Review Article

动脉粥样硬化和纳米医学的潜力:当前的进展和未来的机会。

卷 27, 期 21, 2020

页: [3534 - 3554] 页: 21

弟呕挨: 10.2174/0929867326666190301143952

价格: $65

摘要

动脉粥样硬化是心血管疾病的主要诱因,是全球死亡的首位原因。它是一种与血脂异常和血管壁组成变化有关的动脉疾病。除了侵入性手术策略外,当前针对动脉粥样硬化的保守临床治疗分为两类,基于脂质调节的治疗和抗炎治疗。然而,基于常规药物递送系统的现有策略已经显示出对抗疾病发展的有限的功效和大量的副作用。纳米药物在靶向治疗,可控药物的递送和释放,新型特殊药物和诊断方式的设计以及具有多功能特征的生物相容性支架的开发中具有巨大潜力,这导致了动脉粥样硬化的诊断和治疗的发展。本文将重点介绍用于动脉粥样硬化诊断和治疗的最新纳米药物策略,并讨论在动脉粥样硬化进展过程中的潜在治疗靶标,这可为开发新型纳米平台抗动脉粥样硬化奠定基础。

关键词: 动脉粥样硬化,心血管疾病,纳米药物,药物输送系统,诊断,治疗,治疗学,支架。

[1]
Organization, W.H.Organization, W.H. Cardiovascular diseases (CVDs). . http://www.who.int/en/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds)
[2]
Mann, D.L. Z., D.; Libby, P.; Bonow, R.O. Braunwald’s heart disease: a textbook of cardiovascular medicine; Elsevier Health Sciences: USA, 2014.
[3]
Fuster, V.; Moreno, P.R.; Fayad, Z.A.; Corti, R.; Badimon, J.J. Atherothrombosis and high-risk plaque: part I: evolving concepts. J. Am. Coll. Cardiol., 2005, 46(6), 937-954.
[http://dx.doi.org/10.1016/j.jacc.2005.03.074] [PMID: 16168274]
[4]
Taleb, S. Inflammation in atherosclerosis. Arch. Cardiovasc. Dis., 2016, 109(12), 708-715.
[http://dx.doi.org/10.1016/j.acvd.2016.04.002] [PMID: 27595467]
[5]
Stone, G.W.; Maehara, A.; Lansky, A.J.; de Bruyne, B.; Cristea, E.; Mintz, G.S.; Mehran, R.; McPherson, J.; Farhat, N.; Marso, S.P.; Parise, H.; Templin, B.; White, R.; Zhang, Z.; Serruys, P.W. PROSPECT Investigators. A prospective natural-history study of coronary atherosclerosis. N. Engl. J. Med., 2011, 364(3), 226-235.
[http://dx.doi.org/10.1056/NEJMoa1002358] [PMID: 21247313]
[6]
Mangge, H.; Almer, G.; Truschnig-Wilders, M.; Schmidt, A.; Gasser, R.; Fuchs, D. Inflammation, adiponectin, obesity and cardiovascular risk. Curr. Med. Chem., 2010, 17(36), 4511-4520.
[http://dx.doi.org/10.2174/092986710794183006] [PMID: 21062254]
[7]
Libby, P.; Ridker, P.M.; Hansson, G.K. Progress and challenges in translating the biology of atherosclerosis. Nature, 2011, 473(7347), 317-325.
[http://dx.doi.org/10.1038/nature10146] [PMID: 21593864]
[8]
Matsuura, E.; Kobayashi, K.; Tabuchi, M.; Lopez, L.R. Oxidative modification of low-density lipoprotein and immune regulation of atherosclerosis. Prog. Lipid Res., 2006, 45(6), 466-486.
[http://dx.doi.org/10.1016/j.plipres.2006.05.001] [PMID: 16790279]
[9]
Chi, Z.; Melendez, A.J. Role of cell adhesion molecules and immune-cell migration in the initiation, onset and development of atherosclerosis. Cell Adhes. Migr., 2007, 1(4), 171-175.
[http://dx.doi.org/10.4161/cam.1.4.5321] [PMID: 19262139]
[10]
Hansson, G.K. Atherosclerosis--an immune disease: The Anitschkov Lecture 2007. Atherosclerosis, 2009, 202(1), 2-10.
[http://dx.doi.org/10.1016/j.atherosclerosis.2008.08.039] [PMID: 18951547]
[11]
Peluso, I.; Morabito, G.; Urban, L.; Ioannone, F.; Serafini, M. Oxidative stress in atherosclerosis development: the central role of LDL and oxidative burst. Endocr. Metab. Immune Disord. Drug Targets, 2012, 12(4), 351-360.
[http://dx.doi.org/10.2174/187153012803832602] [PMID: 23061409]
[12]
Nissen, S.E.; Yock, P. Intravascular ultrasound: novel pathophysiological insights and current clinical applications. Circulation, 2001, 103(4), 604-616.
[http://dx.doi.org/10.1161/01.CIR.103.4.604] [PMID: 11157729]
[13]
Nicoletti, G.; Ciancio, G.; Tardi, S.; Olivieri, I. Colour duplex ultrasonography in the management of giant cell arteritis. Clin. Rheumatol., 2003, 22(6), 508-509.
[http://dx.doi.org/10.1007/s10067-003-0813-3] [PMID: 14677048]
[14]
Sauer, B.; Flocquet, M.; Batch, T.; Blum, A.; Hubert, J. Vascular renal anatomy and the ureteropelvic junction: preoperative multidetector CT scanning with split-bolus injection as a predictor of laparoscopic findings. J. Endourol., 2008, 22(1), 13-18.
[http://dx.doi.org/10.1089/end.2006.9857] [PMID: 18315471]
[15]
Eikelboom, J.W.; Hirsh, J.; Spencer, F.A.; Baglin, T.P.; Weitz, J.I. Antiplatelet drugs: antithrombotic therapy and prevention of thrombosis in: American college of chest physicians evidence-based clinical practice guidelines. Chest; 9th ed.. , 2012, Vol.141, pp. (2 Suppl.)e89S-e119S.
[16]
Gragnano, F.; Calabrò, P. Role of dual lipid-lowering therapy in coronary atherosclerosis regression: Evidence from recent studies. Atherosclerosis, 2018, 269, 219-228.
[http://dx.doi.org/10.1016/j.atherosclerosis.2018.01.012] [PMID: 29407597]
[17]
Yaoita, H.; Sakabe, A.; Maehara, K.; Maruyama, Y. Different effects of carvedilol, metoprolol, and propranolol on left ventricular remodeling after coronary stenosis or after permanent coronary occlusion in rats. Circulation, 2002, 105(8), 975-980.
[http://dx.doi.org/10.1161/hc0802.104503] [PMID: 11864928]
[18]
Ringleb, P.A. Thrombolytics, anticoagulants, and antiplatelet agents. Stroke, 2006, 37(2), 312-313.
[http://dx.doi.org/10.1161/01.STR.0000200560.01068.65] [PMID: 16410469]
[19]
Barnes, P.J. Molecular mechanisms and cellular effects of glucocorticosteroids. Immunol. Allergy Clin. North Am., 2005, 25(3), 451-468.
[http://dx.doi.org/10.1016/j.iac.2005.05.003] [PMID: 16054537]
[20]
Spiliopoulos, S.; Katsanos, K.; Fragkos, G.; Karnabatidis, D.; Siablis, D. Treatment of infrainguinal thromboembolic complications during peripheral endovascular procedures with AngioJet rheolytic thrombectomy, intraoperative thrombolysis, and selective stenting. J. Vasc. Surg., 2012, 56(5), 1308-1316.
[http://dx.doi.org/10.1016/j.jvs.2012.04.036] [PMID: 22836103]
[21]
Seishima, M. [Treatment for dyslipidemia--a strategy for the prevention of atherosclerosis]. Rinsho Byori, 2013, 61(4), 334-341.
[PMID: 23855190]
[22]
Vinogradov, S.; Wei, X. Cancer stem cells and drug resistance: the potential of nanomedicine. Nanomedicine (Lond.), 2012, 7(4), 597-615.
[http://dx.doi.org/10.2217/nnm.12.22] [PMID: 22471722]
[23]
Singh, M.; Harris-Birtill, D.C.; Markar, S.R.; Hanna, G.B.; Elson, D.S. Application of gold nanoparticles for gastrointestinal cancer theranostics: A systematic review. Nanomedicine (Lond.), 2015, 11(8), 2083-2098.
[http://dx.doi.org/10.1016/j.nano.2015.05.010] [PMID: 26115635]
[24]
Cai, H.; Wang, X.; Zhang, H.; Sun, L.; Pan, D.; Gong, Q.; Gu, Z.; Luo, K. Enzyme-sensitive biodegradable and multifunctional polymeric conjugate as theranostic nanomedicine. Applied materials today, 2018, 11(), 207-218.
[http://dx.doi.org/10.1016/j.apmt.2018.02.003]
[25]
Wei, X.; Luo, Q.; Sun, L.; Li, X.; Zhu, H.; Guan, P.; Wu, M.; Luo, K.; Gong, Q. Enzyme- and pH-sensitive branched polymer-doxorubicin conjugate-based nanoscale drug delivery system for cancer therapy. ACS Appl. Mater. Interfaces, 2016, 8(18), 11765-11778.
[http://dx.doi.org/10.1021/acsami.6b02006] [PMID: 27102364]
[26]
Yousefi, A.; Rahimian, F.E.S.; Atyabi, F.; Dinarvand, R. Preparation and in vitro evaluation of a pegylated nano-liposomal formulation containing docetaxel. Pharm. Res., 2009, 77(2), 453-464.
[http://dx.doi.org/10.3797/scipharm.0806-08]
[27]
Rhen, T.; Cidlowski, J.A. Antiinflammatory action of glucocorticoids--new mechanisms for old drugs. N. Engl. J. Med., 2005, 353(16), 1711-1723.
[http://dx.doi.org/10.1056/NEJMra050541] [PMID: 16236742]
[28]
Lobatto, M.E.; Fayad, Z.A.; Silvera, S.; Vucic, E.; Calcagno, C.; Mani, V.; Dickson, S.D.; Nicolay, K.; Banciu, M.; Schiffelers, R.M.; Metselaar, J.M.; van Bloois, L.; Wu, H.S.; Fallon, J.T.; Rudd, J.H.; Fuster, V.; Fisher, E.A.; Storm, G.; Mulder, W.J. Multimodal clinical imaging to longitudinally assess a nanomedical anti-inflammatory treatment in experimental atherosclerosis. Mol. Pharm., 2010, 7(6), 2020-2029.
[http://dx.doi.org/10.1021/mp100309y] [PMID: 21028895]
[29]
Joner, M.; Morimoto, K.; Kasukawa, H.; Steigerwald, K.; Merl, S.; Nakazawa, G.; John, M.C.; Finn, A.V.; Acampado, E.; Kolodgie, F.D.; Gold, H.K.; Virmani, R. Site-specific targeting of nanoparticle prednisolone reduces in-stent restenosis in a rabbit model of established atheroma. Arterioscler. Thromb. Vasc. Biol., 2008, 28(11), 1960-1966.
[http://dx.doi.org/10.1161/ATVBAHA.108.170662] [PMID: 18688017]
[30]
Calin, M.; Stan, D.; Schlesinger, M.; Simion, V.; Deleanu, M.; Constantinescu, C.A.; Gan, A.M.; Pirvulescu, M.M.; Butoi, E.; Manduteanu, I.; Bota, M.; Enachescu, M.; Borsig, L.; Bendas, G.; Simionescu, M. VCAM-1 directed target-sensitive liposomes carrying CCR2 antagonists bind to activated endothelium and reduce adhesion and transmigration of monocytes. Eur. J. Pharm. Biopharm., 2015, 89, 18-29.
[http://dx.doi.org/10.1016/j.ejpb.2014.11.016] [PMID: 25438248]
[31]
Galkina, E.; Ley, K. Leukocyte influx in atherosclerosis. Curr. Drug Targets, 2007, 8(12), 1239-1248.
[http://dx.doi.org/10.2174/138945007783220650] [PMID: 18220701]
[32]
Kowalski, P.S.; Lintermans, L.L.; Morselt, H.W.; Leus, N.G.; Ruiters, M.H.; Molema, G.; Kamps, J.A. Anti-VCAM-1 and anti-E-selectin SAINT-O-Somes for selective delivery of siRNA into inflammation-activated primary endothelial cells. Mol. Pharm., 2013, 10(8), 3033-3044.
[http://dx.doi.org/10.1021/mp4001124] [PMID: 23819446]
[33]
Chono, S.; Tauchi, Y.; Deguchi, Y.; Morimoto, K. Efficient drug delivery to atherosclerotic lesions and the antiatherosclerotic effect by dexamethasone incorporated into liposomes in atherogenic mice. J. Drug Target., 2005, 13(4), 267-276.
[http://dx.doi.org/10.1080/10611860500159030] [PMID: 16051539]
[34]
Chono, S.; Tauchi, Y.; Morimoto, K. Pharmacokinetic analysis of the uptake of liposomes by macrophages and foam cells in vitro and their distribution to atherosclerotic lesions in mice. Drug Metab. Pharmacokinet., 2006, 21(1), 37-44.
[http://dx.doi.org/10.2133/dmpk.21.37] [PMID: 16547392]
[35]
Mehta, J.L.; Chen, J.; Hermonat, P.L.; Romeo, F.; Novelli, G. Lectin-like, oxidized low-density lipoprotein receptor-1 (LOX-1): a critical player in the development of atherosclerosis and related disorders. Cardiovasc. Res., 2006, 69(1), 36-45.
[http://dx.doi.org/10.1016/j.cardiores.2005.09.006] [PMID: 16324688]
[36]
Mallat, Z.; Gojova, A.; Sauzeau, V.; Brun, V.; Silvestre, J.S.; Esposito, B.; Merval, R.; Groux, H.; Loirand, G.; Tedgui, A. Rho-associated protein kinase contributes to early atherosclerotic lesion formation in mice. Circ. Res., 2003, 93(9), 884-888.
[http://dx.doi.org/10.1161/01.RES.0000099062.55042.9A] [PMID: 14525807]
[37]
Saito, A.; Shimizu, H.; Doi, Y.; Ishida, T.; Fujimura, M.; Inoue, T.; Kiwada, H.; Tominaga, T. Immunoliposomal drug-delivery system targeting lectin-like oxidized low-density lipoprotein receptor-1 for carotid plaque lesions in rats. J. Neurosurg., 2011, 115(4), 720-727.
[http://dx.doi.org/10.3171/2011.5.JNS10227] [PMID: 21682565]
[38]
Fujiwara, S.; Itoh, T.; Hashimoto, M.; Horiuchi, R. Molecular dynamics simulation of amphiphilic molecules in solution: micelle formation and dynamic coexistence. J. Chem. Phys., 2009, 130(14)144901
[http://dx.doi.org/10.1063/1.3105341] [PMID: 19368465]
[39]
Gothwal, A.; Khan, I.; Gupta, U. Polymeric Micelles: Recent advancements in the delivery of anticancer drugs. Pharm. Res., 2016, 33(1), 18-39.
[http://dx.doi.org/10.1007/s11095-015-1784-1] [PMID: 26381278]
[40]
Emami, J.; Rezazadeh, M.; Hasanzadeh, F.; Sadeghi, H.; Mostafavi, A.; Minaiyan, M.; Rostami, M.; Davies, N. Development and in vitro/in vivo evaluation of a novel targeted polymeric micelle for delivery of paclitaxel. Int. J. Biol. Macromol., 2015, 80, 29-40.
[http://dx.doi.org/10.1016/j.ijbiomac.2015.05.062] [PMID: 26093319]
[41]
Deng, S.; Wu, Q.; Zhao, Y.; Zheng, X.; Wu, N.; Pang, J.; Li, X.; Bi, C.; Liu, X.; Yang, L.; Liu, L.; Su, W.; Wei, Y.; Gong, C. Biodegradable polymeric micelle-encapsulated doxorubicin suppresses tumor metastasis by killing circulating tumor cells. Nanoscale, 2015, 7(12), 5270-5280.
[http://dx.doi.org/10.1039/C4NR07641A] [PMID: 25721713]
[42]
Wang, N.; He, T.; Shen, Y.; Song, L.; Li, L.; Yang, X.; Li, X.; Pang, M.; Su, W.; Liu, X.; Wu, Q.; Gong, C. Paclitaxel and tacrolimus coencapsulated polymeric micelles that enhance the therapeutic effect of drug-resistant ovarian cancer. ACS Appl. Mater. Interfaces, 2016, 8(7), 4368-4377.
[http://dx.doi.org/10.1021/acsami.5b09340] [PMID: 26809267]
[43]
Ahmed, S. Polymersomes in Drug Delivery: A Comparative Review with Liposomes and Micelles, 2017.
[44]
Paulis, L.E.; Geelen, T.; Kuhlmann, M.T.; Coolen, B.F.; Schäfers, M.; Nicolay, K.; Strijkers, G.J. Distribution of lipid-based nanoparticles to infarcted myocardium with potential application for MRI-monitored drug delivery. J. Control. Release, 2012, 162(2), 276-285.
[http://dx.doi.org/10.1016/j.jconrel.2012.06.035] [PMID: 22771978]
[45]
Peters, D.; Kastantin, M.; Kotamraju, V.R.; Karmali, P.P.; Gujraty, K.; Tirrell, M.; Ruoslahti, E. Targeting atherosclerosis by using modular, multifunctional micelles. Proc. Natl. Acad. Sci. USA, 2009, 106(24), 9815-9819.
[http://dx.doi.org/10.1073/pnas.0903369106] [PMID: 19487682]
[46]
Kalz, J.; ten Cate, H.; Spronk, H.M. Thrombin generation and atherosclerosis. J. Thromb. Thrombolysis, 2014, 37(1), 45-55.
[http://dx.doi.org/10.1007/s11239-013-1026-5] [PMID: 24241912]
[47]
Chnari, E.; Lari, H.B.; Tian, L.; Uhrich, K.E.; Moghe, P.V. Nanoscale anionic macromolecules for selective retention of low-density lipoproteins. Biomaterials, 2005, 26(17), 3749-3758.
[http://dx.doi.org/10.1016/j.biomaterials.2004.09.038] [PMID: 15621265]
[48]
Chnari, E.; Nikitczuk, J.S.; Wang, J.; Uhrich, K.E.; Moghe, P.V. Engineered polymeric nanoparticles for receptor-targeted blockage of oxidized low density lipoprotein uptake and atherogenesis in macrophages. Biomacromolecules, 2006, 7(6), 1796-1805.
[http://dx.doi.org/10.1021/bm0600872] [PMID: 16768400]
[49]
Kunjathoor, V.V.; Febbraio, M.; Podrez, E.A.; Moore, K.J.; Andersson, L.; Koehn, S.; Rhee, J.S.; Silverstein, R.; Hoff, H.F.; Freeman, M.W. Scavenger receptors class A-I/II and CD36 are the principal receptors responsible for the uptake of modified low density lipoprotein leading to lipid loading in macrophages. J. Biol. Chem., 2002, 277(51), 49982-49988.
[http://dx.doi.org/10.1074/jbc.M209649200] [PMID: 12376530]
[50]
Abbasi, E.; Aval, S.F.; Akbarzadeh, A.; Milani, M.; Nasrabadi, H.T.; Joo, S.W.; Hanifehpour, Y.; Nejati-Koshki, K.; Pashaei-Asl, R. Dendrimers: synthesis, applications, and properties. Nanoscale Res. Lett., 2014, 9(1), 247.
[http://dx.doi.org/10.1186/1556-276X-9-247] [PMID: 24994950]
[51]
Morgan, M.T.; Carnahan, M.A.; Finkelstein, S.; Prata, C.A.; Degoricija, L.; Lee, S.J.; Grinstaff, M.W. Dendritic supramolecular assemblies for drug delivery. Chem. Commun. (Camb.), 2005, (34), 4309-4311.
[http://dx.doi.org/10.1039/b502411k] [PMID: 16113731]
[52]
Nanjwade, B.K.; Bechra, H.M.; Derkar, G.K.; Manvi, F.V.; Nanjwade, V.K. Dendrimers: emerging polymers for drug-delivery systems. Eur. J. Pharm. Sci., 2009, 38(3), 185-196.
[http://dx.doi.org/10.1016/j.ejps.2009.07.008] [PMID: 19646528]
[53]
Cheng, Y.; Xu, Z.; Ma, M.; Xu, T. Dendrimers as drug carriers: applications in different routes of drug administration. J. Pharm. Sci., 2008, 97(1), 123-143.
[http://dx.doi.org/10.1002/jps.21079] [PMID: 17721949]
[54]
Moghimi, S.M.; Hunter, A.C.; Murray, J.C. Nanomedicine: current status and future prospects. FASEB J., 2005, 19(3), 311-330.
[http://dx.doi.org/10.1096/fj.04-2747rev] [PMID: 15746175]
[55]
Wolinsky, J.B.; Grinstaff, M.W. Therapeutic and diagnostic applications of dendrimers for cancer treatment. Adv. Drug Deliv. Rev., 2008, 60(9), 1037-1055.
[http://dx.doi.org/10.1016/j.addr.2008.02.012] [PMID: 18448187]
[56]
Lee, C.C.; MacKay, J.A.; Fréchet, J.M.; Szoka, F.C. Designing dendrimers for biological applications. Nat. Biotechnol., 2005, 23(12), 1517-1526.
[http://dx.doi.org/10.1038/nbt1171] [PMID: 16333296]
[57]
Dobrovolskaia, M.A.; Patri, A.K.; Simak, J.; Hall, J.B.; Semberova, J.; De Paoli Lacerda, S.H.; McNeil, S.E. Nanoparticle size and surface charge determine effects of PAMAM dendrimers on human platelets in vitro. Mol. Pharm., 2012, 9(3), 382-393.
[http://dx.doi.org/10.1021/mp200463e] [PMID: 22026635]
[58]
Durán-Lara, E.; Guzmán, L.; John, A.; Fuentes, E.; Alarcón, M.; Palomo, I.; Santos, L.S. PAMAM dendrimer derivatives as a potential drug for antithrombotic therapy. Eur. J. Med. Chem., 2013, 69, 601-608.
[http://dx.doi.org/10.1016/j.ejmech.2013.08.047] [PMID: 24095753]
[59]
Kunieda, T.; Minamino, T.; Miura, K.; Katsuno, T.; Tateno, K.; Miyauchi, H.; Kaneko, S.; Bradfield, C.A.; FitzGerald, G.A.; Komuro, I. Reduced nitric oxide causes age-associated impairment of circadian rhythmicity. Circ. Res., 2008, 102(5), 607-614.
[http://dx.doi.org/10.1161/CIRCRESAHA.107.162230] [PMID: 18218984]
[60]
Al-Sa’doni, H.H.; Ferro, A. S-nitrosothiols as nitric oxide-donors: chemistry, biology and possible future therapeutic applications. Curr. Med. Chem., 2004, 11(20), 2679-2690.
[http://dx.doi.org/10.2174/0929867043364397] [PMID: 15544469]
[61]
Stasko, N.A.; Fischer, T.H.; Schoenfisch, M.H. S-nitrosothiol-modified dendrimers as nitric oxide delivery vehicles. Biomacromolecules, 2008, 9(3), 834-841.
[http://dx.doi.org/10.1021/bm7011746] [PMID: 18247567]
[62]
Stasko, N.A.; Schoenfisch, M.H. Dendrimers as a scaffold for nitric oxide release. J. Am. Chem. Soc., 2006, 128(25), 8265-8271.
[http://dx.doi.org/10.1021/ja060875z] [PMID: 16787091]
[63]
Duncan, R. The dawning era of polymer therapeutics. Nat. Rev. Drug Discov., 2003, 2(5), 347-360.
[http://dx.doi.org/10.1038/nrd1088] [PMID: 12750738]
[64]
Hoffman, A.S. Stimuli-responsive polymers: biomedical applications and challenges for clinical translation. Adv. Drug Deliv. Rev., 2013, 65(1), 10-16.
[http://dx.doi.org/10.1016/j.addr.2012.11.004] [PMID: 23246762]
[65]
Mattheolabakis, G.; Rigas, B.; Constantinides, P.P. Nanodelivery strategies in cancer chemotherapy: biological rationale and pharmaceutical perspectives. Nanomedicine (Lond.), 2012, 7(10), 1577-1590.
[http://dx.doi.org/10.2217/nnm.12.128] [PMID: 23148540]
[66]
Katsuki, S.; Matoba, T.; Nakashiro, S.; Sato, K.; Koga, J.; Nakano, K.; Nakano, Y.; Egusa, S.; Sunagawa, K.; Egashira, K. Nanoparticle-mediated delivery of pitavastatin inhibits atherosclerotic plaque destabilization/rupture in mice by regulating the recruitment of inflammatory monocytes. Circulation, 2014, 129(8), 896-906.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.113.002870] [PMID: 24305567]
[67]
Kimura, S.; Egashira, K.; Chen, L.; Nakano, K.; Iwata, E.; Miyagawa, M.; Tsujimoto, H.; Hara, K.; Morishita, R.; Sueishi, K.; Tominaga, R.; Sunagawa, K. Nanoparticle-mediated delivery of nuclear factor kappaB decoy into lungs ameliorates monocrotaline-induced pulmonary arterial hypertension. Hypertension, 2009, 53(5), 877-883.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.108.121418] [PMID: 19307469]
[68]
Dong, J.; Schade, A.J.; Romo, G.M.; Andrews, R.K.; Gao, S.; McIntire, L.V.; López, J.A. Novel gain-of-function mutations of platelet glycoprotein IBalpha by valine mutagenesis in the Cys209-Cys248 disulfide loop. Functional analysis under statis and dynamic conditions. J. Biol. Chem., 2000, 275(36), 27663-27670.
[PMID: 10837490]
[69]
Kumar, R.A.; Dong, J.F.; Thaggard, J.A.; Cruz, M.A.; López, J.A.; McIntire, L.V. Kinetics of GPIbalpha-vWF-A1 tether bond under flow: effect of GPIbalpha mutations on the association and dissociation rates. Biophys. J., 2003, 85(6), 4099-4109.
[http://dx.doi.org/10.1016/S0006-3495(03)74822-X] [PMID: 14645097]
[70]
Kona, S.; Dong, J.F.; Liu, Y.; Tan, J.; Nguyen, K.T. Biodegradable nanoparticles mimicking platelet binding as a targeted and controlled drug delivery system. Int. J. Pharm., 2012, 423(2), 516-524.
[http://dx.doi.org/10.1016/j.ijpharm.2011.11.043] [PMID: 22172292]
[71]
Park, T.G.; Yoo, H.S. Dexamethasone nano-aggregates composed of PEG-PLA-PEG triblock copolymers for anti-proliferation of smooth muscle cells. Int. J. Pharm., 2006, 326(1-2), 169-173.
[http://dx.doi.org/10.1016/j.ijpharm.2006.06.041] [PMID: 16889913]
[72]
Maximov, V.D.; Reukov, V.V.; Barry, J.N.; Cochrane, C.; Vertegel, A.A. Protein-nanoparticle conjugates as potential therapeutic agents for the treatment of hyperlipidemia. Nanotechnology, 2010, 21(26)265103
[http://dx.doi.org/10.1088/0957-4484/21/26/265103] [PMID: 20534889]
[73]
Young, S.G. Recent progress in understanding apolipoprotein B. Circulation, 1990, 82(5), 1574-1594.
[http://dx.doi.org/10.1161/01.CIR.82.5.1574] [PMID: 1977530]
[74]
Borén, J.; Ekström, U.; Agren, B.; Nilsson-Ehle, P.; Innerarity, T.L. The molecular mechanism for the genetic disorder familial defective apolipoprotein B100. J. Biol. Chem., 2001, 276(12), 9214-9218.
[http://dx.doi.org/10.1074/jbc.M008890200] [PMID: 11115503]
[75]
Sangiorgi, G.; Holmes, R.; Schwartz, R. Restenosis: Etiologies and Prevention in Evidence‐based Cardiology Second Edition, Yusuf, S.; Cairns, J.A.; Camm, A.J.; Fallen, E.LGersh, B.J. (Eds.). , 2008; pp. 371-394.
[http://dx.doi.org/10.1002/9780470986882.ch29]
[76]
Toutouzas, K.; Colombo, A.; Stefanadis, C. Inflammation and restenosis after percutaneous coronary interventions. Eur. Heart J., 2004, 25(19), 1679-1687.
[http://dx.doi.org/10.1016/j.ehj.2004.06.011] [PMID: 15451145]
[77]
Cohen-Sela, E.; Rosenzweig, O.; Gao, J.; Epstein, H.; Gati, I.; Reich, R.; Danenberg, H.D.; Golomb, G. Alendronate-loaded nanoparticles deplete monocytes and attenuate restenosis. J. Control. Release, 2006, 113(1), 23-30.
[http://dx.doi.org/10.1016/j.jconrel.2006.03.010] [PMID: 16697068]
[78]
Danenberg, H.D.; Fishbein, I.; Gao, J.; Mönkkönen, J.; Reich, R.; Gati, I.; Moerman, E.; Golomb, G. Macrophage depletion by clodronate-containing liposomes reduces neointimal formation after balloon injury in rats and rabbits. Circulation, 2002, 106(5), 599-605.
[http://dx.doi.org/10.1161/01.CIR.0000023532.98469.48] [PMID: 12147543]
[79]
Danenberg, H.D.; Golomb, G.; Groothuis, A.; Gao, J.; Epstein, H.; Swaminathan, R.V.; Seifert, P.; Edelman, E.R. Liposomal alendronate inhibits systemic innate immunity and reduces in-stent neointimal hyperplasia in rabbits. Circulation, 2003, 108(22), 2798-2804.
[http://dx.doi.org/10.1161/01.CIR.0000097002.69209.CD] [PMID: 14610008]
[80]
Cifuentes-Pagano, E.; Csanyi, G.; Pagano, P.J. NADPH oxidase inhibitors: a decade of discovery from Nox2ds to HTS. Cell. Mol. Life Sci., 2012, 69(14), 2315-2325.
[http://dx.doi.org/10.1007/s00018-012-1009-2] [PMID: 22585059]
[81]
Somasuntharam, I.; Boopathy, A.V.; Khan, R.S.; Martinez, M.D.; Brown, M.E.; Murthy, N.; Davis, M.E. Delivery of Nox2-NADPH oxidase siRNA with polyketal nanoparticles for improving cardiac function following myocardial infarction. Biomaterials, 2013, 34(31), 7790-7798.
[http://dx.doi.org/10.1016/j.biomaterials.2013.06.051] [PMID: 23856052]
[82]
Sharma, H.; Mishra, P.K.; Talegaonkar, S.; Vaidya, B. Metal nanoparticles: a theranostic nanotool against cancer. Drug Discov. Today, 2015, 20(9), 1143-1151.
[http://dx.doi.org/10.1016/j.drudis.2015.05.009] [PMID: 26007605]
[83]
Bender, E.A.; Cavalcante, M.F.; Adorne, M.D.; Colomé, L.M.; Guterres, S.S.; Abdalla, D.S.; Pohlmann, A.R. New strategy to surface functionalization of polymeric nanoparticles: one-pot synthesis of scFv anti-LDL(-)-functionalized nanocapsules. Pharm. Res., 2014, 31(11), 2975-2987.
[http://dx.doi.org/10.1007/s11095-014-1392-5] [PMID: 24805278]
[84]
Cavalcante, M.F.; Kazuma, S.M.; Bender, E.A.; Adorne, M.D.; Ullian, M.; Veras, M.M.; Saldiva, P.H.; Maranhão, A.Q.; Guterres, S.S.; Pohlmann, A.R.; Abdalla, D.S. A nanoformulation containing a scFv reactive to electronegative LDL inhibits atherosclerosis in LDL receptor knockout mice. Eur. J. Pharm. Biopharm., 2016, 107, 120-129.
[http://dx.doi.org/10.1016/j.ejpb.2016.07.002] [PMID: 27378286]
[85]
Gotto, A.M., Jr; Brinton, E.A. Assessing low levels of high-density lipoprotein cholesterol as a risk factor in coronary heart disease: a working group report and update. J. Am. Coll. Cardiol., 2004, 43(5), 717-724.
[http://dx.doi.org/10.1016/j.jacc.2003.08.061] [PMID: 14998606]
[86]
Thaxton, C.S.; Daniel, W.L.; Giljohann, D.A.; Thomas, A.D.; Mirkin, C.A. Templated spherical high density lipoprotein nanoparticles. J. Am. Chem. Soc., 2009, 131(4), 1384-1385.
[http://dx.doi.org/10.1021/ja808856z] [PMID: 19133723]
[87]
Zhao, Y.; Imura, T.; Leman, L.J.; Curtiss, L.K.; Maryanoff, B.E.; Ghadiri, M.R. Mimicry of high-density lipoprotein: functional peptide-lipid nanoparticles based on multivalent peptide constructs. J. Am. Chem. Soc., 2013, 135(36), 13414-13424.
[http://dx.doi.org/10.1021/ja404714a] [PMID: 23978057]
[88]
Winter, P.M.; Neubauer, A.M.; Caruthers, S.D.; Harris, T.D.; Robertson, J.D.; Williams, T.A.; Schmieder, A.H.; Hu, G.; Allen, J.S.; Lacy, E.K.; Zhang, H.; Wickline, S.A.; Lanza, G.M. Endothelial alpha(v)beta3 integrin-targeted fumagillin nanoparticles inhibit angiogenesis in atherosclerosis. Arterioscler. Thromb. Vasc. Biol., 2006, 26(9), 2103-2109.
[http://dx.doi.org/10.1161/01.ATV.0000235724.11299.76] [PMID: 16825592]
[89]
Gulati, R.; Jevremovic, D.; Peterson, T.E.; Witt, T.A.; Kleppe, L.S.; Mueske, C.S.; Lerman, A.; Vile, R.G.; Simari, R.D. Autologous culture-modified mononuclear cells confer vascular protection after arterial injury. Circulation, 2003, 108(12), 1520-1526.
[http://dx.doi.org/10.1161/01.CIR.0000089084.48655.49] [PMID: 12952850]
[90]
He, T.; Smith, L.A.; Harrington, S.; Nath, K.A.; Caplice, N.M.; Katusic, Z.S. Transplantation of circulating endothelial progenitor cells restores endothelial function of denuded rabbit carotid arteries. Stroke, 2004, 35(10), 2378-2384.
[http://dx.doi.org/10.1161/01.STR.0000141893.33677.5d] [PMID: 15345801]
[91]
Kong, D.; Melo, L.G.; Mangi, A.A.; Zhang, L.; Lopez-Ilasaca, M.; Perrella, M.A.; Liew, C.C.; Pratt, R.E.; Dzau, V.J. Enhanced inhibition of neointimal hyperplasia by genetically engineered endothelial progenitor cells. Circulation, 2004, 109(14), 1769-1775.
[http://dx.doi.org/10.1161/01.CIR.0000121732.85572.6F] [PMID: 15066951]
[92]
Forte, A.; Finicelli, M.; Mattia, M.; Berrino, L.; Rossi, F.; De Feo, M.; Cotrufo, M.; Cipollaro, M.; Cascino, A.; Galderisi, U. Mesenchymal stem cells effectively reduce surgically induced stenosis in rat carotids. J. Cell. Physiol., 2008, 217(3), 789-799.
[http://dx.doi.org/10.1002/jcp.21559] [PMID: 18690654]
[93]
Riegler, J.; Liew, A.; Hynes, S.O.; Ortega, D.; O’Brien, T.; Day, R.M.; Richards, T.; Sharif, F.; Pankhurst, Q.A.; Lythgoe, M.F. Superparamagnetic iron oxide nanoparticle targeting of MSCs in vascular injury. Biomaterials, 2013, 34(8), 1987-1994.
[http://dx.doi.org/10.1016/j.biomaterials.2012.11.040] [PMID: 23237516]
[94]
Park, S.; Kim, Y.S.; Kim, W.B.; Jon, S. Carbon nanosyringe array as a platform for intracellular delivery. Nano Lett., 2009, 9(4), 1325-1329.
[http://dx.doi.org/10.1021/nl802962t] [PMID: 19254005]
[95]
Harrison, B.S.; Atala, A. Carbon nanotube applications for tissue engineering. Biomaterials, 2007, 28(2), 344-353.
[http://dx.doi.org/10.1016/j.biomaterials.2006.07.044] [PMID: 16934866]
[96]
Zhang, Y.; Bai, Y.; Yan, B. Functionalized carbon nanotubes for potential medicinal applications. Drug Discov. Today, 2010, 15(11-12), 428-435.
[http://dx.doi.org/10.1016/j.drudis.2010.04.005] [PMID: 20451656]
[97]
Aillon, K.L.; Xie, Y.; El-Gendy, N.; Berkland, C.J.; Forrest, M.L. Effects of nanomaterial physicochemical properties on in vivo toxicity. Adv. Drug Deliv. Rev., 2009, 61(6), 457-466.
[http://dx.doi.org/10.1016/j.addr.2009.03.010] [PMID: 19386275]
[98]
Lassalle, V.; Ferreira, M.L. PLA nano- and microparticles for drug delivery: an overview of the methods of preparation. Macromol. Biosci., 2007, 7(6), 767-783.
[http://dx.doi.org/10.1002/mabi.200700022] [PMID: 17541922]
[99]
Tang, A.C.; Chang, M.Y.; Tang, Z.C.; Li, H.J.; Hwang, G.L.; Hsieh, P.C. Treatment of acute thromboembolism in mice using heparin-conjugated carbon nanocapsules. ACS Nano, 2012, 6(7), 6099-6107.
[http://dx.doi.org/10.1021/nn301198r] [PMID: 22713482]
[100]
Martinelli, V.; Cellot, G.; Toma, F.M.; Long, C.S.; Caldwell, J.H.; Zentilin, L.; Giacca, M.; Turco, A.; Prato, M.; Ballerini, L.; Mestroni, L. Carbon nanotubes promote growth and spontaneous electrical activity in cultured cardiac myocytes. Nano Lett., 2012, 12(4), 1831-1838.
[http://dx.doi.org/10.1021/nl204064s] [PMID: 22432413]
[101]
Chen, X.; Kis, A.; Zettl, A.; Bertozzi, C.R. A cell nanoinjector based on carbon nanotubes. Proc. Natl. Acad. Sci. USA, 2007, 104(20), 8218-8222.
[http://dx.doi.org/10.1073/pnas.0700567104] [PMID: 17485677]
[102]
Tonelli, F.M.; Santos, A.K.; Gomes, K.N.; Lorençon, E.; Guatimosim, S.; Ladeira, L.O.; Resende, R.R. Carbon nanotube interaction with extracellular matrix proteins producing scaffolds for tissue engineering. Int. J. Nanomedicine, 2012, 7, 4511-4529.
[PMID: 22923989]
[103]
Kiessling, F.; Mertens, M.E.; Grimm, J.; Lammers, T. Nanoparticles for imaging: top or flop? Radiology, 2014, 273(1), 10-28.
[http://dx.doi.org/10.1148/radiol.14131520] [PMID: 25247562]
[104]
Wickline, S.A.; Neubauer, A.M.; Winter, P.M.; Caruthers, S.D.; Lanza, G.M. Molecular imaging and therapy of atherosclerosis with targeted nanoparticles. J. Magn. Reson. Imaging, 2007, 25(4), 667-680.
[http://dx.doi.org/10.1002/jmri.20866] [PMID: 17347992]
[105]
Barkhausen, J.; Ebert, W.; Heyer, C.; Debatin, J.F.; Weinmann, H.J. Detection of atherosclerotic plaque with Gadofluorine-enhanced magnetic resonance imaging. Circulation, 2003, 108(5), 605-609.
[http://dx.doi.org/10.1161/01.CIR.0000079099.36306.10] [PMID: 12835227]
[106]
Chindam, C.A.L.; Brown, N.R.; Orfali, W.; Awadelkarim, O.O. Frequency- and temperature-dependent storage and loss moduli of microfibrous thin films of Parylene C. Circulation, 2014, •••, 296-298.
[107]
Yang, X. Nano- and microparticle-based imaging of cardiovascular interventions: overview. Radiology, 2007, 243(2), 340-347.
[http://dx.doi.org/10.1148/radiol.2432060307] [PMID: 17456865]
[108]
Schmitz, S.A.; Coupland, S.E.; Gust, R.; Winterhalter, S.; Wagner, S.; Kresse, M.; Semmler, W.; Wolf, K.J. Superparamagnetic iron oxide-enhanced MRI of atherosclerotic plaques in Watanabe hereditable hyperlipidemic rabbits. Invest. Radiol., 2000, 35(8), 460-471.
[http://dx.doi.org/10.1097/00004424-200008000-00002] [PMID: 10946973]
[109]
Mody, V.V.; Siwale, R.; Singh, A.; Mody, H.R. Introduction to metallic nanoparticles. J. Pharm. Bioallied Sci., 2010, 2(4), 282-289.
[http://dx.doi.org/10.4103/0975-7406.72127] [PMID: 21180459]
[110]
Mulder, W.J.; Fayad, Z.A. Nanomedicine captures cardiovascular disease. Arterioscler. Thromb. Vasc. Biol., 2008, 28(5), 801-802.
[http://dx.doi.org/10.1161/ATVBAHA.108.165332] [PMID: 18421003]
[111]
Leuschner, F.; Nahrendorf, M. Molecular imaging of coronary atherosclerosis and myocardial infarction: considerations for the bench and perspectives for the clinic. Circ. Res., 2011, 108(5), 593-606.
[http://dx.doi.org/10.1161/CIRCRESAHA.110.232678] [PMID: 21372291]
[112]
Terashima, M.; Uchida, M.; Kosuge, H.; Tsao, P.S.; Young, M.J.; Conolly, S.M.; Douglas, T.; McConnell, M.V. Human ferritin cages for imaging vascular macrophages. Biomaterials, 2011, 32(5), 1430-1437.
[http://dx.doi.org/10.1016/j.biomaterials.2010.09.029] [PMID: 21074263]
[113]
Li, X.; Wang, C.; Tan, H.; Cheng, L.; Liu, G.; Yang, Y.; Zhao, Y.; Zhang, Y.; Li, Y.; Zhang, C.; Xiu, Y.; Cheng, D.; Shi, H. Gold nanoparticles-based SPECT/CT imaging probe targeting for vulnerable atherosclerosis plaques. Biomaterials, 2016, 108, 71-80.
[http://dx.doi.org/10.1016/j.biomaterials.2016.08.048] [PMID: 27619241]
[114]
Kim, M.; Sahu, A.; Kim, G.B.; Nam, G.H.; Um, W.; Shin, S.J.; Jeong, Y.Y.; Kim, I-S.; Kim, K.; Kwon, I.C.; Tae, G. Comparison of in vivo targeting ability between cRGD and collagen-targeting peptide conjugated nano-carriers for atherosclerosis. J. Control. Release, 2018, 269, 337-346.
[http://dx.doi.org/10.1016/j.jconrel.2017.11.033] [PMID: 29175140]
[115]
Wang, T.; Mancuso, J.J.; Sapozhnikova, V.; Dwelle, J.; Ma, L.L.; Willsey, B.; Kazmi, S.M.; Qiu, J.; Li, X.; Asmis, R.; Johnston, K.P.; Feldman, M.D.; Milner, T.E. Dual-wavelength multifrequency photothermal wave imaging combined with optical coherence tomography for macrophage and lipid detection in atherosclerotic plaques using gold nanoparticles. J. Biomed. Opt., 2012, 17(3)036009
[http://dx.doi.org/10.1117/1.JBO.17.3.036009] [PMID: 22502567]
[116]
Ma, L.L.; Feldman, M.D.; Tam, J.M.; Paranjape, A.S.; Cheruku, K.K.; Larson, T.A.; Tam, J.O.; Ingram, D.R.; Paramita, V.; Villard, J.W.; Jenkins, J.T.; Wang, T.; Clarke, G.D.; Asmis, R.; Sokolov, K.; Chandrasekar, B.; Milner, T.E.; Johnston, K.P. Small multifunctional nanoclusters (nanoroses) for targeted cellular imaging and therapy. ACS Nano, 2009, 3(9), 2686-2696.
[http://dx.doi.org/10.1021/nn900440e] [PMID: 19711944]
[117]
McCarthy, J.R.; Jaffer, F.A.; Weissleder, R. A macrophage-targeted theranostic nanoparticle for biomedical applications. Small, 2006, 2(8-9), 983-987.
[http://dx.doi.org/10.1002/smll.200600139] [PMID: 17193154]
[118]
Gruntzig, A. Transluminal dilatation of coronary-artery stenosis. Lancet, 1978, 1(8058), 263-.
[http://dx.doi.org/10.1016/S0140-6736(78)90500-7] [PMID: 74678]
[119]
Rhee, J.W.; Wu, J.C. Advances in nanotechnology for the management of coronary artery disease. Trends Cardiovasc. Med., 2013, 23(2), 39-45.
[http://dx.doi.org/10.1016/j.tcm.2012.08.009] [PMID: 23245913]
[120]
Garg, S.; Serruys, P.W. Coronary stents: current status. J. Am. Coll. Cardiol., 2010, 56(Suppl. 10), S1-S42.
[http://dx.doi.org/10.1016/j.jacc.2010.06.007] [PMID: 20797502]
[121]
Sigwart, U.; Puel, J.; Mirkovitch, V.; Joffre, F.; Kappenberger, L. Intravascular stents to prevent occlusion and restenosis after transluminal angioplasty. N. Engl. J. Med., 1987, 316(12), 701-706.
[http://dx.doi.org/10.1056/NEJM198703193161201] [PMID: 2950322]
[122]
Byrne, R.A.; Joner, M.; Kastrati, A. Polymer coatings and delayed arterial healing following drug-eluting stent implantation. Minerva Cardioangiol., 2009, 57(5), 567-584.
[PMID: 19838148]
[123]
Morice, M.C.; Serruys, P.W.; Sousa, J.E.; Fajadet, J.; Ban Hayashi, E.; Perin, M.; Colombo, A.; Schuler, G.; Barragan, P.; Guagliumi, G.; Molnàr, F.; Falotico, R. RAVEL Study Group. Randomized Study with the Sirolimus-Coated Bx Velocity Balloon-Expandable Stent in the Treatment of Patients with de Novo Native Coronary Artery Lesions. A randomized comparison of a sirolimus-eluting stent with a standard stent for coronary revascularization. N. Engl. J. Med., 2002, 346(23), 1773-1780.
[http://dx.doi.org/10.1056/NEJMoa012843] [PMID: 12050336]
[124]
Sakakibara, K.; Liu, B.; Hollenbeck, S.; Kent, K.C. Rapamycin inhibits fibronectin-induced migration of the human arterial smooth muscle line (E47) through the mammalian target of rapamycin. Am. J. Physiol. Heart Circ. Physiol., 2005, 288(6), H2861-H2868.
[http://dx.doi.org/10.1152/ajpheart.00561.2004] [PMID: 15708965]
[125]
Stone, G.W.; Moses, J.W.; Ellis, S.G.; Schofer, J.; Dawkins, K.D.; Morice, M.C.; Colombo, A.; Schampaert, E.; Grube, E.; Kirtane, A.J.; Cutlip, D.E.; Fahy, M.; Pocock, S.J.; Mehran, R.; Leon, M.B. Safety and efficacy of sirolimus- and paclitaxel-eluting coronary stents. N. Engl. J. Med., 2007, 356(10), 998-1008.
[http://dx.doi.org/10.1056/NEJMoa067193] [PMID: 17296824]
[126]
Stettler, C.; Wandel, S.; Allemann, S.; Kastrati, A.; Morice, M.C.; Schömig, A.; Pfisterer, M.E.; Stone, G.W.; Leon, M.B.; de Lezo, J.S.; Goy, J.J.; Park, S.J.; Sabaté, M.; Suttorp, M.J.; Kelbaek, H.; Spaulding, C.; Menichelli, M.; Vermeersch, P.; Dirksen, M.T.; Cervinka, P.; Petronio, A.S.; Nordmann, A.J.; Diem, P.; Meier, B.; Zwahlen, M.; Reichenbach, S.; Trelle, S.; Windecker, S.; Jüni, P. Outcomes associated with drug-eluting and bare-metal stents: a collaborative network meta-analysis. Lancet, 2007, 370(9591), 937-948.
[http://dx.doi.org/10.1016/S0140-6736(07)61444-5] [PMID: 17869634]
[127]
Spaulding, C.; Daemen, J.; Boersma, E.; Cutlip, D.E.; Serruys, P.W. A pooled analysis of data comparing sirolimus-eluting stents with bare-metal stents. N. Engl. J. Med., 2007, 356(10), 989-997.
[http://dx.doi.org/10.1056/NEJMoa066633] [PMID: 17296825]
[128]
Curcio, A.; Torella, D.; Indolfi, C. Mechanisms of smooth muscle cell proliferation and endothelial regeneration after vascular injury and stenting: approach to therapy. Circ. J., 2011, 75(6), 1287-1296.
[http://dx.doi.org/10.1253/circj.CJ-11-0366] [PMID: 21532177]
[129]
Yao, W.; Bao, Y.; Chen, Y. Formation of microcapsules by ultrasound stimulation for use in remote-controlled drug-eluting stents. Med. Eng. Phys., 2018, 56, 42-47.
[http://dx.doi.org/10.1016/j.medengphy.2018.04.001] [PMID: 29680403]
[130]
Pavlov, A.; Saez, V.; Cobley, A.; Graves, J.; Sukhorukov, G.; Mason, T. Controlled protein release from microcapsules with composite shells using high frequency ultrasound - Potential for in vivo medical use. Soft Matter, 2011, 7, 4341-4347.
[http://dx.doi.org/10.1039/c0sm01536a]
[131]
Bakhshi, R.; Darbyshire, A.; Evans, J.E.; You, Z.; Lu, J.; Seifalian, A.M. Polymeric coating of surface modified nitinol stent with POSS-nanocomposite polymer. Colloids Surf. B Biointerfaces, 2011, 86(1), 93-105.
[http://dx.doi.org/10.1016/j.colsurfb.2011.03.024] [PMID: 21515031]
[132]
Ceylan, H.; Tekinay, A.B.; Guler, M.O. Selective adhesion and growth of vascular endothelial cells on bioactive peptide nanofiber functionalized stainless steel surface. Biomaterials, 2011, 32(34), 8797-8805.
[http://dx.doi.org/10.1016/j.biomaterials.2011.08.018] [PMID: 21885121]
[133]
Kushwaha, M.; Anderson, J.M.; Bosworth, C.A.; Andukuri, A.; Minor, W.P.; Lancaster, J.R., Jr; Anderson, P.G.; Brott, B.C.; Jun, H.W. A nitric oxide releasing, self assembled peptide amphiphile matrix that mimics native endothelium for coating implantable cardiovascular devices. Biomaterials, 2010, 31(7), 1502-1508.
[http://dx.doi.org/10.1016/j.biomaterials.2009.10.051] [PMID: 19913295]
[134]
Magrez, A.; Kasas, S.; Salicio, V.; Pasquier, N.; Seo, J.W.; Celio, M.; Catsicas, S.; Schwaller, B.; Forró, L. Cellular toxicity of carbon-based nanomaterials. Nano Lett., 2006, 6(6), 1121-1125.
[http://dx.doi.org/10.1021/nl060162e] [PMID: 16771565]
[135]
Yu, T.; Malugin, A.; Ghandehari, H. Impact of silica nanoparticle design on cellular toxicity and hemolytic activity. ACS Nano, 2011, 5(7), 5717-5728.
[http://dx.doi.org/10.1021/nn2013904] [PMID: 21630682]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy