Generic placeholder image

Protein & Peptide Letters

Editor-in-Chief

ISSN (Print): 0929-8665
ISSN (Online): 1875-5305

Research Article

Inhibitory Effects of Usnic and Carnosic Acid on Some Metabolic Enzymes: An In vitro Study

Author(s): Hamid Ceylan, Yeliz Demir* and Şükrü Beydemir

Volume 26, Issue 5, 2019

Page: [364 - 370] Pages: 7

DOI: 10.2174/0929866526666190301115122

Price: $65

Abstract

Background: Natural products are produced via primary and secondary metabolism in different organisms. The compounds obtained via secondary metabolism are not essential for the survival of the organism, but they can have a different value for humans.

Objective: The objective of this study was to examine inhibitory effects of Usnic Acid (UA), a well-known lichen secondary metabolite, and Carnosic Acid (CA), the primary antioxidant compound of Rosmarinus officinalis L., on purified Human Paraoxonase, (PON1), Glutathione Reductase (GR) and Glutathione S-Transferase (GST). These enzymes have antioxidant properties and a protective effect on the oxidation of free radicals. Hence, deficiencies of such enzymes inside cells can result in a buildup of toxic substances and cause some metabolic disorders.

Methods: UA and CA were tested in various concentrations against human GST, PON1, and GR activity in vitro and they reduced human GST, PON1, and GR activity.

Results: UA Ki constants were calculated as 0.012±0.0019, 0.107±0.06 and 0.21±0.1 mM for GST, PON1, and GR enzymes. CA Ki constants were determined as 0.028±0.009, 0.094±0.03 and 0.79±0.33 mM, for GST, PON1, and GR enzymes. UA and CA showed competitive inhibition for GR and GST enzymes, while they exhibited non-competitive inhibition for PON1.

Conclusion: These findings indicate that UA and CA could be useful in drug development studies.

Keywords: Carnosic acid, glutathione reductase, glutathione S-transferase, paraoxonase, usnic acid, metabolic disorders.

Graphical Abstract

[1]
Gulcin, I.; Beydemir, S.; Sat, I.G.; Kufrevioglu, O.I. Evaluation of antioxidant activity of cornelian cherry (Cornusmas L.). Acta Alimen Hung, 2005, 34, 193-202.
[2]
Serbetci, T.H.; Gulcin, I. Antioxidant and radical scavenging activity of aerial parts and roots of Turkish liquorice (Glycyrrhiza glabra L.). Int. J. Food Prop., 2010, 13, 657-671.
[3]
Aslan, H.E.; Beydemir, S. Phenolic compounds: The inhibition effect on polyol pathway enzymes. Chem. Biol. Interact., 2017, 266, 47-55.
[4]
Shrestha, G.; Clair, L.L.S. Lichens: A promising source of antibiotic and anticancer drugs. Phytochem. Rev., 2013, 12, 229-244.
[5]
Stojanović, G.S.; Stanković, M.; Stojanović, I.Z.; Palić, I.; Milovanović, V.; Rancić, S. Clastogenic effect of atranorin, evernic acid, and usnic acid on human lymphocytes. Nat. Prod. Commun., 2014, 9, 503-504.
[6]
Maciąg-Dorszyńska, M.; Węgrzyn, G.; Guzow-Krzemińska, B. Antibacterial activity of lichen secondary metabolite usnic acid is primarily caused by inhibition of RNA and DNA synthesis. FEMS Microbiol. Lett., 2014, 353(1), 57-62.
[7]
Dias, L.S.; Menis, M.E.; Jorge, N. Effect of rosemary (Rosmarinus officinalis) extracts on the oxidative stability and sensory acceptability of soybean oil. J. Sci. Food Agric., 2015, 95, 2021-2027.
[8]
Shan, W.; Gao, L.; Zeng, W.; Hu, Y.; Wang, G.; Li, M.; Zhou, J.; Ma, X.; Tian, X.; Yao, J. Activation of the SIRT1/p66shc antiapoptosis pathway via carnosic acid-induced inhibition of miR-34a protects rats against nonalcoholic fatty liver disease. Cell Death Dis., 2015, 6, e1833.
[9]
Wang, T.; Takikawa, Y. Carnosic acid protects normal mouse hepatocytes against H O -induced cytotoxicity via sirtuin 1-mediated signaling. Hepatol. Res., 2015, 46(2), 239-246.
[10]
Tousi, S.H.; Saberi, M.R.; Chamani, J. Comparing the interaction of cyclophosphamide monohydrate to human serum albumin as opposed to holo-transferrin by spectroscopic and molecular modeling methods: Evidence for allocating the binding site. Protein Pept. Lett., 2010, 17(12), 1524-1535.
[11]
Bakaeean, B.; Kabiri, M.; Iranfar, H.; Saberi, M.R.; Chamani, J. Binding effect of common ıons to human serum albumin in the presence of norfloxacin: Investigation with spectroscopic and zeta potential approaches. J. Solution Chem., 2012, 41, 1777-1801.
[12]
Sohrabi, T.; Hosseinzadeh, M.; Beigoli, S.; Saberi, M.R.; Chamani, J. Probing the binding of lomefloxacin to a calf thymus DNA-histone H1 complex by multi-spectroscopic and molecular modeling techniques. J. Mol. Liq., 2018, 256, 127-138.
[13]
Işgör, M.M.; Beydemir, S. Some cardiovascular therapeutics inhibit paraoxonase 1 (PON1) from human serum. Eur. J. Pharmacol., 2010, 645(1-3), 135-142.
[14]
Demir, Y.; Beydemir, S. Purification, refolding, and characterization of recombinant human paraoxonase-1. Turk. J. Chem., 2015, 39, 764-776.
[15]
Ozaslan, M.S.; Demir, Y.; Kufrevioglu, O.I.; Ciftci, M. Some metals inhibit the glutathione S-transferase from Van Lake fish gills. J. Biochem. Mol. Toxicol., 2017, 31(11), e21967.
[16]
Ozaslan, M.S.; Demir, Y.; Aslan, H.E.; Beydemir, S.; Kufrevioglu, O.I. Evaluation of chalcones as inhibitors of glutathione S-transferase. J. Biochem. Mol. Toxicol., 2018, 32(5), e22047.
[17]
Işık, M.; Demir, Y.; Kırıcı, M.; Demir, R.; Şimşek, F.; Beydemir, Ş. Changes in the anti-oxidant system in adult epilepsy patients receiving anti-epileptic drugs. Arch. Physiol. Biochem., 2015, 121, 97-102.
[18]
Sohail, M.; Kaul, A.; Raziuddin, M.; Adak, T. Decreased glutathione-S-transferase activity: Diagnostic and protective role in vivax malaria. Clin. Biochem., 2007, 40(5-6), 377-382.
[19]
Budak, H.; Kocpinar, E.F.; Gonul, N.; Ceylan, H.; Erol, H.S.; Erdogan, O. Stimulation of gene expression and activity of antioxidant-related enzyme in Sprague Dawley rat kidney induced by long-term iron toxicity. Comp. Biochem. Physiol. C Toxicol. Pharmacol., 2014, 166, 44-50.
[20]
Türkan, F.; Huyut, Z.; Demir, Y.; Ertaş, F.; Beydemir, Ş. The effects of some cephalosporins on acetylcholinesterase and glutathione S-transferase: An in vivo and in vitro study. Arch. Physiol. Biochem., 2018, 22, 1-9.
[21]
Aksoy, M.; Ozaslan, M.S.; Kufrevioglu, O.I. Purification of glutathione S-transferase from Van Lake fish (Chalcalburnus tarichii Pallas) muscle and investigation of some metal ions effect on enzyme activity. J. Enzyme Inhib. Med. Chem., 2016, 31(4), 546-550.
[22]
Alım, Z.; Kılıc, D.; Demir, Y. Some indazoles reduced the activity of human serum paraoxonase 1, an antioxidant enzyme: İn vitro inhibition and molecular modeling studies. Arch. Physiol. Biochem., 2018, 9, 1-9.
[23]
Senturk, M.; Kufrevioglu, O.I.; Ciftci, M. Effects of some antibiotics on human erythrocyte glutathione reductase: An in vitro study. J. Enzyme Inhib. Med. Chem., 2008, 23(1), 144-148.
[24]
Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem., 1976, 72, 248-254.
[25]
Laemmli, U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 1970, 227, 680-685.
[26]
Demir, Y.; Senol Kotan, M.; Dikbas, N.; Beydemir, S. Phytase from Weissella halotolerans: Purification, partial characterisation and the effect of some metals. Int. J. Food Prop., 2017, 20(2), 2127-2137.
[27]
Taslimi, P.; Aslan, H.E.; Demir, Y.; Oztaskin, N.; Maraş, A.; Gulçin, İ.; Beydemir, S.; Goksu, S. Diarylmethanon, bromophenol and diarylmethane compounds: Discovery of potent aldose reductase, α-amylase and α-glycosidase inhibitors as new therapeutic approach in diabetes and functional hyperglycemia. Int. J. Biol. Macromol., 2018, 119, 857-863.
[28]
Demir, Y.; Taslimi, P.; Ozaslan, M.S.; Oztaskin, N.; Çetinkaya, Y.; Gulçin, İ.; Beydemir, Ş.; Goksu, S. Antidiabetic potential: In vitro inhibition effects of bromophenol and diarylmethanones derivatives on metabolic enzymes. Arch. Pharm. Chem. Life Sci, 2018, 351(12), e1800263.
[29]
Lineweaver, H.; Burk, D. The determination of enzyme dissociation constants. J. Am. Chem. Soc., 1934, 56, 658-666.
[30]
Demir, Y.; Isık, M.; Gulcin, I.; Beydemir, S. Phenolic compounds inhibit the aldose reductase enzyme from the sheep kidney. J. Biochem. Mol. Toxicol., 2017, 31(9), e21935.
[31]
Aslan, H.E.; Demir, Y.; Ozaslan, M.S.; Türkan, F.; Beydemir, S.; Kufrevioglu, O.I. The behavior of some chalcones on acetylcholinesterase and carbonic anhydrase activity. Drug Chem. Toxicol., 2018, 4, 1-7.
[32]
Pramyothin, P.; Janthasoot, W.; Pongnimitprasert, N.; Phrukudom, S.; Ruangrungsi, N. Hepatotoxic effect of (+) usnic acid from Usnea siamensis Wainio in rats, isolated rat hepatoytes and isolated rat liver mitochondria. J. Ethnopharmacol., 2004, 90, 381-387.
[33]
Hill, R.A.; Connoly, J.D. Triterpenoids. Nat. Prod. Rep., 2013, 30, 1028-1065.
[34]
Rashidipour, S.; Naeeminejad, S.; Chamani, J. Study of the interaction between DNP and DIDS with human hemoglobin as binary and ternary systems: spectroscopic and molecular modeling investigation. J. Biomol. Struct. Dyn., 2016, 34(1), 57-77.
[35]
Gülçin, I.; Scozzafava, A.; Supuran, C.T.; Koksal, Z.; Turkan, F.; Çetinkaya, S.; Bingöl, Z.; Huyut, Z.; Alwasel, S.H. Rosmarinic acid inhibits some metabolic enzymes including glutathione S-transferase, lactoperoxidase, acetylcholinesterase, butyrylcholines-terase and carbonic anhydrase isoenzymes. J. Enzyme Inhib. Med. Chem., 2016, 31(6), 1698-1702.
[36]
Gülçin, I.; Scozzafava, A.; Supuran, C.T.; Akıncıoğlu, H.; Koksal, Z.; Turkan, F.; Alwasel, S. The effect of Caffeic Acid Phenethyl Ester (CAPE) on metabolic enzymes including acetylcholines-terase, butyrylcholinesterase, glutathione S-transferase, lactoperoxidase, and carbonic anhydrase isoenzymes I, II, IX, and XII. J. Enzyme Inhib. Med. Chem., 2016, 31(6), 1095-1101.
[37]
Beydemir, S.; Demir, Y. Antiepileptic drugs: Impacts on human serum paraoxonase-1. J. Biochem. Mol. Toxicol., 2017, 31(6), e21889.
[38]
Alım, Z.; Beydemir, S. Some anticancer agents act on human serum paraoxonase‐1 to reduce its activity. Chem. Biol. Drug Des., 2016, 88(2), 188-196.
[39]
Budak, H.; Gonul, N.; Ceylan, H.; Kocpinar, E.F. Impact of long term Fe3+ toxicity on expression of glutathione system in rat liver. Environ. Toxicol. Pharmacol., 2014, 37, 365-370.
[40]
Zhang, K.; Yang, E.B.; Tang, W.Y.; Wong, K.P.; Mack, P. Inhibition of glutathione reductase by plant polyphenols. Biochem. Pharmacol., 1997, 54(9), 1047-1053.
[41]
Akkemik, E.; Şenturk, M.; Özgeriş, F.B.; Taşer, P.; Çiftci, M. In vitro effects of some drugs on human erythrocyte glutathione reductase. Turk. J. Med. Sci., 2011, 41(2), 235-241.

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy