Generic placeholder image

Nanoscience & Nanotechnology-Asia

Editor-in-Chief

ISSN (Print): 2210-6812
ISSN (Online): 2210-6820

Review Article

Nanotoxicity Assessment: A Necessity

Author(s): Monica Joshi and Bala Prabhakar*

Volume 10, Issue 3, 2020

Page: [248 - 265] Pages: 18

DOI: 10.2174/2210681209666190228142315

Price: $65

Abstract

Rapid growth of nanotechnology in various fields like medicine, diagnostics, biotechnology, electronics has gifted the world with products having extraordinary benefits. With increasing use of nanotechnology based products, there is a growing concern about toxicity associated with nanoparticles. Nano-size attributes unique properties to the material due to the increased surface area. But toxic effects associated with nanoparticles are also pronounced. Therefore, research in the field of nanotoxicology is of great importance. Some critical properties of nanoparticles such as chemical composition, size, shape, surface properties, purity are determinants of nanotoxicity. Thus, meticulous characterization of nanoparticles prior to toxicity assessment helps in reducing the toxicity by careful designing of nanoparticles. In vitro assessment of nanotoxicity involves testing on cultured cells whereas in vivo testing involves use of animal models like mice, rats, aquatic frogs etc. Use of predictive models like Zebrafish, Drosophila melanogaster for nanotoxicity research is increased in last few decades. Advanced methods for nanotoxicity assessment involve the use of electrochemical methods which can also give insights about mechanism of nanotoxicity. As the literature in this field is dispersed, this review collates various approaches to give a scheme for nanotoxicity evaluation right from the characterization to toxicity assessment.

Keywords: Nanotoxicity, nanotechnology, zebrafish, nervous system, electrochemical methods, particle size.

Graphical Abstract

[1]
What it is and how it works. Available at:. https://www.nano.gov/nanotech-101/what (Accessed on: Feb 12, 2018).
[2]
Donaldson, K. Nanotoxicology. Occup. Environ. Med., 2004, 61(9), 727-728.
[3]
Caballero-Daz, E.; Valcrcel Cases, M. Analytical methodologies for nanotoxicity assessment. TrAC -. Trends Anal. Chem., 2016, 84, 160-171.
[4]
Joris, F.; Manshian, B.B.; Peynshaert, K.; De Smedt, S.C.; Braeckmans, K.; Soenen, S.J. Assessing nanoparticle toxicity in cell-based assays: influence of cell culture parameters and optimized models for bridging the in vitro-in vivo gap. Chem. Soc. Rev., 2013, 42(21), 8339.
[5]
Warheit, D.B. How meaningful are the results of nanotoxicity studies in the absence of adequate material characterization? Toxicol. Sci., 2008, 101(2), 183-185.
[6]
Hrkach, J.S.; Peracchia, M.T.; Domb, A.; Lotan, noah.; Langer, R. Nanotechnology for biomaterials engineering: Structural characterization of amphiphilic polymeric nanoparticles by 1H NMR spectroscopy. Biomaterials, 1997, 18(1), 27-30.
[7]
Dwivedi, S.; Alkhedhairy, A.A.; Ahamed, M.; Musarrat, J. Biomimetic synthesis of selenium nanospheres by bacterial strain JS-11 and its role as a biosensor for nanotoxicity assessment: a novel se-bioassay. PLoS One, 2013, 8(3), 1-10.
[8]
Brandt, O.; Mildner, M.; Egger, A.E.; Groessl, M.; Rix, U.; Posch, M.; Keppler, B.K.; Strupp, C.; Mueller, B.; Stingl, G. Nanoscalic silver possesses broad-spectrum antimicrobial activities and exhibits fewer toxicological side effects than silver sulfadiazine. Nanomed. Nanotechnol. Biol. Med., 2012, 8(4), 478-488.
[9]
Kim, K-M.; Song, J.H.; Kim, M-K.; Chung, S-T.; Jeong, J.; Yang, J-Y.; Choi, A-J.; Choi, H-J.; Oh, J-M. Physicochemical analysis methods for nanomaterials considering their toxicological evaluations. Mol. Cell. Toxicol., 2014, 10(4), 347-360.
[10]
Dubes, A.; Parrot-Lopez, H.; Abdelwahed, W.; Degobert, G.; Fessi, H.; Shahgaldian, P.; Coleman, A.W. Scanning electron microscopy and atomic force microscopy imaging of solid lipid nanoparticles derived from amphiphilic cyclodextrins. Eur. J. Pharm. Biopharm., 2003, 55(3), 279-282.
[11]
Guzman, M.; Dille, J.; Godet, S. Synthesis and antibacterial activity of silver nanoparticles against gram-positive and gram-negative bacteria. Nanomed. Nanotechnol. Biol. Med., 2012, 8(1), 37-45.
[12]
Braun, G.B.; Lee, S.J.; Laurence, T.; Fera, N.; Fabris, L.; Bazan, G.C.; Moskovits, M.; Reich, N.O. Generalized approach to SERS-active nanomaterials via controlled nanoparticle linking, polymer encapsulation, and small-molecule infusion. J. Phys. Chem. C, 2009, 113(31), 13622-13629.
[13]
Roddick-Lanzilotta, A.D.; McQuillan, A.J. An in situ infrared spectroscopic study of glutamic acid and of aspartic acid adsorbed on TiO2: Implications for the biocompatibility of Titanium. J. Colloid Interface Sci., 2000, 227(1), 48-54.
[14]
Wang, S.; Mamedova, N.; Kotov, N.A.; Chen, W.; Studer, J. Antigen/antibody immunocomplex from CdTe nanoparticle bioconjugates. Nano Lett., 2002, 2(8), 817-822.
[15]
Kim, Y-P.; Shon, H.K.; Shin, S.K.; Lee, T.G. Probing nanoparticles and nanoparticle-conjugated biomolecules using time-of-flight secondary ion mass spectrometry. Mass Spectrom. Rev., 2015, 34(2), 237-247.
[16]
Wang, H.; Chu, P.K. Surface characterization of biomaterials. Charact. Biomater., 2013, 105-174.
[17]
Chang, Y-S.; Chang, Y-H.; Chen, I-G.; Chen, G-J.; Chai, Y-L. Synthesis and characterization of zinc titanate nano-crystal powders by sol-gel technique. J. Cryst. Growth, 2002, 243(2), 319-326.
[18]
Liu, L.; Ma, Y.; Chen, X.; Xiong, X.; Shi, S. Screening and identification of BSA bound ligands from Puerariae lobata flower by BSA functionalized Fe3O4 magnetic nanoparticles coupled with HPLC-MS/MS. J. Chromatogr. B., 2012, 887-888, 55-60.
[19]
Tang, Z.; Xu, B.; Wu, B.; Germann, M.W.; Wang, G. Synthesis and structural determination of multidentate 2,3-dithiol-stabilized Au clusters. J. Am. Chem. Soc., 2010, 132(10), 3367-3374.
[20]
Yang, H.; Liu, C.; Yang, D.; Zhang, H.; Xi, Z. Comparative study of cytotoxicity, oxidative stress and genotoxicity induced by four typical nanomaterials: the role of particle size, shape and composition. J. Appl. Toxicol., 2009, 29(1), 69-78.
[21]
Chen, L.Q.; Fang, L.; Ling, J.; Ding, C.Z.; Kang, B.; Huang, C.Z. Nanotoxicity of silver nanoparticles to red blood cells: size dependent adsorption, uptake, and hemolytic activity. Chem. Res. Toxicol., 2015, 28(3), 501-509.
[22]
Gong, M.; Yang, H.; Zhang, S.; Yang, Y.; Zhang, D.; Qi, Y.; Zou, L. Superparamagnetic core/shell GoldMag nanoparticles: size-, concentration- and time-dependent cellular nanotoxicity on human umbilical vein endothelial cells and the suitable conditions for magnetic resonance imaging. J. Nanobiotechnology, 2015, 13, 24.
[23]
Caster, J.M.; Yu, S.K.; Patel, A.N.; Newman, N.J.; Lee, Z.J.; Warner, S.B.; Wagner, K.T.; Roche, K.C.; Tian, X.; Min, Y.; Wang, A.Z. Effect of particle size on the biodistribution, toxicity, and efficacy of drug-loaded polymeric nanoparticles in chemoradiotherapy. Nanomed. Nanotechnol. Biol. Med., 2017, 13(5), 1673-1683.
[24]
De Jong, W.H.; Hagens, W.I.; Krystek, P.; Burger, M.C.; Sips, A.J.A.M.; Geertsma, R.E. Particle size-dependent organ distribution of gold nanoparticles after intravenous administration. Biomaterials, 2008, 29(12), 1912-1919.
[25]
Lankveld, D.P.K.; Oomen, A.G.; Krystek, P.; Neigh, A.; Troost-de Jong, A.; Noorlander, C.W.; Van Eijkeren, J.C.H.; Geertsma, R.E.; De Jong, W.H. The kinetics of the tissue distribution of silver nanoparticles of different sizes. Biomaterials, 2010, 31(32), 8350-8361.
[26]
Mohammadian, M.; Pourmehran, O. CFPD simulation of magnetic drug delivery to a human lung using an SAW nebulizer. Biomech. Model. Mechanobiol., 2019, 18(3), 547-562.
[http://dx.doi.org/10.1007/s10237-018-1101-0]
[27]
Pourmehran, O.; Gorji, T.B.; Gorji-Bandpy, M. Magnetic drug targeting through a realistic model of human tracheobronchial airways using computational fluid and particle dynamics. Biomech. Model. Mechanobiol., 2016, 15(5), 1355-1374.
[http://dx.doi.org/10.1007/s10237-016-0768-3]
[28]
Rahimi-Gorji, M.; Pourmehran, O.; Gorji-Bandpy, M.; Gorji, T.B. CFD simulation of airflow behavior and particle transport and deposition in different breathing conditions through the realistic model of human airways. J. Mol. Liq., 2015, 209, 121-133.
[http://dx.doi.org/10.1016/J.MOLLIQ.2015.05.031]
[29]
Pourmehran, O.; Rahimi-Gorji, M.; Gorji-Bandpy, M.; Gorji, T.B. Simulation of Magnetic Drug Targeting through Tracheobronchial Airways in the presence of an external non-uniform magnetic field using lagrangian magnetic particle tracking. J. Magn. Magn. Mater., 2015, 393, 380-393.
[http://dx.doi.org/10.1016/j.jmmm.2015.05.086]
[30]
Yousefi, M.; Pourmehran, O.; Gorji-Bandpy, M.; Inthavong, K.; Yeo, L.; Tu, J. CFD simulation of aerosol delivery to a human lung via surface acoustic wave nebulization. Biomech. Model. Mechanobiol., 2017, 16(6), 2035-2050.
[http://dx.doi.org/10.1007/s10237-017-0936-0]
[31]
Khodashenas, B.; Ghorbani, H.R. Synthesis of Silver Nanoparticles with Different Shapes. Arab. J. Chem., 2015, 12(8), 1823-1838.
[http://dx.doi.org/10.1016/J.ARABJC.2014.12.014]
[32]
Chithrani, B.D.; Ghazani, A.A.; Chan, W.C.W. Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Lett., 2006, 6(4), 662-668.
[http://dx.doi.org/10.1021/nl052396o]
[33]
Favi, P.M.; Gao, M.; Johana Sepúlveda Arango, L.; Ospina, S.P.; Morales, M.; Pavon, J.J.; Webster, T.J. Shape and surface effects on the cytotoxicity of nanoparticles: Gold nanospheres versus gold nanostars. J. Biomed. Mater. Res. Part A, 2015, 103(11), 3449-3462.
[http://dx.doi.org/10.1002/jbm.a.35491]
[34]
Gupta, R.; Rai, B. Effect of size and surface charge of gold nanoparticles on their skin permeability: A molecular dynamics study. Sci. Rep., 2017, 7(1), 45292.
[http://dx.doi.org/10.1038/srep45292]
[35]
Zheng, H.; Mortensen, L.J.; Ravichandran, S.; Bentley, K.; DeLouise, L.A. Effect of nanoparticle surface coating on cell toxicity and mitochondria uptake. J. Biomed. Nanotechnol., 2017, 13(2), 155-166.
[36]
Yu, M.; Huang, S.; Yu, K.J.; Clyne, A.M.; Yu, M.; Huang, S.; Yu, K.J.; Clyne, A.M. Dextran and polymer polyethylene glycol (PEG) coating reduce both 5 and 30 nm iron oxide nanoparticle cytotoxicity in 2D and 3D cell culture. Int. J. Mol. Sci., 2012, 13(5), 5554-5570.
[http://dx.doi.org/10.3390/ijms13055554]
[37]
Mahmoudi, M.; Simchi, A.; Imani, M. Cytotoxicity of uncoated and polyvinyl alcohol coated superparamagnetic iron oxide nanoparticles. J. Phys. Chem. C, 2009, 113(22), 9573-9580.
[http://dx.doi.org/10.1021/jp9001516]
[38]
Magdolenova, Z.; Drlickova, M.; Henjum, K.; Rundén-Pran, E.; Tulinska, J.; Bilanicova, D.; Pojana, G.; Kazimirova, A.; Barancokova, M.; Kuricova, M. Coating-dependent induction of cytotoxicity and genotoxicity of iron oxide nanoparticles. Nanotoxicology, 2015, 9(sup1), 44-56.
[http://dx.doi.org/10.3109/17435390.2013.847505]
[39]
Zhang, Y.; Li, X.; Yu, H. Toxicity of nanoparticle surface coating agents: Structure-cytotoxicity relationship. J Environ Sci Heal. Part C, 2016, 34(3), 204-215.
[http://dx.doi.org/10.1080/10590501.2016.1202762]
[40]
Lu, W.; Senapati, D.; Wang, S.; Tovmachenko, O.; Singh, A.K.; Yu, H.; Ray, P.C. Effect of surface coating on the toxicity of silver nanomaterials on human skin keratinocytes. Chem. Phys. Lett., 2010, 487(1-3), 92-96.
[http://dx.doi.org/10.1016/J.CPLETT.2010.01.027]
[41]
Hauck, T.S.; Ghazani, A.A.; Chan, W.C.W. Assessing the effect of surface chemistry on gold nanorod uptake, toxicity, and gene expression in mammalian cells. Small, 2008, 4(1), 153-159.
[http://dx.doi.org/10.1002/smll.200700217]
[42]
Fraga, S.; Faria, H.; Soares, M.E.; Duarte, J.A.; Soares, L.; Pereira, E.; Costa-Pereira, C.; Teixeira, J.P.; de Lourdes Bastos, M.; Carmo, H. Influence of the surface coating on the cytotoxicity, genotoxicity and uptake of gold nanoparticles in human HepG2 cells. J. Appl. Toxicol., 2013, 33(10), 1111-1119.
[http://dx.doi.org/10.1002/jat.2865]
[43]
Yin Win, K.; Feng, S-S. Effects of particle size and surface coating on cellular uptake of polymeric nanoparticles for oral delivery of anticancer drugs. Biomaterials, 2005, 26(15), 2713-2722.
[http://dx.doi.org/10.1016/j.biomaterials.2004.07.050]
[44]
Yin, H.; Too, H.P.; Chow, G.M. The effects of particle size and surface coating on the cytotoxicity of nickel ferrite. Biomaterials, 2005, 26(29), 5818-5826.
[http://dx.doi.org/10.1016/j.biomaterials.2005.02.036]
[45]
Braydich-Stolle, L.K.; Schaeublin, N.M.; Murdock, R.C.; Jiang, J.; Biswas, P.; Schlager, J.J.; Hussain, S.M. Crystal structure mediates mode of cell death in TiO2 nanotoxicity. J. Nanopart. Res., 2009, 11(6), 1361-1374.
[http://dx.doi.org/10.1007/s11051-008-9523-8]
[46]
Qu, G.; Bai, Y.; Zhang, Y.; Jia, Q.; Zhang, W.; Yan, B. The effect of multiwalled carbon nanotube agglomeration on their accumulation in and damage to organs in mice. Carbon N.Y., 2009, 47(8), 2060-2069.
[http://dx.doi.org/10.1016/J.CARBON.2009.03.056]
[47]
Lim, C-H.; Kang, M.; Han, J-H.; Yang, J-S. Effect of agglomeration on the toxicity of nano-sized carbon black in sprague-dawley rats. Environ. Health Toxicol., 2012, 27 e2012015
[http://dx.doi.org/10.5620/eht.2012.27.e2012015]
[48]
Merodio, M.; Arnedo, A.; Renedo, M.J.; Irache, J.M. Ganciclovir-loaded albumin nanoparticles: characterization and in vitro release properties. Eur. J. Pharm. Sci., 2001, 12(3), 251-259.
[49]
El Badawy, A.M.; Silva, R.G.; Morris, B.; Scheckel, K.G.; Suidan, M.T.; Tolaymat, T.M. Surface charge-dependent toxicity of silver nanoparticles. Environ. Sci. Technol., 2011, 45(1), 283-287.
[http://dx.doi.org/10.1021/es1034188]
[50]
Wilczewska, A.Z.; Niemirowicz, K.; Markiewicz, K.H.; Car, H. Nanoparticles as drug delivery systems. Pharmacol. Rep., 2012, 64(5), 1020-1037.
[http://dx.doi.org/10.1016/S1734-1140(12)70901-5]
[51]
Ai, J.; Biazar, E.; Jafarpour, M.; Montazeri, M.; Majdi, A.; Aminifard, S.; Zafari, M.; Akbari, H.R.; Rad, H.G. Nanotoxicology and nanoparticle safety in biomedical designs. Int. J. Nanomedicine, 2011, 6, 1117-1127.
[http://dx.doi.org/10.2147/IJN.S16603]
[52]
Maher, B.A.; Ahmed, I.A.M.; Karloukovski, V.; MacLaren, D.A.; Foulds, P.G.; Allsop, D.; Mann, D.M.A.; Torres-Jardón, R.; Calderon-Garciduenas, L. Magnetite pollution nanoparticles in the human brain. Proc. Natl. Acad. Sci. USA, 2016, 113(39), 10797-10801.
[http://dx.doi.org/10.1073/pnas.1605941113]
[53]
Sung, J.H.; Ji, J.H.; Park, J.D.; Yoon, J.U.; Kim, D.S.; Jeon, K.S.; Song, M.Y.; Jeong, J.; Han, B.S.; Han, J.H.; Chung, Y.H.; Chang, H.K.; Lee, J.H.; Cho, M.H.; Kelman, B.J.; Yu, I.J. Subchronic inhalation toxicity of silver nanoparticles. Toxicol. Sci., 2009, 108(2), 452-461.
[http://dx.doi.org/10.1093/toxsci/kfn246]
[54]
Wu, J.; Liu, W.; Xue, C.; Zhou, S.; Lan, F.; Bi, L.; Xu, H.; Yang, X.; Zeng, F-D. Toxicity and penetration of TiO2 nanoparticles in hairless mice and porcine skin after subchronic dermal exposure. Toxicol. Lett., 2009, 191(1), 1-8.
[http://dx.doi.org/10.1016/j.toxlet.2009.05.020]
[55]
Ryman-Rasmussen, J.P.; Riviere, J.E.; Monteiro-Riviere, N.A. Penetration of intact skin by quantum dots with diverse physicochemical properties. Toxicol. Sci., 2006, 91(1), 159-165.
[http://dx.doi.org/10.1093/toxsci/kfj122]
[56]
Li, L.; Liu, T.; Fu, C.; Tan, L.; Meng, X.; Liu, H. Biodistribution, excretion, and toxicity of mesoporous silica nanoparticles after oral administration depend on their shape. Nanomed. Nanotechnol. Biol. Med., 2015, 11(8), 1915-1924.
[http://dx.doi.org/10.1016/j.nano.2015.07.004]
[57]
Sharma, V.; Singh, P.; Pandey, A.K.; Dhawan, A. Induction of oxidative stress, DNA damage and apoptosis in mouse liver after sub-acute oral exposure to zinc oxide nanoparticles. Mutat. Res. Toxicol. Environ. Mutagen., 2012, 745(1-2), 84-91.
[http://dx.doi.org/10.1016/j.mrgentox.2011.12.009]
[58]
Peñaloza, J.P.; Márquez-Miranda, V.; Cabaña-Brunod, M.; Reyes-Ramírez, R.; Llancalahuen, F.M.; Vilos, C.; Maldonado-Biermann, F.; Velásquez, L.A.; Fuentes, J.A.; González-Nilo, F.D.; Rodríguez-Díaz, M.; Otero, C. Intracellular trafficking and cellular uptake mechanism of PHBV nanoparticles for targeted delivery in epithelial cell lines. J. Nanobiotechnology, 2017, 15(1), 1.
[http://dx.doi.org/10.1186/s12951-016-0241-6]
[59]
Kettler, K.; Veltman, K.; van de Meent, D.; van Wezel, A.; Hendriks, A.J. Cellular uptake of nanoparticles as determined by particle properties, experimental conditions, and cell type. Environ. Toxicol. Chem., 2014, 33(3), 481-492.https://doi.org/10.1002/etc.2470.
[60]
Buzea, C.; Pacheco, I.I.; Robbie, K. Nanomaterials and nanoparticles: Sources and toxicity. Biointerphases, 2007, 2(4), MR17-MR71.
[http://dx.doi.org/10.1116/1.2815690]
[61]
Li, N.; Sioutas, C.; Cho, A.; Schmitz, D.; Misra, C.; Sempf, J.; Wang, M.; Oberley, T.; Froines, J.; Nel, A. Ultrafine particulate pollutants induce oxidative stress and mitochondrial damage. Environ. Health Perspect., 2003, 111(4), 455-460.
[http://dx.doi.org/10.1289/ehp.6000]
[62]
Al-Rawi, M.; Diabaté, S.; Weiss, C. Uptake and intracellular localization of submicron and nano-sized SiO2 particles in HeLa cells. Arch. Toxicol., 2011, 85(7), 813-826.
[http://dx.doi.org/10.1007/s00204-010-0642-5]
[63]
Cadenas, E.; Davies, K.J. Mitochondrial free radical generation, oxidative stress, and aging. Free Radic. Biol. Med., 2000, 29(3-4), 222-230.
[64]
Soenen, S.J.; Rivera-Gil, P.; Montenegro, J-M.; Parak, W.J.; De Smedt, S.C.; Braeckmans, K. Cellular toxicity of inorganic nanoparticles: Common aspects and guidelines for improved nanotoxicity evaluation. Nano Today, 2011, 6(5), 446-465.
[http://dx.doi.org/10.1016/J.NANTOD.2011.08.001]
[65]
Xia, Q.; Hwang, H.M.; Ray, P.C.; Yu, H. Mechanisms of nanotoxicity: generation of reactive oxygen species. J. Food Drug Anal., 2014, 22(1), 64-75.
[http://dx.doi.org/10.1016/J.JFDA.2014.01.005]
[66]
Ghosh, M.; Manivannan, J.; Sinha, S.; Chakraborty, A.; Mallick, S.K.; Bandyopadhyay, M.; Mukherjee, A. In vitro and in vivo genotoxicity of silver nanoparticles. Mutat. Res. Toxicol. Environ. Mutagen., 2012, 749(1-2), 60-69.
[http://dx.doi.org/10.1016/j.mrgentox.2012.08.007]
[67]
Angelé-Martínez, C.; Nguyen, K.V.T.; Ameer, F.S.; Anker, J.N.; Brumaghim, J.L. Reactive oxygen species generation by copper(II) oxide nanoparticles determined by DNA damage assays and EPR spectroscopy. Nanotoxicology, 2017, 11(2), 278-288.
[http://dx.doi.org/10.1080/17435390.2017.1293750]
[68]
Hillegass, J.M.; Shukla, A.; Lathrop, S.A.; MacPherson, M.B.; Fukagawa, N.K.; Mossman, B.T. Assessing nanotoxicity in cells in vitro. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 2010, 2(3), 219-231.
[http://dx.doi.org/10.1002/wnan.54]
[69]
Casey, A.; Herzog, E.; Davoren, M.; Lyng, F.M.; Byrne, H.J.; Chambers, G. Spectroscopic analysis confirms the interactions between single walled carbon nanotubes and various dyes commonly used to assess cytotoxicity. Carbon N.Y., 2007, 45(7), 1425-1432.
[http://dx.doi.org/10.1016/J.CARBON.2007.03.033]
[70]
Kroll, A.; Pillukat, M.H.; Hahn, D.; Schnekenburger, J. Interference of engineered nanoparticles with in vitro toxicity assays. Arch. Toxicol., 2012, 86(7), 1123-1136.
[http://dx.doi.org/10.1007/s00204-012-0837-z]
[71]
Kroll, A.; Dierker, C.; Rommel, C.; Hahn, D.; Wohlleben, W.; Schulze-Isfort, C.; Göbbert, C.; Voetz, M.; Hardinghaus, F.; Schnekenburger, J. Cytotoxicity screening of 23 engineered nanomaterials using a test matrix of ten cell lines and three different assays. Part. Fibre Toxicol., 2011, 8(1), 9.
[http://dx.doi.org/10.1186/1743-8977-8-9]
[72]
Jones, C.F.; Grainger, D.W. In vitro assessments of nanomaterial toxicity. Adv. Drug Deliv. Rev., 2009, 61(6), 438-456.
[http://dx.doi.org/10.1016/j.addr.2009.03.005]
[73]
Werner, M.; Biss, K.; Jérôme, V.; Hilbrig, F.; Freitag, R.; Zambrano, K.; Hübner, H.; Buchholz, R.; Mahou, R.; Wandrey, C. Use of the mitochondria toxicity assay for quantifying the viable cell density of microencapsulated jurkat cells. Biotechnol. Prog., 2013, 29(4), 986-993.
[http://dx.doi.org/10.1002/btpr.1734]
[74]
Ahamed, M.; Karns, M.; Goodson, M.; Rowe, J.; Hussain, S.M.; Schlager, J.J.; Hong, Y. DNA damage response to different surface chemistry of silver nanoparticles in mammalian cells. Toxicol. Appl. Pharmacol., 2008, 233(3), 404-410.
[http://dx.doi.org/10.1016/j.taap.2008.09.015]
[75]
Riss, T.L.; Moravec, R.A.; Niles, A.L.; Duellman, S.; Benink, H.A.; Worzella, T.J.; Minor, L. Cell Viability Assays Assay Guidance Manual. Eli Lilly & Company and the National Center for Advancing Translational Sciences: Bethesda (MD), 2004.
[76]
Hussain, S.M.; Hess, K.L.; Gearhart, J.M.; Geiss, K.T.; Schlager, J.J. In vitro toxicity of nanoparticles in BRL 3A rat liver cells. Toxicol. Vitro, 2005, 19(7), 975-983.
[http://dx.doi.org/10.1016/j.tiv.2005.06.034]
[77]
van Tonder, A.; Joubert, A.M.; Cromarty, A.D. Limitations of the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay when compared to three commonly used cell enumeration assays. BMC Res. Notes, 2015, 8(1), 47.
[http://dx.doi.org/10.1186/s13104-015-1000-8]
[78]
Young, F.M.; Phungtamdet, W.; Sanderson, B.J.S. Modification of MTT assay conditions to examine the cytotoxic effects of amitraz on the human lymphoblastoid cell line, WIL2NS. Toxicol. Vitro, 2005, 19(8), 1051-1059.
[http://dx.doi.org/10.1016/J.TIV.2005.05.001]
[79]
Han, X.; Gelein, R.; Corson, N.; Wade-Mercer, P.; Jiang, J.; Biswas, P.; Finkelstein, J.N.; Elder, A.; Oberdörster, G. Validation of an LDH assay for assessing nanoparticle toxicity. Toxicology, 2011, 287(1-3), 99-104.
[http://dx.doi.org/10.1016/j.tox.2011.06.011]
[80]
Smith, S.M.; Wunder, M.B.; Norris, D.A.; Shellman, Y.G. A simple protocol for using a LDH-based cytotoxicity assay to assess the effects of death and growth inhibition at the same time. PLoS One, 2011, 6(11) e26908
[http://dx.doi.org/10.1371/journal.pone.0026908]
[81]
Kaja, S.; Payne, A.J.; Singh, T.; Ghuman, J.K.; Sieck, E.G.; Koulen, P. An optimized lactate dehydrogenase release assay for screening of drug candidates in neuroscience. J. Pharmacol. Toxicol. Methods, 2015, 73, 1-6.
[http://dx.doi.org/10.1016/j.vascn.2015.02.001]
[82]
Dong, X.; Mattingly, C.A.; Tseng, M.T.; Cho, M.J.; Liu, Y.; Adams, V.R.; Mumper, R.J. Doxorubicin and paclitaxel-loaded lipid-based nanoparticles overcome multidrug resistance by inhibiting P-glycoprotein and depleting ATP. Cancer Res., 2009, 69(9), 3918-3926.
[http://dx.doi.org/10.1158/0008-5472.CAN-08-2747]
[83]
Miles, F.L.; Lynch, J.E.; Sikes, R.A. Cell-based assays using calcein acetoxymethyl ester show variation in fluorescence with treatment conditions. J. Biol. Methods, 2015, 2(3)
[http://dx.doi.org/10.14440/jbm.2015.73]
[84]
Hussain, S.; Thomassen, L.C.J.; Ferecatu, I.; Borot, M-C.; Andreau, K.; Martens, J.A.; Fleury, J.; Baeza-Squiban, A.; Marano, F.; Boland, S. Carbon black and titanium dioxide nanoparticles elicit distinct apoptotic pathways in bronchial epithelial cells. Part. Fibre Toxicol., 2010, 7, 10.
[http://dx.doi.org/10.1186/1743-8977-7-10]
[85]
Donepudi, M.; Grütter, M.G. Structure and zymogen activation of caspases. Biophys. Chem., 2002, 101-102, 145-153.
[86]
Akhtar, M.J.; Ahamed, M.; Alhadlaq, H.A.; Alshamsan, A. Nanotoxicity of cobalt induced by oxidant generation and glutathione depletion in MCF-7 cells. Toxicol. Vitro, 2017, 40, 94-101.
[http://dx.doi.org/10.1016/j.tiv.2016.12.012]
[87]
Yuan, Y.; Liu, C.; Lu, J.; Tang, W.; Gan, Q.; Zhou, H.; Qian, J.; Lu, X. In vitro cytotoxicity and induction of apoptosis by silica nanoparticles in human HepG2 hepatoma cells. Int. J. Nanomed., 2011, 6, 1889.
[http://dx.doi.org/10.2147/IJN.S24005]
[88]
Luna-Velasco, A.; Field, J.A.; Cobo-Curiel, A.; Sierra-Alvarez, R. Inorganic nanoparticles enhance the production of reactive oxygen species (ROS) during the autoxidation of L-3,4-dihydroxyphenylalanine (L-dopa). Chemosphere, 2011, 85(1), 19-25.
[http://dx.doi.org/10.1016/j.chemosphere.2011.06.053]
[89]
Fahmy, B.; Cormier, S.A. Copper oxide nanoparticles induce oxidative stress and cytotoxicity in airway epithelial cells. Toxicol. Vitro, 2009, 23(7), 1365-1371.
[http://dx.doi.org/10.1016/j.tiv.2009.08.005]
[90]
Roesslein, M.; Hirsch, C.; Kaiser, J-P.; Krug, H.; Wick, P. Comparability of in vitro tests for bioactive nanoparticles: a common assay to detect reactive oxygen species as an example. Int. J. Mol. Sci., 2013, 14(12), 24320-24337.
[http://dx.doi.org/10.3390/ijms141224320]
[91]
Ahamed, M.; Akhtar, M.J.; Raja, M.; Ahmad, I.; Siddiqui, M.K.J.; AlSalhi, M.S.; Alrokayan, S.A. ZnO nanorod-induced apoptosis in human alveolar adenocarcinoma cells via p53, survivin and bax/bcl-2 pathways: role of oxidative stress. Nanomed. Nanotechnol. Biol. Med., 2011, 7(6), 904-913.
[http://dx.doi.org/10.1016/j.nano.2011.04.011]
[92]
Ahamed, M.; Akhtar, M.J.; Siddiqui, M.A.; Ahmad, J.; Musarrat, J.; Al-Khedhairy, A.A.; AlSalhi, M.S.; Alrokayan, S.A. Oxidative stress mediated apoptosis induced by nickel ferrite nanoparticles in cultured A549 cells. Toxicology, 2011, 283(2-3), 101-108.
[http://dx.doi.org/10.1016/j.tox.2011.02.010]
[93]
George, S. Nanomaterial properties: Implications for safe medical applications of nanotechnology. In: Nanotechnology in Endodontics; Springer International Publishing: Cham, 2015; pp. 45-69.
[http://dx.doi.org/10.1007/978-3-319-13575-5_4]
[94]
Nishanth, R.P.; Jyotsna, R.G.; Schlager, J.J.; Hussain, S.M.; Reddanna, P. Inflammatory responses of RAW 264.7 macrophages upon exposure to nanoparticles: role of ROS-NFκB signaling pathway. Nanotoxicology, 2011, 5(4), 502-516.
[http://dx.doi.org/10.3109/17435390.2010.541604]
[95]
Kennedy, I.M.; Wilson, D.; Barakat, A.I. HEI Health Review Committee. Uptake and inflammatory effects of nanoparticles in a human vascular endothelial cell line. Res. Rep. Health Eff. Inst., 2009, 136, 3-32.
[96]
Panyam, J.; Sahoo, S.K.; Prabha, S.; Bargar, T.; Labhasetwar, V. Fluorescence and electron microscopy probes for cellular and tissue uptake of poly(D,L-lactide-co-glycolide) nanoparticles. Int. J. Pharm., 2003, 262(1-2), 1-11.
[97]
Oh, W-K.; Kim, S.; Choi, M.; Kim, C.; Jeong, Y.S.; Cho, B-R.; Hahn, J-S.; Jang, J. Cellular uptake, cytotoxicity, and innate immune response of silica-titania hollow nanoparticles based on size and surface functionality. ACS Nano, 2010, 4(9), 5301-5313.
[http://dx.doi.org/10.1021/nn100561e]
[98]
Drescher, D.; Giesen, C.; Traub, H.; Panne, U.; Kneipp, J.; Jakubowski, N. Quantitative imaging of gold and silver nanoparticles in single eukaryotic cells by laser ablation ICP-MS. Anal. Chem., 2012, 84(22), 9684-9688.
[http://dx.doi.org/10.1021/ac302639c]
[99]
Nam, H.Y.; Kwon, S.M.; Chung, H.; Lee, S.Y.; Kwon, S.H.; Jeon, H.; Kim, Y.; Park, J.H.; Kim, J.; Her, S.; Oh, Y.K.; Kwon, I.C.; Kim, K.; Jeong, S.Y. Cellular uptake mechanism and intracellular fate of hydrophobically modified glycol chitosan nanoparticles. J. Control. Release, 2009, 135(3), 259-267.
[http://dx.doi.org/10.1016/j.jconrel.2009.01.018]
[100]
Yong, K-T.; Law, W-C.; Hu, R.; Ye, L.; Liu, L.; Swihart, M.T.; Prasad, P.N. Nanotoxicity assessment of quantum dots: from cellular to primate studies. Chem. Soc. Rev., 2013, 42(3), 1236-1250.
[http://dx.doi.org/10.1039/C2CS35392J]
[101]
Chen, Y-S.; Hung, Y-C.; Liau, I.; Huang, G.S. Assessment of the in vivo toxicity of gold nanoparticles. Nanoscale Res. Lett., 2009, 4(8), 858-864.
[http://dx.doi.org/10.1007/s11671-009-9334-6]
[102]
Meng, H.; Chen, Z.; Xing, G.; Yuan, H.; Chen, C.; Zhao, F.; Zhang, C.; Zhao, Y. Ultrahigh reactivity provokes nanotoxicity: explanation of oral toxicity of nano-copper particles. Toxicol. Lett., 2007, 175(1-3), 102-110.
[http://dx.doi.org/10.1016/j.toxlet.2007.09.015]
[103]
Xie, G.; Sun, J.; Zhong, G.; Shi, L.; Zhang, D. Biodistribution and toxicity of intravenously administered silica nanoparticles in mice. Arch. Toxicol., 2010, 84(3), 183-190.
[http://dx.doi.org/10.1007/s00204-009-0488-x]
[104]
Lei, R.; Wu, C.; Yang, B.; Ma, H.; Shi, C.; Wang, Q.; Wang, Q.; Yuan, Y.; Liao, M. Integrated metabolomic analysis of the nano-sized copper particle-induced hepatotoxicity and nephrotoxicity in rats: a rapid in vivo screening method for nanotoxicity. Toxicol. Appl. Pharmacol., 2008, 232(2), 292-301.
[http://dx.doi.org/10.1016/j.taap.2008.06.026]
[105]
Zhang, J.; Wages, M.; Cox, S.B.; Maul, J.D.; Li, Y.; Barnes, M.; Hope-Weeks, L.; Cobb, G.P. Effect of Titanium Dioxide nanomaterials and ultraviolet light coexposure on African Clawed Frogs ( Xenopus Laevis ). Environ. Toxicol. Chem., 2012, 31(1), 176-183.https://doi.org/10.1002/etc.718.
[106]
Webster, C.A.; Di Silvio, D.; Devarajan, A.; Bigini, P.; Micotti, E.; Giudice, C.; Salmona, M.; Wheeler, G.N.; Sherwood, V.; Bombelli, F.B. An early developmental vertebrate model for nanomaterial safety: bridging cell-based and mammalian toxicity assessment. Nanomedicine., 2016, 11(6), 643-656.
[http://dx.doi.org/10.2217/nnm.15.219]
[107]
Liu, J.; Erogbogbo, F.; Yong, K-T.; Ye, L.; Liu, J.; Hu, R.; Chen, H.; Hu, Y.; Yang, Y.; Yang, J.; Roy, I.; Karker, N.A.; Swihart, M.T.; Prasad, P.N. Assessing clinical prospects of silicon quantum dots: studies in mice and monkeys. ACS Nano, 2013, 7(8), 7303-7310.
[http://dx.doi.org/10.1021/nn4029234]
[108]
Posgai, R.; Ahamed, M.; Hussain, S.M.; Rowe, J.J.; Nielsen, M.G. Inhalation method for delivery of nanoparticles to the Drosophila respiratory system for toxicity testing. Sci. Total Environ., 2009, 408(2), 439-443.
[http://dx.doi.org/10.1016/j.scitotenv.2009.10.008]
[109]
King-Heiden, T.C.; Wiecinski, P.N.; Mangham, A.N.; Metz, K.M.; Nesbit, D.; Pedersen, J.A.; Hamers, R.J.; Heideman, W.; Peterson, R.E. Quantum dot nanotoxicity assessment using the zebrafish embryo. Environ. Sci. Technol., 2009, 43(5), 1605-1611.
[110]
Lin, G.; Ouyang, Q.; Hu, R.; Ding, Z.; Tian, J.; Yin, F.; Xu, G.; Chen, Q.; Wang, X.; Yong, K-T. In vivo toxicity assessment of non-cadmium quantum dots in BALB/c mice. Nanomed. Nanotechnol. Biol. Med., 2015, 11(2), 341-350.
[http://dx.doi.org/10.1016/j.nano.2014.10.002]
[111]
Liu, J.; Yang, C.; Liu, J.; Hu, R.; Hu, Y.; Chen, H.; Law, W-C.; Swihart, M.T.; Ye, L.; Wang, K.; Yong, K-T. Effects of Cd-based quantum dot exposure on the reproduction and offspring of kunming mice over multiple generations. Nanotheranostics, 2017, 1(1), 23-37.
[http://dx.doi.org/10.7150/ntno.17753]
[112]
Goel, R.; Shah, N.; Visaria, R.; Paciotti, G.F.; Bischof, J.C. Biodistribution of TNF-α-coated gold nanoparticles in an in vivo model system. Nanomedicine, 2009, 4(4), 401-410.
[http://dx.doi.org/10.2217/nnm.09.21]
[113]
Huang, S.; Chen, J.C.; Hsu, C.W.; Chang, W.H. Effects of nano calcium carbonate and nano calcium citrate on toxicity in ICR mice and on bone mineral density in an ovariectomized mice model. Nanotechnology, 2009, 20(37) 375102
[http://dx.doi.org/10.1088/0957-4484/20/37/375102]
[114]
Chen, Z.; Meng, H.; Xing, G.; Chen, C.; Zhao, Y.; Jia, G.; Wang, T.; Yuan, H.; Ye, C.; Zhao, F.; Chai, Z.; Zhu, C.; Fang, X.; Ma, B.; Wan, L. Acute toxicological effects of copper nanoparticles in vivo. Toxicol. Lett., 2006, 163(2), 109-120.
[http://dx.doi.org/10.1016/j.toxlet.2005.10.003]
[115]
Li, D.; Qiu, Z.; Shao, Y.; Chen, Y.; Guan, Y.; Liu, M.; Li, Y.; Gao, N.; Wang, L.; Lu, X.; Zhao, Y.; Liu, M. Heritable gene targeting in the mouse and rat using a CRISPR-Cas system. Nat. Biotechnol., 2013, 31(8), 681-683.
[http://dx.doi.org/10.1038/nbt.2661]
[116]
Giannaccini, M.; Cuschieri, A.; Dente, L.; Raffa, V. Non-mammalian vertebrate embryos as models in nanomedicine. Nanomed. Nanotechnol. Biol. Med., 2014, 10(4), 703-719.
[http://dx.doi.org/10.1016/j.nano.2013.09.010]
[117]
Ye, L.; Yong, K-T.; Liu, L.; Roy, I.; Hu, R.; Zhu, J.; Cai, H.; Law, W-C.; Liu, J.; Wang, K.; Liu, J.; Liu, Y.; Hu, Y.; Zhang, X.; Swihart, M.T.; Prasad, P.N. A pilot study in non-human primates shows no adverse response to intravenous injection of quantum dots. Nat. Nanotechnol., 2012, 7(7), 453-458.
[http://dx.doi.org/10.1038/nnano.2012.74]
[118]
Pandey, U.B.; Nichols, C.D. Human disease models in Drosophila melanogaster and the role of the fly in therapeutic drug discovery. Pharmacol. Rev., 2011, 63(2), 411-436.
[http://dx.doi.org/10.1124/pr.110.003293]
[119]
Ahamed, M.; Posgai, R.; Gorey, T.J.; Nielsen, M.; Hussain, S.M.; Rowe, J.J. Silver nanoparticles induced heat shock protein 70, oxidative stress and apoptosis in Drosophila melanogaster. Toxicol. Appl. Pharmacol., 2010, 242(3), 263-269.
[http://dx.doi.org/10.1016/j.taap.2009.10.016]
[120]
Smola, M.; Vandamme, T.; Sokolowski, A. Nanocarriers as pulmonary drug delivery systems to treat and to diagnose respiratory and non respiratory diseases. Int. J. Nanomedicine, 2008, 3(1), 1-19.
[121]
Demir, E.ş.; Vales, G.; Kaya, B.; Creus, A.; Marcos, R. Genotoxic analysis of silver nanoparticles in Drosophila. Nanotoxicology, 2011, 5(3), 417-424.
[http://dx.doi.org/10.3109/17435390.2010.529176]
[122]
Philbrook, N.A.; Winn, L.M.; Afrooz, A.R.M.N.; Saleh, N.B.; Walker, V.K. The effect of TiO2 and Ag nanoparticles on reproduction and development of Drosophila melanogaster and CD-1 mice. Toxicol. Appl. Pharmacol., 2011, 257(3), 429-436.
[http://dx.doi.org/10.1016/j.taap.2011.09.027]
[123]
Rizzo, L.Y.; Golombek, S.K.; Mertens, M.E.; Pan, Y.; Laaf, D.; Broda, J.; Jayapaul, J.; Möckel, D.; Subr, V.; Hennink, W.E.; Storm, G.; Simon, U.; Jahnen-Dechent, W.; Kiessling, F.; Lammers, T. In vivo nanotoxicity testing using the Zebrafish embryo assay. J. Mater. Chem. B., 2013, 1, 3918-3925.
[http://dx.doi.org/10.1039/C3TB20528B]
[124]
Barbazuk, W.B.; Korf, I.; Kadavi, C.; Heyen, J.; Tate, S.; Wun, E.; Bedell, J.A.; McPherson, J.D.; Johnson, S.L. The syntenic relationship of the zebrafish and human genomes. Genome Res., 2000, 10(9), 1351-1358.
[125]
Chakraborty, C.; Sharma, A.R.; Sharma, G.; Lee, S-S. Zebrafish: A complete animal model to enumerate the nanoparticle toxicity. J. Nanobiotechnology, 2016, 14(1), 65.
[http://dx.doi.org/10.1186/s12951-016-0217-6]
[126]
Duan, J.; Yu, Y.; Shi, H.; Tian, L.; Guo, C.; Huang, P.; Zhou, X.; Peng, S.; Sun, Z. Toxic effects of silica nanoparticles on zebrafish embryos and larvae. PLoS One, 2013, 8(9) e74606
[http://dx.doi.org/10.1371/journal.pone.0074606]
[127]
Lee, K.J.; Nallathamby, P.D.; Browning, L.M.; Osgood, C.J.; Xu, X-H.N. In vivo imaging of transport and biocompatibility of single silver nanoparticles in early development of zebrafish embryos. ACS Nano, 2007, 1(2), 133-143.
[http://dx.doi.org/10.1021/nn700048y]
[128]
Vecchio, G.; Galeone, A.; Brunetti, V.; Maiorano, G.; Sabella, S.; Cingolani, R.; Pompa, P.P. Concentration-dependent, size-independent toxicity of citrate capped AuNPs in Drosophila melanogaster. PLoS One, 2012, 7, 1.
[http://dx.doi.org/10.1371/journal.pone.0029980]
[129]
Carmona, E.R.; Inostroza-Blancheteau, C.; Rubio, L.; Marcos, R. Genotoxic and oxidative stress potential of nanosized and bulk zinc oxide particles in Drosophila melanogaster. Toxicol. Ind. Health, 2016, 32(12), 1987-2001.
[http://dx.doi.org/10.1177/0748233715599472]
[130]
Ong, C.; Lee, Q.Y.; Cai, Y.; Liu, X.; Ding, J.; Yung, L-Y.L.; Bay, B-H.; Baeg, G-H. Silver nanoparticles disrupt germline stem cell maintenance in the Drosophila testis. Sci. Rep., 2016, 6(1), 20632.
[http://dx.doi.org/10.1038/srep20632]
[131]
Posgai, R.; Cipolla-McCulloch, C.B.; Murphy, K.R.; Hussain, S.M.; Rowe, J.J.; Nielsen, M.G. Differential toxicity of silver and titanium dioxide nanoparticles on Drosophila melanogaster development, reproductive effort, and viability: size, coatings and antioxidants matter. Chemosphere, 2011, 85(1), 34-42.
[http://dx.doi.org/10.1016/j.chemosphere.2011.06.040]
[132]
Panacek, A.; Prucek, R.; Safarova, D.; Dittrich, M.; Richtrova, J.; Benickova, K.; Zboril, R.; Kvitek, L. Acute and chronic toxicity effects of silver nanoparticles (NPs) on Drosophila melanogaster. Environ. Sci. Technol., 2011, 45(11), 4974-4979.
[http://dx.doi.org/10.1021/es104216b]
[133]
Asharani, P.V.; Lian Wu, Y.; Gong, Z.; Valiyaveettil, S. Toxicity of silver nanoparticles in zebrafish models. Nanotechnology, 2008, 19(25) 255102
[http://dx.doi.org/10.1088/0957-4484/19/25/255102]
[134]
Zhu, X.; Wang, J.; Zhang, X.; Chang, Y.; Chen, Y. The impact of ZnO nanoparticle aggregates on the embryonic development of zebrafish (Danio rerio). Nanotechnology, 2009, 20(19) 195103
[http://dx.doi.org/10.1088/0957-4484/20/19/195103]
[135]
Kim, K.T.; Zaikova, T.; Hutchison, J.E.; Tanguay, R.L. Gold nanoparticles disrupt zebrafish eye development and pigmentation. Toxicol. Sci., 2013, 133(2), 275-288.
[http://dx.doi.org/10.1093/toxsci/kft081]
[136]
Lei, Y.; Xiao, Q.; Huang, S.; Xu, W.; Zhang, Z.; He, Z.; Liu, Y.; Deng, F. Impact of CdSe/ZnS quantum dots on the development of zebrafish embryos. J. Nanopart. Res., 2011, 13(12), 6895-6906.
[http://dx.doi.org/10.1007/s11051-011-0597-3]
[137]
Duan, J.; Yu, Y.; Li, Y.; Yu, Y.; Sun, Z. Cardiovascular toxicity evaluation of silica nanoparticles in endothelial cells and zebrafish model. Biomaterials, 2013, 34(23), 5853-5862.
[http://dx.doi.org/10.1016/j.biomaterials.2013.04.032]
[138]
Ozel, R.E.; Liu, X.; Alkasir, R.S.J.; Andreescu, S. Electrochemical methods for nanotoxicity assessment. TrAC -. Trends Analyt. Chem., 2014, 59, 112-120.
[http://dx.doi.org/10.1016/j.trac.2014.04.006]
[139]
Özel, R.E.; Alkasir, R.S.J.; Ray, K.; Wallace, K.N.; Andreescu, S. Comparative evaluation of intestinal nitric oxide in embryonic zebrafish exposed to metal oxide nanoparticles. Small, 2013, 9(24), 4250-4261.
[http://dx.doi.org/10.1002/smll.201301087]
[140]
Takano, S.; Shiomoto, S.; Inoue, K.Y.; Ino, K.; Shiku, H.; Matsue, T. Electrochemical approach for the development of a simple method for detecting cell apoptosis based on caspase-3 activity. Anal. Chem., 2014, 86(10), 4723-4728.
[http://dx.doi.org/10.1021/ac403394z]
[141]
Zhu, X.; Hondroulis, E.; Liu, W.; Li, C. Biosensing approaches for rapid genotoxicity and cytotoxicity assays upon nanomaterial exposure. Small, 2013, 9(9-10), 1821-1830.
[http://dx.doi.org/10.1002/smll.201201593]
[142]
Damoiseaux, R.; George, S.; Li, M.; Pokhrel, S.; Ji, Z.; France, B.; Xia, T.; Suarez, E.; Rallo, R.; Mädler, L.; Cohen, Y.; Hoek, E.M.V.; Nel, A. No time to lose--high throughput screening to assess nanomaterial safety. Nanoscale, 2011, 3(4), 1345.
[http://dx.doi.org/10.1039/c0nr00618a]
[143]
Szymański, P.; Markowicz, M.; Mikiciuk-Olasik, E. Adaptation of high-throughput screening in drug discovery-toxicological screening tests. Int. J. Mol. Sci., 2011, 13(1), 427-452.
[http://dx.doi.org/10.3390/ijms13010427]
[144]
Shah, P. Development of a Lab-on-a-Chip Device for Rapid Nanotoxicity Assessment In Vitro; PhD Thesis, Florida International University, 2014.
[http://dx.doi.org/10.25148/etd.FI15032160]
[145]
Barenholz, Y. (Chezy). Doxil® - The first FDA-approved nano-drug: Lessons learned. J. Control. Release, 2012, 160(2), 117-134.
[http://dx.doi.org/10.1016/j.jconrel.2012.03.020]
[146]
Food and Drug Administration. Drug Products, Including Biological Products, That Contain Nanomaterials - Guidance for Industry. Available from:. https://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/UCM588857 (Accessed on: September 27, 2018).

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy