.1038/nrd2111]. [PMID: 17541419].
[204]
Arnold, C.S.; Johnson, G.V.; Cole, R.N.; Dong, D.L-Y.; Lee, M.; Hart, G.W. The microtubule-associated protein tau is extensively modified with O-linked N-acetylglucosamine. J. Biol. Chem., 1996, 271(46), 28741-28744. [http://dx.doi.org/ 10.1074/jbc.271.46. 28741]. [PMID: 8910513].
[205]
Gong, C.X.; Liu, F.; Grundke-Iqbal, I.; Iqbal, K. Post-translational modifications of tau protein in Alzheimer’s disease. J. Neural Transm. (Vienna), 2005, 112(6), 813-838. [http://dx.doi.org/ 10.1007/s00702-004-0221-0]. [PMID: 15517432].
[206]
Lee, V.M.; Balin, B.J.; Otvos, L., Jr; Trojanowski, J.Q. A68: A major subunit of paired helical filaments and derivatized forms of normal Tau. Science, 1991, 251(4994), 675-678. [http://dx.doi.org/ 10.1126/science.1899488]. [PMID: 1899488].
[207]
Schweers, O.; Mandelkow, E-M.; Biernat, J.; Mandelkow, E. Oxidation of cysteine-322 in the repeat domain of microtubule-associated protein tau controls the in vitro assembly of paired helical filaments. Proc. Natl. Acad. Sci. USA, 1995, 92(18), 8463-8467. [http://dx.doi.org/ 10.1073/pnas.92.18.8463]. [PMID: 7667312].
[208]
Ballatore, C.; Lee, V.M.Y.; Trojanowski, J.Q. Tau-mediated neurodegeneration in Alzheimer’s disease and related disorders. Nat. Rev. Neurosci., 2007, 8(9), 663-672. [http://dx.doi.org/ 10.1038/nrn2194]. [PMID: 17684513].
[209]
Novak, M.; Kabat, J.; Wischik, C.M. Molecular characterization of the minimal protease resistant tau unit of the Alzheimer’s disease paired helical filament. EMBO J., 1993, 12(1), 365-370. [http://dx.doi.org/ 10.1002/j.1460-2075.1993.tb05665.x]. [PMID: 7679073].
[210]
von Bergen, M.; Friedhoff, P.; Biernat, J.; Heberle, J.; Mandelkow, E.M.; Mandelkow, E. Assembly of τ protein into Alzheimer paired helical filaments depends on a local sequence motif ((306)VQIVYK(311)) forming β structure. Proc. Natl. Acad. Sci. USA, 2000, 97(10), 5129-5134. [http://dx.doi.org/ 10.1073/pnas.97.10.5129]. [PMID: 10805776].
[211]
Helal, C.J.; Sanner, M.A.; Cooper, C.B.; Gant, T.; Adam, M.; Lucas, J.C.; Kang, Z.; Kupchinsky, S.; Ahlijanian, M.K.; Tate, B.; Menniti, F.S.; Kelly, K.; Peterson, M. Discovery and SAR of 2-aminothiazole inhibitors of cyclin-dependent kinase 5/p25 as a potential treatment for Alzheimer’s disease. Bioorg. Med. Chem. Lett., 2004, 14(22), 5521-5525. [http://dx.doi.org/ 10.1016/j.bmcl.2004.09.006]. [PMID: 15482916].
[212]
Helal, C.J.; Kang, Z.; Lucas, J.C.; Gant, T.; Ahlijanian, M.K.; Schachter, J.B.; Richter, K.E.G.; Cook, J.M.; Menniti, F.S.; Kelly, K.; Mente, S.; Pandit, J.; Hosea, N. Potent and cellularly active 4-aminoimidazole inhibitors of cyclin-dependent kinase 5/p25 for the treatment of Alzheimer’s disease. Bioorg. Med. Chem. Lett., 2009, 19(19), 5703-5707. [http://dx.doi.org/ 10.1016/j.bmcl.2009.08.019]. [PMID: 19700321].
[213]
Chioua, M.; Samadi, A.; Soriano, E.; Lozach, O.; Meijer, L.; Marco-Contelles, J. Synthesis and biological evaluation of 3,6-diamino-1H-pyrazolo[3,4-b]pyridine derivatives as protein kinase inhibitors. Bioorg. Med. Chem. Lett., 2009, 19(16), 4566-4569. [http://dx.doi.org/ 10.1016/j.bmcl.2009.06.099]. [PMID: 19615897].
[214]
Malmström, J.; Viklund, J.; Slivo, C.; Costa, A.; Maudet, M.; Sandelin, C.; Hiller, G.; Olsson, L-L.; Aagaard, A.; Geschwindner, S.; Xue, Y.; Vasänge, M. Synthesis and structure-activity relationship of 4-(1,3-benzothiazol-2-yl)-thiophene-2-sulfonamides as cyclin-dependent kinase 5 (CDK5)/p25 inhibitors. Bioorg. Med. Chem. Lett., 2012, 22(18), 5919-5923. [http://dx.doi.org/ 10.1016/j.bmcl.2012.07.068]. [PMID: 22889803].
[215]
Shiradkar, M.; Thomas, J.; Kanase, V.; Dighe, R. Studying synergism of methyl linked cyclohexyl thiophenes with triazole: synthesis and their CDK5/p25 inhibition activity. Eur. J. Med. Chem., 2011, 46(6), 2066-2074. [http://dx.doi.org/ 10.1016/j.ejmech. 2011.02.059]. [PMID: 21420204].
[216]
Jain, P.; Flaherty, P.T.; Yi, S.; Chopra, I.; Bleasdell, G.; Lipay, J.; Ferandin, Y.; Meijer, L.; Madura, J.D. Design, synthesis, and testing of an 6-O-linked series of benzimidazole based inhibitors of CDK5/p25. Bioorg. Med. Chem., 2011, 19(1), 359-373. [http://dx.doi.org/ 10.1016/j.bmc.2010.11.022]. [PMID: 21144757].
[217]
Chatterjee, A.; Cutler, S.J.; Doerksen, R.J.; Khan, I.A.; Williamson, J.S. Discovery of thienoquinolone derivatives as selective and ATP non-competitive CDK5/p25 inhibitors by structure-based virtual screening. Bioorg. Med. Chem., 2014, 22(22), 6409-6421. [http://dx.doi.org/ 10.1016/j.bmc.2014.09.043]. [PMID: 25438765].
[218]
Dehbi, O.; Tikad, A.; Bourg, S.; Bonnet, P.; Lozach, O.; Meijer, L.; Aadil, M.; Akssira, M.; Guillaumet, G.; Routier, S. Synthesis and optimization of an original V-shaped collection of 4-7-disubstituted pyrido[3,2-d]pyrimidines as CDK5 and DYRK1A inhibitors. Eur. J. Med. Chem., 2014, 80, 352-363. [http://dx.doi.org/ 10.1016/j.ejmech.2014.04.055]. [PMID: 24793883].
[219]
Shiradkar, M.R.; Padhalingappa, M.B.; Bhetalabhotala, S.; Akula, K.C.; Tupe, D.A.; Pinninti, R.R.; Thummanagoti, S. A novel approach to cyclin-dependent kinase 5/p25 inhibitors: A potential treatment for Alzheimer’s disease. Bioorg. Med. Chem., 2007, 15(19), 6397-6406. [http://dx.doi.org/ 10.1016/j.bmc.2007.06.053]. [PMID: 17643991].
[220]
Larsen, S.D.; Stachew, C.F.; Clare, P.M.; Cubbage, J.W.; Leach, K.L. A catch-and-release strategy for the combinatorial synthesis of 4-acylamino-1,3-thiazoles as potential CDK5 inhibitors. Bioorg. Med. Chem. Lett., 2003, 13(20), 3491-3495. [http://dx.doi.org/ 10.1016/S0960-894X(03)00726-1]. [PMID: 14505655].
[221]
Zhong, W.; Liu, H.; Kaller, M.R.; Henley, C.; Magal, E.; Nguyen, T.; Osslund, T.D.; Powers, D.; Rzasa, R.M.; Wang, H-L.; Wang, W.; Xiong, X.; Zhang, J.; Norman, M.H. Design and synthesis of quinolin-2(1H)-one derivatives as potent CDK5 inhibitors. Bioorg. Med. Chem. Lett., 2007, 17(19), 5384-5389. [http://dx.doi.org/ 10.1016/j.bmcl.2007.07.045]. [PMID: 17709247].
[222]
Chen, J.J.; Liu, Q.; Yuan, C.; Gore, V.; Lopez, P.; Ma, V.; Amegadzie, A.; Qian, W.; Judd, T.C.; Minatti, A.E.; Brown, J.; Cheng, Y.; Xue, M.; Zhong, W.; Dineen, T.A.; Epstein, O.; Human, J.; Kreiman, C.; Marx, I.; Weiss, M.M.; Hitchcock, S.A.; Powers, T.S.; Chen, K.; Wen, P.H.; Whittington, D.A.; Cheng, A.C.; Bartberger, M.D.; Hickman, D.; Werner, J.A.; Vargas, H.M.; Everds, N.E.; Vonderfecht, S.L.; Dunn, R.T., II; Wood, S.; Fremeau, R.T., Jr; White, R.D.; Patel, V.F. Development of 2-aminooxazoline 3-azaxanthenes as orally efficacious β-secretase inhibitors for the potential treatment of Alzheimer’s disease. Bioorg. Med. Chem. Lett., 2015, 25(4), 767-774. [http://dx.doi.org/ 10.1016/j.bmcl.2014.12.092]. [PMID: 25613679].
[223]
Hunt, K.W.; Cook, A.W.; Watts, R.J.; Clark, C.T.; Vigers, G.; Smith, D.; Metcalf, A.T.; Gunawardana, I.W.; Burkard, M.; Cox, A.A.; Geck Do, M.K.; Dutcher, D.; Thomas, A.A.; Rana, S.; Kallan, N.C.; DeLisle, R.K.; Rizzi, J.P.; Regal, K.; Sammond, D.; Groneberg, R.; Siu, M.; Purkey, H.; Lyssikatos, J.P.; Marlow, A.; Liu, X.; Tang, T.P. Spirocyclic β-site amyloid precursor protein cleaving enzyme 1 (BACE1) inhibitors: from hit to lowering of cerebrospinal fluid (CSF) amyloid β in a higher species. J. Med. Chem., 2013, 56(8), 3379-3403. [http://dx.doi.org/ 10.1021/jm4002154]. [PMID: 23537249].
[224]
Zou, Y.; Li, L.; Chen, W.; Chen, T.; Ma, L.; Wang, X.; Xiong, B.; Xu, Y.; Shen, J. Virtual screening and structure-based discovery of indole acylguanidines as potent β-secretase (BACE1) inhibitors. Molecules, 2013, 18(5), 5706-5722. [http://dx.doi.org/10.3390/molecules18055706]. [PMID: 23681056].
[225]
Monenschein, H.; Horne, D.B.; Bartberger, M.D.; Hitchcock, S.A.; Nguyen, T.T.; Patel, V.F.; Pennington, L.D.; Zhong, W. Structure guided P1′ modifications of HEA derived β-secretase inhibitors for the treatment of Alzheimer’s disease. Bioorg. Med. Chem. Lett., 2012, 22(11), 3607-3611. [http://dx.doi.org/ 10.1016/j.bmcl.2012.04.060]. [PMID: 22572583].
[226]
Pennington, L.D.; Whittington, D.A.; Bartberger, M.D.; Jordan, S.R.; Monenschein, H.; Nguyen, T.T.; Yang, B.H.; Xue, Q.M.; Vounatsos, F.; Wahl, R.C.; Chen, K.; Wood, S.; Citron, M.; Patel, V.F.; Hitchcock, S.A.; Zhong, W. Hydroxyethylamine-based inhibitors of BACE1: P1–P3 macrocyclization can improve potency, selectivity, and cell activity. Bioorg. Med. Chem. Lett., 2013, 23, 4459-4464. [http://dx.doi.org/10.1016/j.bmcl.2013.05.028]. [PMID: 23769639].
[227]
Rueeger, H.; Lueoend, R.; Rogel, O.; Rondeau, J-M.; Möbitz, H.; Machauer, R.; Jacobson, L.; Staufenbiel, M.; Desrayaud, S.; Neumann, U. Discovery of cyclic sulfone hydroxyethylamines as potent and selective β-site APP-cleaving enzyme 1 (BACE1) inhibitors: Structure-based design and in vivo reduction of amyloid β-peptides. J. Med. Chem., 2012, 55(7), 3364-3386. [http://dx.doi.org/ 10.1021/jm300069y]. [PMID: 22380629].
[228]
Cumming, J.N.; Le, T.X.; Babu, S.; Carroll, C.; Chen, X.; Favreau, L.; Gaspari, P.; Guo, T.; Hobbs, D.W.; Huang, Y.; Iserloh, U.; Kennedy, M.E.; Kuvelkar, R.; Li, G.; Lowrie, J.; McHugh, N.A.; Ozgur, L.; Pan, J.; Parker, E.M.; Saionz, K.; Stamford, A.W.; Strickland, C.; Tadesse, D.; Voigt, J.; Wang, L.; Wu, Y.; Zhang, L.; Zhang, Q. Rational design of novel, potent piperazinone and imidazolidinone BACE1 inhibitors. Bioorg. Med. Chem. Lett., 2008, 18(11), 3236-3241. [http://dx.doi.org/ 10.1016/j.bmcl.2008.04.050]. [PMID: 18468890].
[229]
Cumming, J.; Babu, S.; Huang, Y.; Carrol, C.; Chen, X.; Favreau, L.; Greenlee, W.; Guo, T.; Kennedy, M.; Kuvelkar, R.; Le, T.; Li, G.; McHugh, N.; Orth, P.; Ozgur, L.; Parker, E.; Saionz, K.; Stamford, A.; Strickland, C.; Tadesse, D.; Voigt, J.; Zhang, L.; Zhang, Q. Piperazine sulfonamide BACE1 inhibitors: design, synthesis, and in vivo characterization. Bioorg. Med. Chem. Lett., 2010, 20(9), 2837-2842. [http://dx.doi.org/ 10.1016/j.bmcl.2010.03.050]. [PMID: 20347593].
[230]
Stamford, A.W.; Scott, J.D.; Li, S.W.; Babu, S.; Tadesse, D.; Hunter, R.; Wu, Y.; Misiaszek, J.; Cumming, J.N.; Gilbert, E.J.; Huang, C.; McKittrick, B.A.; Hong, L.; Guo, T.; Zhu, Z.; Strickland, C.; Orth, P.; Voigt, J.H.; Kennedy, M.E.; Chen, X.; Kuvelkar, R.; Hodgson, R.; Hyde, L.A.; Cox, K.; Favreau, L.; Parker, E.M.; Greenlee, W.J. Discovery of an orally available, brain penetrant BACE1 inhibitor that affords robust CNS Aβ reduction. ACS Med. Chem. Lett., 2012, 3(11), 897-902. [http://dx.doi.org/ 10.1021/ml3001165]. [PMID: 23412139].
[231]
Malamas, M.S.; Robichaud, A.; Erdei, J.; Quagliato, D.; Solvibile, W.; Zhou, P.; Morris, K.; Turner, J.; Wagner, E.; Fan, K.; Olland, A.; Jacobsen, S.; Reinhart, P.; Riddell, D.; Pangalos, M. Design and synthesis of aminohydantoins as potent and selective human β-secretase (BACE1) inhibitors with enhanced brain permeability. Bioorg. Med. Chem. Lett., 2010, 20(22), 6597-6605. [http://dx.doi.org/ 10.1016/j.bmcl.2010.09.029]. [PMID: 20880704].
[232]
Kaller, M.R.; Harried, S.S.; Albrecht, B.; Amarante, P.; Babu-Khan, S.; Bartberger, M.D.; Brown, J.; Brown, R.; Chen, K.; Cheng, Y.; Citron, M.; Croghan, M.D.; Graceffa, R.; Hickman, D.; Judd, T.; Kriemen, C.; La, D.; Li, V.; Lopez, P.; Luo, Y.; Masse, C.; Monenschein, H.; Nguyen, T.; Pennington, L.D.; Miguel, T.S.; Sickmier, E.A.; Wahl, R.C.; Weiss, M.M.; Wen, P.H.; Williamson, T.; Wood, S.; Xue, M.; Yang, B.; Zhang, J.; Patel, V.; Zhong, W.; Hitchcock, S. A potent and orally efficacious, hydroxyethylamine-based inhibitor of β-secretase. ACS Med. Chem. Lett., 2012, 3(11), 886-891. [http://dx.doi.org/ 10.1021/ml3000148]. [PMID: 24900403].
[233]
Dineen, T.A.; Weiss, M.M.; Williamson, T.; Acton, P.; Babu-Khan, S.; Bartberger, M.D.; Brown, J.; Chen, K.; Cheng, Y.; Citron, M.; Croghan, M.D.; Dunn, R.T., II; Esmay, J.; Graceffa, R.F.; Harried, S.S.; Hickman, D.; Hitchcock, S.A.; Horne, D.B.; Huang, H.; Imbeah-Ampiah, R.; Judd, T.; Kaller, M.R.; Kreiman, C.R.; La, D.S.; Li, V.; Lopez, P.; Louie, S.; Monenschein, H.; Nguyen, T.T.; Pennington, L.D.; San Miguel, T.; Sickmier, E.A.; Vargas, H.M.; Wahl, R.C.; Wen, P.H.; Whittington, D.A.; Wood, S.; Xue, Q.; Yang, B.H.; Patel, V.F.; Zhong, W. Design and synthesis of potent, orally efficacious hydroxyethylamine derived β-site amyloid precursor protein cleaving enzyme (BACE1) inhibitors. J. Med. Chem., 2012, 55(21), 9025-9044. [http://dx.doi.org/ 10.1021/jm300118s]. [PMID: 22468684].
[234]
May, P.C.; Dean, R.A.; Lowe, S.L.; Martenyi, F.; Sheehan, S.M.; Boggs, L.N.; Monk, S.A.; Mathes, B.M.; Mergott, D.J.; Watson, B.M.; Stout, S.L.; Timm, D.E.; Smith Labell, E.; Gonzales, C.R.; Nakano, M.; Jhee, S.S.; Yen, M.; Ereshefsky, L.; Lindstrom, T.D.; Calligaro, D.O.; Cocke, P.J.; Greg Hall, D.; Friedrich, S.; Citron, M.; Audia, J.E. Robust central reduction of amyloid-β in humans with an orally available, non-peptidic β-secretase inhibitor. J. Neurosci., 2011, 31(46), 16507-16516. [http://dx.doi.org/ 10.1523/JNEUROSCI.3647-11.2011]. [PMID: 22090477].
[235]
Tarazi, H.; Odeh, R.A.; Al-Qawasmeh, R.; Yousef, I.A.; Voelter, W.; Al-Tel, T.H. Design, synthesis and SAR analysis of potent BACE1 inhibitors: Possible lead drug candidates for Alzheimer’s disease. Eur. J. Med. Chem., 2017, 125, 1213-1224. [http://dx.doi.org/10.1016/j.ejmech.2016.11.021]. [PMID: 27871037].
[236]
Azimi, S.; Zonouzi, A.; Firuzi, O.; Iraji, A.; Saeedi, M.; Mahdavi, M.; Edraki, N. Discovery of imidazopyridines containing isoindoline-1,3-dione framework as a new class of BACE1 inhibitors: Design, synthesis and SAR analysis. Eur. J. Med. Chem., 2017, 138, 729-737. [http://dx.doi.org/ 10.1016/j.ejmech.2017.06.040]. [PMID: 28728105].
[237]
Ghosh, A.K.; Brindisi, M.; Yen, Y-C.; Cárdenas, E.L.; Ella-Menye, J-R.; Kumaragurubaran, N.; Huang, X.; Tang, J.; Mesecar, A.D. Design, synthesis, and X-ray structural studies of BACE-1 inhibitors containing substituted 2-oxopiperazines as P1′-P2′ ligands. Bioorg. Med. Chem. Lett., 2017, 27(11), 2432-2438. [http://dx.doi.org/ 10.1016/j.bmcl.2017.04.011]. [PMID: 28427814].
[238]
Bach, A.; Pedersen, T.B.; Strømgaard, K. Design and synthesis of triazole-based peptidomimetics of a PSD-95 PDZ domain inhibitor. MedChemComm, 2016, 7, 531-536. [http://dx.doi.org/ 10.1039/ C5MD00445D].
[239]
Saupe, J.; Roske, Y.; Schillinger, C.; Kamdem, N.; Radetzki, S.; Diehl, A.; Oschkinat, H.; Krause, G.; Heinemann, U.; Rademann, J. Discovery, structure-activity relationship studies, and crystal structure of nonpeptide inhibitors bound to the Shank3 PDZ domain. ChemMedChem, 2011, 6(8), 1411-1422. [http://dx.doi.org/ 10.1002/cmdc.201100094]. [PMID: 21626699].
[240]
Grandy, D.; Shan, J.; Zhang, X.; Rao, S.; Akunuru, S.; Li, H.; Zhang, Y.; Alpatov, I.; Zhang, X.A.; Lang, R.A.; Shi, D-L.; Zheng, J.J. Discovery and characterization of a small molecule inhibitor of the PDZ domain of dishevelled. J. Biol. Chem., 2009, 284(24), 16256-16263. [http://dx.doi.org/10.1074/jbc.M109.009647]. [PMID: 19383605].
[241]
Zhang, W.; Penmatsa, H.; Ren, A.; Punchihewa, C.; Lemoff, A.; Yan, B.; Fujii, N.; Naren, A.P. Functional regulation of cystic fibrosis transmembrane conductance regulator-containing macromolecular complexes: A small-molecule inhibitor approach. Biochem. J., 2011, 435(2), 451-462. [http://dx.doi.org/ 10.1042/BJ20101725]. [PMID: 21299497].
[242]
Bach, A.; Stuhr-Hansen, N.; Thorsen, T.S.; Bork, N.; Moreira, I.S.; Frydenvang, K.; Padrah, S.; Christensen, S.B.; Madsen, K.L.; Weinstein, H.; Gether, U.; Strømgaard, K. Structure-activity relationships of a small-molecule inhibitor of the PDZ domain of PICK1. Org. Biomol. Chem., 2010, 8(19), 4281-4288. [http://dx.doi.org/ 10.1039/c0ob00025f]. [PMID: 20668766].
[243]
Lee, H.J.; Wang, N.X.; Shi, D.L.; Zheng, J.J. Sulindac inhibits canonical Wnt signaling by blocking the PDZ domain of the protein Dishevelled. Angew. Chem. Int. Ed. Engl., 2009, 48(35), 6448-6452. [http://dx.doi.org/ 10.1002/anie.200902981]. [PMID: 19637179].
[244]
Rizzo, S.; Rivière, C.; Piazzi, L.; Bisi, A.; Gobbi, S.; Bartolini, M.; Andrisano, V.; Morroni, F.; Tarozzi, A.; Monti, J-P.; Rampa, A. Benzofuran-based hybrid compounds for the inhibition of cholinesterase activity, β amyloid aggregation, and abeta neurotoxicity. J. Med. Chem., 2008, 51(10), 2883-2886. [http://dx.doi.org/ 10.1021/jm8002747]. [PMID: 18419109].
[245]
Rosini, M.; Simoni, E.; Bartolini, M.; Cavalli, A.; Ceccarini, L.; Pascu, N.; McClymont, D.W.; Tarozzi, A.; Bolognesi, M.L.; Minarini, A.; Tumiatti, V.; Andrisano, V.; Mellor, I.R.; Melchiorre, C. Inhibition of acetylcholinesterase, β-amyloid aggregation, and NMDA receptors in Alzheimer’s disease: a promising direction for the multi-target-directed ligands gold rush. J. Med. Chem., 2008, 51(15), 4381-4384. [http://dx.doi.org/ 10.1021/jm800577j]. [PMID: 18605718].
[246]
Luo, W.; Li, Y.P.; He, Y.; Huang, S.L.; Tan, J.H.; Ou, T.M.; Li, D.; Gu, L.Q.; Huang, Z-S. Design, synthesis and evaluation of novel tacrine-multialkoxybenzene hybrids as dual inhibitors for cholinesterases and amyloid beta aggregation. Bioorg. Med. Chem., 2011, 19(2), 763-770. [http://dx.doi.org/ 10.1016/j.bmc. 2010.12.022]. [PMID: 21211982].
[247]
Yan, J.W.; Li, Y.P.; Ye, W.J.; Chen, S.B.; Hou, J.Q.; Tan, J.H.; Ou, T.M.; Li, D.; Gu, L.Q.; Huang, Z.S. Design, synthesis and evaluation of isaindigotone derivatives as dual inhibitors for acetylcholinesterase and amyloid beta aggregation. Bioorg. Med. Chem., 2012, 20(8), 2527-2534. [http://dx.doi.org/ 10.1016/j.bmc.2012. 02.061]. [PMID: 22444876].
[248]
Shan, W.J.; Huang, L.; Zhou, Q.; Meng, F.C.; Li, X.S. Synthesis, biological evaluation of 9-N-substituted berberine derivatives as multi-functional agents of antioxidant, inhibitors of acetylcholinesterase, butyrylcholinesterase and amyloid-β aggregation. Eur. J. Med. Chem., 2011, 46(12), 5885-5893. [http://dx.doi.org/ 10.1016/j.ejmech.2011.09.051]. [PMID: 22019228].
[249]
Camps, P.; Formosa, X.; Galdeano, C.; Muñoz-Torrero, D.; Ramírez, L.; Gómez, E.; Isambert, N.; Lavilla, R.; Badia, A.; Clos, M.V.; Bartolini, M.; Mancini, F.; Andrisano, V.; Arce, M.P.; Rodríguez-Franco, M.I.; Huertas, O.; Dafni, T.; Luque, F.J. Pyrano[3,2-c]quinoline-6-chlorotacrine hybrids as a novel family of acetylcholinesterase- and β-amyloid-directed anti-Alzheimer compounds. J. Med. Chem., 2009, 52(17), 5365-5379. [http://dx.doi.org/ 10.1021/jm900859q]. [PMID: 19663388].
[250]
Shi, A.; Huang, L.; Lu, C.; He, F.; Li, X. Synthesis, biological evaluation and molecular modeling of novel triazole-containing berberine derivatives as acetylcholinesterase and β-amyloid aggregation inhibitors. Bioorg. Med. Chem., 2011, 19(7), 2298-2305. [http://dx.doi.org/ 10.1016/j.bmc.2011.02.025]. [PMID: 21397508].
[251]
Tang, H.; Zhao, L.Z.; Zhao, H.T.; Huang, S.L.; Zhong, S.M.; Qin, J.K.; Chen, Z.F.; Huang, Z.S.; Liang, H. Hybrids of oxoisoaporphine-tacrine congeners: novel acetylcholinesterase and acetylcholinesterase-induced β-amyloid aggregation inhibitors. Eur. J. Med. Chem., 2011, 46(10), 4970-4979. [http://dx.doi.org/10.1016/j.ejmech.2011.08.002]. [PMID: 21871694].
[252]
Tumiatti, V.; Milelli, A.; Minarini, A.; Rosini, M.; Bolognesi, M.L.; Micco, M.; Andrisano, V.; Bartolini, M.; Mancini, F.; Recanatini, M.; Cavalli, A.; Melchiorre, C. Structure-activity relationships of acetylcholinesterase noncovalent inhibitors based on a polyamine backbone. 4. Further investigation on the inner spacer. J. Med. Chem., 2008, 51(22), 7308-7312. [http://dx.doi.org/ 10.1021/jm8009684]. [PMID: 18954037].
[253]
Chen, X.; Wehle, S.; Kuzmanovic, N.; Merget, B.; Holzgrabe, U.; König, B. Acetylcholinesterase inhibitors with photoswitchable inhibition of β-amyloid aggregation. ACS Chem. Neurosci., 2014, 5, 377-389.
[254]
Tang, H.; Zhao, H.T.; Zhong, S.M.; Wang, Z.Y.; Chen, Z.F.; Liang, H. Novel oxoisoaporphine-based inhibitors of acetyl- and butyrylcholinesterase and acetylcholinesterase-induced beta-amyloid aggregation. Bioorg. Med. Chem. Lett., 2012, 22(6), 2257-2261. [http://dx.doi.org/ 10.1016/j.bmcl.2012.01.090]. [PMID: 22341944].
[255]
Belluti, F.; Bartolini, M.; Bottegoni, G.; Bisi, A.; Cavalli, A.; Andrisano, V.; Rampa, A. Benzophenone-based derivatives: a novel series of potent and selective dual inhibitors of acetylcholinesterase and acetylcholinesterase-induced beta-amyloid aggregation. Eur. J. Med. Chem., 2011, 46(5), 1682-1693. [http://dx.doi.org/ 10.1016/j.ejmech.2011.02.019]. [PMID: 21397996].
[256]
Nepovimova, E.; Uliassi, E.; Korabecny, J.; Peña-Altamira, L.E.; Samez, S.; Pesaresi, A.; Garcia, G.E.; Bartolini, M.; Andrisano, V.; Bergamini, C.; Fato, R.; Lamba, D.; Roberti, M.; Kuca, K.; Monti, B.; Bolognesi, M.L. Multitarget drug design strategy: quinone-tacrine hybrids designed to block amyloid-β aggregation and to exert anticholinesterase and antioxidant effects. J. Med. Chem., 2014, 57(20), 8576-8589. [http://dx.doi.org/ 10.1021/jm5010804]. [PMID: 25259726].
[257]
Huang, L.; Lu, C.; Sun, Y.; Mao, F.; Luo, Z.; Su, T.; Jiang, H.; Shan, W.; Li, X. Multitarget-directed benzylideneindanone derivatives: anti-β-amyloid (Aβ) aggregation, antioxidant, metal chelation, and monoamine oxidase B (MAO-B) inhibition properties against Alzheimer’s disease. J. Med. Chem., 2012, 55(19), 8483-8492. [http://dx.doi.org/ 10.1021/jm300978h]. [PMID: 22978824].
[258]
Soto-Ortega, D.D.; Murphy, B.P.; Gonzalez-Velasquez, F.J.; Wilson, K.A.; Xie, F.; Wang, Q.; Moss, M.A. Inhibition of amyloid-β aggregation by coumarin analogs can be manipulated by functionalization of the aromatic center. Bioorg. Med. Chem., 2011, 19(8), 2596-2602. [http://dx.doi.org/ 10.1016/j.bmc.2011.03.010]. [PMID: 21458277].
[259]
Alptüzün, V.; Prinz, M.; Hörr, V.; Scheiber, J.; Radacki, K.; Fallarero, A.; Vuorela, P.; Engels, B.; Braunschweig, H.; Erciyas, E.; Holzgrabe, U. Interaction of (benzylidene-hydrazono)-1,4-dihydropyridines with β-amyloid, acetylcholine, and butyrylcholine esterases. Bioorg. Med. Chem., 2010, 18(5), 2049-2059. [http://dx.doi.org/ 10.1016/j.bmc.2010.01.002]. [PMID: 20149667].
[260]
Aydın, A.; Akkurt, M.; Alptüzün, V.; Büyükgüngör, O.; Holzgrabe, U.; Radacki, K. 4-[(2E)-2-(4-Chloro-benzyl-idene)hydrazinyl-idene]-1-methyl-1,4-dihydro-pyridine monohydrate. Acta Crystallogr. Sect. E Struct. Rep., 2010, 66(Pt 6), 1324-1325. [http://dx.doi.org/10.1107/S1600536810015709]. [PMID: 21579416].
[261]
Prinz, M.; Parlar, S.; Bayraktar, G.; Alptüzün, V.; Erciyas, E.; Fallarero, A.; Karlsson, D.; Vuorela, P.; Burek, M.; Förster, C.; Turunc, E.; Armagan, G.; Yalcin, A.; Schiller, C.; Leuner, K.; Krug, M.; Sotriffer, C.A.; Holzgrabe, U. 1,4-Substituted 4-(1H)-pyridylene-hydrazone-type inhibitors of AChE, BuChE, and amyloid-β aggregation crossing the blood-brain barrier. Eur. J. Pharm. Sci., 2013, 49(4), 603-613. [http://dx.doi.org/ 10.1016/j.ejps.2013.04.024]. [PMID: 23643737].
[262]
Panek, D.; Więckowska, A.; Wichur, T.; Bajda, M.; Godyń, J.; Jończyk, J.; Mika, K.; Janockova, J.; Soukup, O.; Knez, D.; Korabecny, J.; Gobec, S.; Malawska, B. Design, synthesis and biological evaluation of new phthalimide and saccharin derivatives with alicyclic amines targeting cholinesterases, beta-secretase and amyloid beta aggregation. Eur. J. Med. Chem., 2017, 125, 676-695. [http://dx.doi.org/10.1016/j.ejmech.2016.09.078]. [PMID: 27721153].
[263]
Więckowska, A.; Więckowski, K.; Bajda, M.; Brus, B.; Sałat, K.; Czerwińska, P.; Gobec, S.; Filipek, B.; Malawska, B. Synthesis of new N-benzylpiperidine derivatives as cholinesterase inhibitors with β-amyloid anti-aggregation properties and beneficial effects on memory in vivo. Bioorg. Med. Chem., 2015, 23(10), 2445-2457. [http://dx.doi.org/ 10.1016/j.bmc.2015.03.051]. [PMID: 25868744].
[264]
Guzior, N.; Bajda, M.; Skrok, M.; Kurpiewska, K.; Lewiński, K.; Brus, B.; Pišlar, A.; Kos, J.; Gobec, S.; Malawska, B. Development of multifunctional, heterodimeric isoindoline-1,3-dione derivatives as cholinesterase and β-amyloid aggregation inhibitors with neuroprotective properties. Eur. J. Med. Chem., 2015, 92, 738-749. [http://dx.doi.org/10.1016/j.ejmech.2015.01.027]. [PMID: 25621991].
[265]
Zha, G.F.; Zhang, C.P.; Qin, H.L.; Jantan, I.; Sher, M.; Amjad, M.W.; Hussain, M.A.; Hussain, Z.; Bukhari, S.N.A. Biological evaluation of synthetic α,β-unsaturated carbonyl based cyclohexanone derivatives as neuroprotective novel inhibitors of acetylcholinesterase, butyrylcholinesterase and amyloid-β aggregation. Bioorg. Med. Chem., 2016, 24(10), 2352-2359. [http://dx.doi.org/ 10.1016/j.bmc.2016.04.015]. [PMID: 27083471].
[266]
Sun, Q.; Peng, D.Y.; Yang, S.G.; Zhu, X.L.; Yang, W.C.; Yang, G.F. Syntheses of coumarin-tacrine hybrids as dual-site acetylcholinesterase inhibitors and their activity against butylcholinesterase, Aβ aggregation, and β-secretase. Bioorg. Med. Chem., 2014, 22(17), 4784-4791. [http://dx.doi.org/ 10.1016/j.bmc.2014.06.057]. [PMID: 25088549].
[267]
Vyas, N.A.; Bhat, S.S.; Kumbhar, A.S.; Sonawane, U.B.; Jani, V.; Joshi, R.R.; Ramteke, S.N.; Kulkarni, P.P.; Joshi, B. Ruthenium(II) polypyridyl complex as inhibitor of acetylcholinesterase and Aβ aggregation. Eur. J. Med. Chem., 2014, 75, 375-381. [http://dx.doi.org/10.1016/j.ejmech.2014.01.052]. [PMID: 24556150].
[268]
Viayna, E.; Sola, I.; Bartolini, M.; De Simone, A.; Tapia-Rojas, C.; Serrano, F.G.; Sabaté, R.; Juárez-Jiménez, J.; Pérez, B.; Luque, F.J.; Andrisano, V.; Clos, M.V.; Inestrosa, N.C.; Muñoz-Torrero, D. Synthesis and multitarget biological profiling of a novel family of rhein derivatives as disease-modifying anti-Alzheimer agents. J. Med. Chem., 2014, 57(6), 2549-2567. [http://dx.doi.org/ 10.1021/jm401824w]. [PMID: 24568372].
[269]
Lemes, L.F.N.; de Andrade Ramos, G.; de Oliveira, A.S.; da Silva, F.M.R.; de Castro Couto, G.; da Silva Boni, M.; Guimarães, M.J.R.; Souza, I.N.O.; Bartolini, M.; Andrisano, V.; do Nascimento Nogueira, P.C.; Silveira, E.R.; Brand, G.D.; Soukup, O.; Korábečný, J.; Romeiro, N.C.; Castro, N.G.; Bolognesi, M.L.; Romeiro, L.A.S. Cardanol-derived AChE inhibitors: Towards the development of dual binding derivatives for Alzheimer’s disease. Eur. J. Med. Chem., 2016, 108, 687-700. [http://dx.doi.org/ 10.1016/j.ejmech.2015.12.024]. [PMID: 26735910].
[270]
Brogi, S.; Butini, S.; Maramai, S.; Colombo, R.; Verga, L.; Lanni, C.; De Lorenzi, E.; Lamponi, S.; Andreassi, M.; Bartolini, M.; Andrisano, V.; Novellino, E.; Campiani, G.; Brindisi, M.; Gemma, S. Disease-modifying anti-Alzheimer’s drugs: inhibitors of human cholinesterases interfering with β-amyloid aggregation. CNS Neurosci. Ther., 2014, 20(7), 624-632. [http://dx.doi.org/ 10.1111/cns.12290]. [PMID: 24935788].
[271]
Mishra, C.B.; Kumari, S.; Manral, A.; Prakash, A.; Saini, V.; Lynn, A.M.; Tiwari, M. Design, synthesis, in-silico and biological evaluation of novel donepezil derivatives as multi-target-directed ligands for the treatment of Alzheimer’s disease. Eur. J. Med. Chem., 2017, 125, 736-750. [http://dx.doi.org/ 10.1016/j.ejmech.2016.09.057]. [PMID: 27721157].
[272]
Luo, W.; Wang, T.; Hong, C.; Yang, Y.C.; Chen, Y.; Cen, J.; Xie, S.Q.; Wang, C.J. Design, synthesis and evaluation of 4-dimethylamine flavonoid derivatives as potential multifunctional anti-Alzheimer agents. Eur. J. Med. Chem., 2016, 122, 17-26. [http://dx.doi.org/10.1016/j.ejmech.2016.06.022]. [PMID: 27343850].
[273]
Panek, D.; Więckowska, A.; Jończyk, J.; Godyń, J.; Bajda, M.; Wichur, T.; Pasieka, A.; Knez, D.; Pišlar, A.; Korabecny, J.; Soukup, O.; Sepsova, V.; Sabaté, R.; Kos, J.; Gobec, S.; Malawska, B. Design, synthesis, and biological evaluation of 1-benzylamino-2-hydroxyalkyl derivatives as new potential disease-modifying multifunctional anti-Alzheimer’s agents. ACS Chem. Neurosci., 2018, 9(5), 1074-1094. [http://dx.doi.org/ 10.1021/acschemneuro. 7b00461]. [PMID: 29345897].
[274]
Chen, K-L.; Gan, L.; Wu, Z-H.; Qin, J-F.; Liao, W-X.; Tang, H. 4-
Substituted sampangine derivatives: Novel acetylcholinesterase and
β-myloid aggregation inhibitors. Int. J. Biol. Macromol., 2018, 107, (Pt B), 2725-2729. [http://dx.doi.org/ 10.1016/j.ijbiomac.2017.10.157]. [PMID: 29111270].
[275]
Kumar, D.; Gupta, S.K.; Ganeshpurkar, A.; Gutti, G.; Krishnamurthy, S.; Modi, G.; Singh, S.K. Development of piperazinediones as dual inhibitor for treatment of Alzheimer’s disease. Eur. J. Med. Chem., 2018, 150, 87-101. [http://dx.doi.org/ 10.1016/j. ejmech.2018.02.078]. [PMID: 29524731].
[276]
Bulic, B.; Pickhardt, M.; Khlistunova, I.; Biernat, J.; Mandelkow, E.M.; Mandelkow, E.; Waldmann, H. Rhodanine-based tau aggregation inhibitors in cell models of tauopathy. Angew. Chem. Int. Ed. Engl., 2007, 46(48), 9215-9219. [http://dx.doi.org/ 10.1002/anie.200704051]. [PMID: 17985339].
[277]
Larbig, G.; Pickhardt, M.; Lloyd, D.G.; Schmidt, B.; Mandelkow, E. Screening for inhibitors of tau protein aggregation into Alzheimer paired helical filaments: a ligand based approach results in successful scaffold hopping. Curr. Alzheimer Res., 2007, 4(3), 315-323. [http://dx.doi.org/ 10.2174/156720507781077250]. [PMID: 17627489].
[278]
Pickhardt, M.; Larbig, G.; Khlistunova, I.; Coksezen, A.; Meyer, B.; Mandelkow, E-M.; Schmidt, B.; Mandelkow, E. Phenylthiazolyl-hydrazide and its derivatives are potent inhibitors of τ aggregation and toxicity in vitro and in cells. Biochemistry, 2007, 46(35), 10016-10023. [http://dx.doi.org/ 10.1021/bi700878g]. [PMID: 17685560].
[279]
Pickhardt, M.; Gazova, Z.; von Bergen, M.; Khlistunova, I.; Wang, Y.; Hascher, A.; Mandelkow, E-M.; Biernat, J.; Mandelkow, E. Anthraquinones inhibit tau aggregation and dissolve Alzheimer’s paired helical filaments in vitro and in cells. J. Biol. Chem., 2005, 280(5), 3628-3635. [http://dx.doi.org/ 10.1074/jbc.M410984200]. [PMID: 15525637].
[280]
Necula, M.; Chirita, C.N.; Kuret, J. Cyanine dye N744 inhibits tau fibrillization by blocking filament extension: Implications for the treatment of tauopathic neurodegenerative diseases. Biochemistry, 2005, 44(30), 10227-10237. [http://dx.doi.org/ 10.1021/bi050387o]. [PMID: 16042400].
[281]
Hattori, M.; Sugino, E.; Minoura, K.; In, Y.; Sumida, M.; Taniguchi, T.; Tomoo, K.; Ishida, T. Different inhibitory response of cyanidin and methylene blue for filament formation of tau microtubule-binding domain. Biochem. Biophys. Res. Commun., 2008, 374(1), 158-163. [http://dx.doi.org/ 10.1016/j.bbrc.2008.07.001]. [PMID: 18619417].
[282]
Taniguchi, S.; Suzuki, N.; Masuda, M.; Hisanaga, S.; Iwatsubo, T.; Goedert, M.; Hasegawa, M. Inhibition of heparin-induced tau filament formation by phenothiazines, polyphenols, and porphyrins. J. Biol. Chem., 2005, 280(9), 7614-7623. [http://dx.doi.org/ 10.1074/jbc.M408714200]. [PMID: 15611092].
[283]
Crowe, A.; Ballatore, C.; Hyde, E.; Trojanowski, J.Q.; Lee, V.M.Y. High throughput screening for small molecule inhibitors of heparin-induced tau fibril formation. Biochem. Biophys. Res. Commun., 2007, 358(1), 1-6. [http://dx.doi.org/ 10.1016/j.bbrc.2007.03.056]. [PMID: 17482143].
[284]
Honson, N.S.; Jensen, J.R.; Darby, M.V.; Kuret, J. Potent inhibition of tau fibrillization with a multivalent ligand. Biochem. Biophys. Res. Commun., 2007, 363(1), 229-234. [http://dx.doi.org/ 10.1016/j.bbrc.2007.08.166]. [PMID: 17854770].
[285]
Daccache, A.; Lion, C.; Sibille, N.; Gerard, M.; Slomianny, C.; Lippens, G.; Cotelle, P. Oleuropein and derivatives from olives as Tau aggregation inhibitors. Neurochem. Int., 2011, 58(6), 700-707. [http://dx.doi.org/ 10.1016/j.neuint.2011.02.010]. [PMID: 21333710].