[1]
Li, L.; Neaves, W.B. Normal stem cells and cancer stem cells: The niche matters. Cancer Res., 2006, 66(9), 4553-4557.
[2]
Achilefu, S.; Dorshow, R.B.; Bugaj, J.E.; Rajagopalan, R. Novel receptor-targeted fluorescent contrast agents for in vivo tumor imaging. Invest. Radiol., 2000, 35(8), 479-485.
[3]
Pao, W.; Miller, V.; Zakowski, M.; Doherty, J.; Politi, K.; Sarkaria, I.; Singh, B.; Heelan, R.; Rusch, V.; Fulton, L. EGF receptor gene mutations are common in lung cancers from “never smokers” and are associated with sensitivity of tumors to gefitinib and erlotinib. Proc. Natl. Acad. Sci. , 2004, 101(36), 13306-13311.
[4]
Reubi, J.C. Peptide receptors as molecular targets for cancer diagnosis and therapy. Endocr. Rev., 2003, 24(4), 389-427.
[5]
Okarvi, S. Peptide-based radiopharmaceuticals and cytotoxic conjugates: Potential tools against cancer. Cancer Treat. Rev., 2008, 34(1), 13-26.
[6]
Qu, T.; Wang, Y.; Zhu, Z.; Rusckowski, M.; Hnatowich, D. Different chelators and different peptides together influence the in vitro and mouse in vivo properties of 99Tcm. Nucl. Med. Commun., 2001, 22(2), 203-215.
[7]
Pauwels, E.; Welling, M.; Feitsma, R.; Atsma, D.; Nieuwenhuizen, W. The labeling of proteins and LDL with 99mTc: A new direct method employing KBH4 and stannous chloride. Nucl. Med. Biol., 1993, 20(7), 825-833.
[8]
Fani, M.; Maecke, H.; Okarvi, S. Radiolabeled peptides: Valuable tools for the detection and treatment of cancer. Theranostics, 2012, 2(5), 481.
[9]
Jamous, M.; Haberkorn, U.; Mier, W. Synthesis of peptide radiopharmaceuticals for the therapy and diagnosis of tumor diseases. Molecules, 2013, 18(3), 3379-3409.
[10]
Decristoforo, C.; Mather, S. The influence of chelator on the pharmacokinetics of 99mTc-labelled peptides. Q. J. Nucl. Med. Mol. Imaging, 2002, 46(3), 195.
[11]
Mather, S.J. Design of radiolabelled ligands for the imaging and treatment of cancer. Mol. Biosyst., 2007, 3(1), 30-35.
[12]
Deutscher, S.L. Phage display in molecular imaging and diagnosis of cancer. Chem. Rev., 2010, 110(5), 3196-3211.
[13]
Jung, E.; Lee, N.K.; Kang, S-K.; Choi, S-H.; Kim, D.; Park, K.; Choi, K.; Choi, Y-J.; Jung, D.H. Identification of tissue-specific targeting peptide. J. Comput. Aided Mol. Des., 2012, 26(11), 1267-1275.
[14]
Laverman, P.; Sosabowski, J.K.; Boerman, O.C.; Oyen, W.J. Radiolabelled peptides for oncological diagnosis. Eur. J. Nucl. Med. Mol. Imaging, 2012, 39(1), 78-92.
[15]
Reubi, J.; Waser, B.; Schaer, J-C.; Laissue, J.A. Somatostatin receptor sst1–sst5 expression in normal and neoplastic human tissues using receptor autoradiography with subtype-selective ligands. Eur. J. Nucl. Med., 2001, 28(7), 836-846.
[16]
Viguerie, N.; Tahiri-Jouti, N.; Esteve, J-P.; Clerc, P.; Logsdon, C.; Svoboda, M.; Susini, C.; Vaysse, N.; Ribet, A. Functional somatostatin receptors on a rat pancreatic acinar cell line. Am. J. Physiol. Gastrointest. Liver Physiol., 1988, 255(1), G113-G120.
[17]
Lantry, L.E.; Cappelletti, E.; Maddalena, M.E.; Fox, J.S.; Feng, W.; Chen, J.; Thomas, R.; Eaton, S.M.; Bogdan, N.J.; Arunachalam, T. ^1^7^7Lu-AMBA: Synthesis and characterization of a selective^ 1^7^7Lu-labeled GRP-R agonist for systemic radiotherapy of prostate cancer. J. Nucl. Med., 2006, 47(7), 1144.
[18]
Reubi, J.C.; Schaer, J-C.; Waser, B. Cholecystokinin (CCK)-A and CCK-B/gastrin receptors in human tumors. Cancer Res., 1997, 57(7), 1377-1386.
[19]
Zhang, X.; Xiong, Z.; Wu, Y.; Cai, W.; Tseng, J.R.; Gambhir, S.S.; Chen, X. Quantitative PET imaging of tumor integrin αvβ3 expression with 18F-FRGD2. J. Nucl. Med., 2006, 47(1), 113.
[20]
Göke, R.; Oltmer, B.; Sheikh, S.P.; Göke, B. Solubilization of active GLP-1 (7-36) amide receptors from RINm5F plasma membranes. FEBS Lett., 1992, 300(3), 232-236.
[21]
Siegrist, W.; Solca, F.; Stutz, S.; Giuffrè, L.; Carrel, S.; Girard, J.; Eberle, A.N. Characterization of receptors for α-melanocyte-stimulating hormone on human melanoma cells. Cancer Res., 1989, 49(22), 6352-6358.
[22]
Emons, G.; Ortmann, O.; Becker, M.; Irmer, G.; Springer, B.; Laun, R.; Hölzel, F.; Schulz, K-D.; Schally, A.V. High affinity binding and direct anti-proliferative effects of LHRH analogues in human ovarian cancer cell lines. Cancer Res., 1993, 53(22), 5439-5446.
[23]
Kim, H-Y.; Hwang, J-Y.; Oh, Y-S.; Kim, S-W.; Lee, H-J.; Yun, H-J.; Kim, S.; Yang, Y-J.; Jo, D-Y. Differential effects of CXCR4 antagonists on the survival and proliferation of myeloid leukemia cells in vitro. Korean J. Hematol., 2011, 46(4), 244-252.
[24]
Amar, S.; Kitabgi, P.; Vincent, J-P. Activation of phosphatidylinositol turnover by neurotensin receptors in the human colonic adenocarcinoma cell line HT29. FEBS Lett., 1986, 201(1), 31-36.
[25]
Körner, M.; Reubi, J.C. NPY receptors in human cancer: A review of current knowledge. Peptides, 2007, 28(2), 419-425.
[26]
Le Joncour, V.; Laakkonen, P. Targeting peptides, a swiss-army knife against cancer. Amino Acids Peptid. Proteins, 2017, •••, 280-319.
[27]
Hu, L.Y.; Kelly, K.A.; Sutcliffe, J.L. High-throughput approaches to the development of molecular imaging agents. Mol. Imaging Biol., 2017, 19(2), 163-182.
[28]
Antunes, P.; Ginj, M.; Walter, M.A.; Chen, J.; Reubi, J-C.; Maecke, H.R. Influence of different spacers on the biological profile of a DOTA− Somatostatin analogue. Bioconjug. Chem., 2007, 18(1), 84-92.
[29]
Fani, M.; Maecke, H.R. Radiopharmaceutical development of radiolabelled peptides. Eur. J. Nucl. Med. Mol. Imaging, 2012, 39(1), 11-30.
[30]
de Jong, M.; Kwekkeboom, D.; Valkema, R.; Krenning, E.P. Radiolabelled peptides for tumour therapy: Current status and future directions. Eur. J. Nucl. Med. Mol. Imaging, 2003, 30(3), 463-469.
[31]
Chatzisideri, T.; Leonidis, G.; Sarli, V. Cancer-targeted delivery systems based on peptides. Future Med. Chem., 2018, 10(18), 2201-2226.
[32]
Bajzer, Z.; Myers, A.; Vuk-Pavlović, S. Binding, internalization, and intracellular processing of proteins interacting with recycling receptors. A kinetic analysis. J. Biol. Chem., 1989, 264(23), 13623-13631.
[33]
Reilly, R.M. Monoclonal antibody and peptide-targeted radiotherapy of cancer; John Wiley & Sons, 2010.
[34]
Hulme, E.C.; Trevethick, M.A. Ligand binding assays at equilibrium: Validation and interpretation. Br. J. Pharmacol., 2010, 161(6), 1219-1237.
[35]
Hein, P.; Michel, M.C.; Leineweber, K.; Wieland, T.; Wettschureck, N.; Offermanns, S. Receptor and binding studies. In: Practical Methods in Cardiovascular Research; Springer, 2005; pp. 723-783.
[36]
Hanfelt, J.J. Statistical approaches to experimental design and data analysis of in vivo studies. Breast Cancer Res. Treat., 1997, 46(2-3), 279-302.
[37]
Qian, X.; Peng, X-H.; Ansari, D.O.; Yin-Goen, Q.; Chen, G.Z.; Shin, D.M.; Yang, L.; Young, A.N.; Wang, M.D.; Nie, S. In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags. Nat. Biotechnol., 2008, 26(1), 83.
[38]
Liu, S.; Edwards, D.S. 99mTc-labeled small peptides as diagnostic radiopharmaceuticals. Chem. Rev., 1999, 99(9), 2235-2268.
[39]
Anderson, C.J.; Welch, M.J. Radiometal-labeled agents (non-technetium) for diagnostic imaging. Chem. Rev., 1999, 99(9), 2219-2234.
[40]
Hosseinimehr, S.J.; Tolmachev, V.; Orlova, A. Liver uptake of radiolabeled targeting proteins and peptides: Considerations for targeting peptide conjugate design. Drug Discov. Today, 2012, 17(21-22), 1224-1232.
[41]
Nikolopoulou, A.; Maina, T.; Sotiriou, P.; Cordopatis, P.; Nock, B.A. Tetraamine‐modified octreotide and octreotate: Labeling with 99mTc and preclinical comparison in AR4‐2J cells and AR4‐2J tumor‐bearing mice. J. Pept. Sci.: Off. Pub. Eur. Pept. Soc., 2006, 12(2), 124-131.
[42]
Maina, T.; Nock, B.; Nikolopoulou, A.; Sotiriou, P.; Loudos, G.; Maintas, D.; Cordopatis, P.; Chiotellis, E. [99m Tc] Demotate, a new 99m Tc-based [Tyr 3] octreotate analogue for the detection of somatostatin receptor-positive tumours: Synthesis and preclinical results. Eur. J. Nucl. Med. Mol. Imaging, 2002, 29(6), 742-753.
[43]
Erfani, M.; Shafiei, M.; Mazidi, M.; Goudarzi, M. Preparation and biological evaluation of [99mTc/EDDA/Tricine/HYNIC0, BzThi3]-octreotide for somatostatin receptor-positive tumor imaging. Cancer Biother. Radiopharm., 2013, 28(3), 240-247.
[44]
Nock, B.A.; Nikolopoulou, A.; Galanis, A.; Cordopatis, P.; Waser, B.; Reubi, J-C.; Maina, T. Potent bombesin-like peptides for GRP-receptor targeting of tumors with 99mTc: A preclinical study. J. Med. Chem., 2005, 48(1), 100-110.
[45]
Cescato, R.; Maina, T.; Nock, B.; Nikolopoulou, A.; Charalambidis, D.; Piccand, V.; Reubi, J.C. Bombesin receptor antagonists may be preferable to agonists for tumor targeting. J. Nucl. Med., 2008, 49(2), 318.
[46]
Yu, Z.; Carlucci, G.; Ananias, H.J.; Dierckx, R.A.; Liu, S.; Helfrich, W.; Wang, F.; de Jong, I.J.; Elsinga, P.H. Evaluation of a technetium-99m labeled bombesin homodimer for GRPR imaging in prostate cancer. Amino Acids, 2013, 44(2), 543-553.
[47]
Däpp, S.; Garayoa, E.G.; Maes, V.; Brans, L.; Tourwé, D.A.; Müller, C.; Schibli, R. PEGylation of 99mTc-labeled bombesin analogues improves their pharmacokinetic properties. J. Nucl. Med. Biol., 2011, 38(7), 997-1009.
[48]
Römhild, K.; Fischer, C.A.; Mindt, T.L. Glycated 99mTc‐tricarbonyl‐labeled peptide conjugates for tumor targeting by “click‐to‐chelate”. ChemMedChem, 2017, 12(1), 66-74.
[49]
de Barros, A.L.B. das Graças Mota, L.; de Aguiar Ferreira, C.; Corrêa, N.C.R.; de Góes, A.M.; Oliveira, M.C.; Cardoso, V.N. 99mTc-labeled bombesin analog for breast cancer identification. J. Radioanal. Nucl. Chem., 2013, 295(3), 2083-2090.
[50]
Fuscaldi, L.L.; de Barros, A.L.B.; de Paula Santos, C.R.; de Souza, C.M.; Cassali, G.D.; de Oliveira, M.C.; Fernandes, S.O.A.; Cardoso, V.N. Evaluation of the optimal LNCaP prostate tumour developmental stage to be assessed by 99mTc-HYNIC-βAla-Bombesin (7-14) in an experimental model. J. Radioanal. Nucl. Chem., 2014, 300(2), 801-807.
[51]
De, K.; Banerjee, I.; Sinha, S.; Ganguly, S. Synthesis and exploration of novel radiolabeled bombesin peptides for targeting receptor positive tumor. Peptides, 2017, 89, 17-34.
[52]
Bouziotis, P.; Gourni, E.; Patsis, G.; Psimadas, D.; Zikos, C.; Fani, M.; Xanthopoulos, S.; Loudos, G.; Paravatou-Petsotas, M.; Livaniou, E. Radiochemical and radiobiological assessment of a pyridyl-S-cysteine functionalized bombesin derivative labeled with the 99mTc (CO) 3+ core. Bioorg. Med. Chem., 2013, 21(21), 6699-6707.
[53]
Raposinho, P.D.; Correia, J.D.; Alves, S.; Botelho, M.F.; Santos, A.C.; Santos, I.A. 99mTc (CO) 3-labeled pyrazolyl–α-melanocyte-stimulating hormone analog conjugate for melanoma targeting. J. Nucl. Med. Biol., 2008, 35(1), 91-99.
[54]
Morais, M.; Oliveira, B.L.; Correia, J.O.D.; Oliveira, M.C.; Jiménez, M.A.; Santos, I.; Raposinho, P.D. Influence of the bifunctional chelator on the pharmacokinetic properties of 99mTc (CO) 3-labeled cyclic α-melanocyte stimulating hormone analog. J. Med. Chem., 2013, 56(5), 1961-1973.
[55]
Shamshirian, D.; Erfani, M.; Beiki, D.; Hajiramazanali, M.; Fallahi, B.A. 99mTc-tricine-HYNIC-labeled peptide targeting the melanocortin-1 receptor for melanoma imaging. Iran. J. Pharm. Res., 2016, 15(3), 349.
[56]
von Guggenberg, E.; Sallegger, W.; Helbok, A.; Ocak, M.; King, R.; Mather, S.J.; Decristoforo, C. Cyclic minigastrin analogues for gastrin receptor scintigraphy with technetium-99m: Preclinical evaluation. J. Med. Chem., 2009, 52(15), 4786-4793.
[57]
Von Guggenberg, E.; Dietrich, H.; Skvortsova, I.; Gabriel, M.; Virgolini, I.; Decristoforo, C. 99m Tc-labelled HYNIC-minigastrin with reduced kidney uptake for targeting of CCK-2 receptor-positive tumours. Eur. J. Nucl. Med. Mol. Imaging, 2007, 34(8), 1209-1218.
[58]
Laverman, P.; Béhé, M.; Oyen, W.J.; Willems, P.H.; Corstens, F.H.; Behr, T.M.; Boerman, O.C. Two technetium-99m-labeled cholecystokinin-8 (CCK8) peptides for scintigraphic imaging of CCK receptors. Bioconjug. Chem., 2004, 15(3), 561-568.
[59]
Alves, S.; Correia, J.D.; Gano, L.; Rold, T.L.; Prasanphanich, A.; Haubner, R.; Rupprich, M.; Alberto, R.; Decristoforo, C.; Santos, I. In vitro and in vivo evaluation of a novel 99mTc (CO) 3-pyrazolyl conjugate of cyclo-(Arg-Gly-Asp-d-Tyr-Lys). Bioconjug. Chem., 2007, 18(2), 530-537.
[60]
Jung, K-H.; Lee, K-H.; Paik, J-Y.; Ko, B-H.; Bae, J-S.; Lee, B.C.; Sung, H.J.; Kim, D.H.; Choe, Y.S.; Chi, D.Y. Favorable biokinetic and tumor-targeting properties of 99mTc-labeled glucosamino RGD and effect of paclitaxel therapy. J. Nucl. Med., 2006, 47(12), 2000-2007.
[61]
Rezazadeh, F.; Sadeghzadeh, N.; Abedi, S.M.; Abediankenari, S. 99m Tc-D (LPR): A novel retro-inverso peptide for VEGF receptor − 1 targeted tumor imaging. J. Nucl. Med. Biol., 2018, 62-63, 54-62.
[62]
Vats, K.; Satpati, D.; Sharma, R.; Sarma, H.D.; Banerjee, S. Synthesis and comparative in vivo evaluation of 99mTc (CO) 3‐labeled PEGylated and non‐PEG ylated cRGDfK peptide monomers. Chem. Biol. Drug Des., 2017, 89(3), 371-378.
[63]
Liu, Y.; Lan, X.; Wu, T.; Lang, J.; Jin, X.; Sun, X.; Wen, Q.; An, R. 99mTc-labeled SWL specific peptide for targeting EphA2 receptor. J. Nucl. Med. Biol., 2014, 41(6), 450-456.
[64]
Xu, X.; Zhang, J.; Hu, S.; He, S.; Bao, X.; Ma, G.; Luo, J.; Cheng, J.; Zhang, Y. 99mTc-labeling and evaluation of a HYNIC modified small-molecular inhibitor of prostate-specific membrane antigen. J. Nucl. Med. Biol., 2017, 48, 69-75.
[65]
Ferro-Flores, G.; Luna-Gutiérrez, M.; Ocampo-García, B.; Santos-Cuevas, C.; Azorín-Vega, E.; Jiménez-Mancilla, N.; Orocio-Rodríguez, E.; Davanzo, J.; García-Pérez, F.O. Clinical translation of a PSMA inhibitor for 99mTc-based SPECT. J. Nucl. Med. Biol., 2017, 48, 36-44.
[66]
Li, Y.; Hu, Y.; Xiao, J.; Liu, G.; Li, X.; Zhao, Y.; Tan, H.; Shi, H.; Cheng, D. Investigation of SP94 peptide as a specific probe for hepatocellular carcinoma imaging and therapy. Sci. Rep., 2016, 6, 33511.
[67]
Haddad Zahmatkesh, M.; Abedi, S.M.; Hosseinimehr, S.J. Preparation and biological evaluation of 99mTc-HYNIC-(Ser) 3-D4 peptide for targeting and imaging of non-small-cell lung cancer. Future Oncol., 2017, 13(10), 893-905.
[68]
Haddad Zahmatkesh, M. MohammadAbedi, S.; Jalal Hosseinimehr, S. 99mTc-HYNIC-D4 Peptide: A new small radiolabeled peptide for no small cell lung tumor targeting. Anticancer Agents Med. Chem.: Formerly. Curr. Med. Chem. Anticancer Agents, 2017, 17(5), 734-740.
[69]
Kazemi, Z.; Zahmatkesh, M.H.; Abedi, S.M.; Hosseinimehr, S.J. Biological evaluation of 99mTc-HYNIC-EDDA/tricine-(Ser) 3-D4 peptide for tumor targeting. Curr. Radiopharm., 2017, 10(2), 123-130.
[70]
Sabahnoo, H.; Noaparast, Z.; Abedi, S.M.; Hosseinimehr, S.J. New small 99m Tc-labeled peptides for HER2 receptor imaging. Eur. J. Med. Chem., 2017, 127, 1012-1024.
[71]
Torabizadeh, S.A.; Abedi, S.M.; Noaparast, Z.; Hosseinimehr, S.J. Comparative assessment of a 99mTc labeled H1299. 2-HYNIC peptide bearing two different co-ligands for tumor-targeted imaging. Bioorg. Med. Chem., 2017, 25(9), 2583-2592.
[72]
Hosseinimehr, S.; Ahmadpour, S.; Noaparast, Z.; Abedi, S. 99mTc-(tricine)-HYNIC-Lys-FROP Peptide for Breast Tumor Targeting. Anticancer. Agents Med. Chem., 2018, 18(9), 1295-1302.
[73]
Ahmadpour, S.; Noaparast, Z.; Abedi, S.M.; Hosseinimehr, S.J. 99m Tc-HYNIC-(tricine/EDDA)-FROP peptide for MCF-7 breast tumor targeting and imaging. J. Biomed. Sci., 2018, 25(1), 17.
[74]
Shaghaghi, Z.; Abedi, S.M.; Hosseinimehr, S.J. 99mTc‐HYNIC‐(Ser) 3‐J18 peptide: A radiotracer for non‐small‐cell lung cancer targeting. Chem. Biol. Drug Des., 2018, 92(1), 1214-1220.
[75]
Shaghaghi, Z.; Abedi, S.M.; Hosseinimehr, S.J. Tricine co-ligand improved the efficacy of 99m Tc-HYNIC-(Ser) 3-J18 peptide for targeting and imaging of non-small-cell lung cancer. Biomed. Pharmacother., 2018, 104, 325-331.
[76]
Rahmanian, N.; Hosseinimehr, S.J.; Khalaj, A.; Noaparast, Z.; Abedi, S.M.; Sabzevari, O. 99m Tc-radiolabeled GE11-modified peptide for ovarian tumor targeting. DARU J. Pharm. Sci., 2017, 25(1), 13.
[77]
Rahmanian, N.; Hosseinimehr, S.J.; Khalaj, A.; Noaparast, Z.; Abedi, S.M.; Sabzevari, O. 99m Tc labeled HYNIC-EDDA/tricine-GE11 peptide as a successful tumor targeting agent. Med. Chem. Res., 2018, 27(3), 890-902.
[78]
Khodadust, F.; Ahmadpour, S.; Aligholikhamseh, N.; Abedi, S.M.; Hosseinimehr, S.J. An improved 99mTc-HYNIC-(Ser) 3-LTVSPWY peptide with EDDA/tricine as co-ligands for targeting and imaging of HER2 overexpression tumor. Eur. J. Med. Chem., 2018, 144, 767-773.
[79]
Aligholikhamseh, N.; Ahmadpour, S.; Khodadust, F.; Abedi, S.M.; Hosseinimehr, S.J. 99mTc-HYNIC-(Ser) 3-LTVPWY peptide bearing tricine as co-ligand for targeting and imaging of HER2 overexpression tumor. Radiochim. Acta, 2018, 106(7), 601-609.
[80]
Mikaeili, A.; Erfani, M.; Sabzevari, O. Synthesis and evaluation of a 99mTc-labeled chemokine receptor antagonist peptide for imaging of chemokine receptor expressing tumors. J. Nucl. Med. Biol., 2017, 54, 10-17.
[81]
Zhang, X.; You, L.; Chen, S.; Gao, M.; Guo, Z.; Du, J.; Lu, J.; Zhang, X. Development of a novel 99mTc‐labeled small molecular antagonist for CXCR4 positive tumor imaging. J. Labelled Comp. Radiopharm., 2018, 61(5), 438-446.
[82]
Von Guggenberg, E.; Behe, M.; Behr, T.; Saurer, M.; Seppi, T.; Decristoforo, C. 99mTc-labeling and in vitro and in vivo evaluation of HYNIC- and (Nα-His) acetic acid-modified [D-Glu1]-minigastrin. Bioconjug. Chem., 2004, 15(4), 864-871.
[83]
García Garayoa, E.; Schweinsberg, C.; Maes, V.; Brans, L.; Blauenstein, P.; Tourwé, D.A.; Schibli, R.; Schubiger, P.A. Influence of the molecular charge on the biodistribution of bombesin analogues labeled with the [99mTc (CO) 3]-core. Bioconjug. Chem., 2008, 19(12), 2409-2416.
[84]
Akizawa, H.; Arano, Y.; Mifune, M.; Iwado, A.; Saito, Y.; Mukai, T.; Uehara, T.; Ono, M.; Fujioka, Y.; Ogawa, K. Effect of molecular charges on renal uptake of 111In-DTPA-conjugated peptides. J. Nucl. Med. Biol., 2001, 28(7), 761-768.