Generic placeholder image

Letters in Organic Chemistry

Editor-in-Chief

ISSN (Print): 1570-1786
ISSN (Online): 1875-6255

Research Article

Magnetic Organic-Inorganic Hybrid Nano System Anchored Platinum Nanoparticles for Carbon Sequestration Reaction

Author(s): Praveenkumar Ramprakash Upadhyay, Prashant Gautam and Vivek Srivastava*

Volume 17, Issue 1, 2020

Page: [73 - 83] Pages: 11

DOI: 10.2174/1570178616666190228141754

Price: $65

Abstract

A new Pt metal based nano-catalytic system was developed using organic-inorganic magnetic framework followed by the user-friendly protocol in good yield. XRD, FTIR, TEM, BET, ICP-OES and solid-state NMR techniques were used to characterize our developed catalytic system. The wellcharacterized ionic liquid bridged-silica supported magnetic Pt nanoparticles were utilized for the selective hydrogenation of carbon dioxide under high-pressure reaction condition (with and without ionic liquid medium). Most promising results were obtained while using the catalytic system (Pt-MagNP@ILSiO2) in 1,3-di (N, N-dimethylaminoethyl)-2-methylimidazolium nonafluorobutanesulfonate ([DAMI] [CF3CF2CF2CF2SO3]) task-specific ionic liquid medium. This TSIL not only provided a high degree of CO2 absorption during the reaction but also enhances the selectivity and the recyclability of the catalytic system up to 8 runs. No sign of Pt metal leaching was recorded during the recyclability test which confirmed the stability of this catalytic system under high-pressure reaction condition.

Keywords: Carbon dioxide, ionic liquid, formic acid, magnetic nanoparticles, silica, Pt NPs.

« Previous
Graphical Abstract

[1]
Ridha, F.N.; Manovic, V.; Wu, Y.; Macchi, A.; Anthony, E.J. Int. J. Greenh. Gas Control, 2016, 16, 21-28.
[2]
Sedjo, R.; Sohngen, B. Annu. Rev. Resour. Econ., 2012, 4, 127-144.
[3]
Le Quéré, C.; Raupach, M.R.; Canadell, J.G.; Marland, G. Nat. Geosci., 2009, 2, 831-836.
[4]
Upadhyay, P.R.; Srivastava, V. Nanosyst.: Phys., Chem. Math, 2016, 7, 513-517.
[5]
Upadhyay, P.R.; Srivastava, V. Lett. Org. Chem., 2016, 13, 459-465.
[6]
Upadhyay, P.R.; Srivastava, V. RSC Advances, 2016, 6, 42297-42306.
[7]
Srivastava, V. Catal. Lett., 2014, 144, 2221-2226.
[8]
Upadhyay, P.; Srivastava, V. Catal. Lett., 2016, 146, 12-21.
[9]
Saeidi, S.; Amin, N.A.S.; Rahimpour, M.R. J. CO2 Util, 2014, 5, 66-81.
[10]
Wang, W.; Wang, S.; Ma, X.; Gong, J. Chem. Soc. Rev., 2011, 40, 3703-3727.
[11]
Álvarez, A.; Bansode, A.; Urakawa, A.; Bavykina, A.V.; Wezendonk, T.A.; Makkee, M.; Gascon, J.; Kapteijn, F. Chem. Rev., 2017, 117, 9804-9838.
[12]
Zhang, D.; Du, X.; Shi, L.; Gao, R. Dalton Trans., 2012, 41, 14455-14475.
[13]
Dreaden, E.; Alkilany, A.; Huang, X.; Murphy, C.; El-Sayed, M. Chem. Soc. Rev., 2012, 41, 2740-2779.
[14]
Kharissova, O.; Kharisov, B.; Jiménez-Pérez, V.; Flores, B.; Méndez, U. RSC Advances, 2013, 3, 22648-22682.
[15]
Zahmakran, M.; Özkar, S. Nanoscale, 2011, 3, 3462-3481.
[16]
Kim, B.H.; Hackett, M.J.; Park, J.; Hyeon, T. Chem. Mater., 2014, 26, 59-71.
[17]
Kulkarni, N.; Muddapur, U. J. Nanotechnol., 2014, 2014, 1-8.
[18]
Thomas, J. Angew. Chem. Int. Ed., 2009, 48, 3390-3391.
[19]
Kowalczyk, B.; Lagzi, I.; Grzybowski, B.A. Curr. Opin. Colloid Interface Sci., 2011, 16, 135-148.
[20]
You, H.; Yang, S.; Ding, B.; Yang, H. Chem. Soc. Rev., 2013, 42, 2880-2904.
[21]
Saravanan, P.; Gopalan, R.; Chandrasekaran, V. Def. Sci. J., 2008, 58, 504-516.
[22]
Trewyn, B.G.; Slowing, I.I.; Giri, S.; Chen, H-T.; Lin, V.S-Y. Acc. Chem. Res., 2007, 40, 846-853.
[23]
Gutiérrez, L.; Hamoudi, S.; Belkacemi, K. Catalysts, 2011, 1, 97-154.
[24]
Campelo, J.; Luna, D.; Luque, R.; Marinas, J.; Romero, A. ChemSusChem, 2009, 2, 18-45.
[25]
Prieto, G.; Zeevi, J.; Friedrich, H.; de Jong, K.P.; de Jongh, P.E. Nat. Mater., 2013, 12, 34-39.
[26]
Liu, X.; Wang, D.; Li, Y. Nano Today, 2012, 7, 448-466.
[27]
Kulkarni, A.; Lobo-Lapidusa, R.J.; Gates, B.C. Chem. Commun., 2010, 46, 5997-6015.
[28]
Nørskov, J.K.; Bligaard, T.; Rossmeisl, J.; Christensen, C.H. Nat. Chem., 2009, 1, 37-46.
[29]
Guowu, Z.; Hua, C.Z. ACS Cent. Sci., 2017, 3, 794-799.
[30]
Piyali, B.; Arindam, M.; Asim, B. Chem. Eur. J., 2018, 24, 14189-14197.
[31]
Diaz, U.; Boronat, M.; Corma, A. Proc. R. Soc. Lond. Ser. A, 2012, 468, 1927-1954.
[32]
Huasheng, L.; Fugang, X.; Li, W. J. Mater. Sci., 2018, 53, 8677-8698.
[33]
Jiri, K.; Yazan, H.; Lukas, R.; Zbynek, H.; Mirko, C.; Vojtech, A.; Ondrej, Z. Nanomaterials, 2017, 7, 243-272.
[34]
Stepanov, A.L.; Golubev, A.N.; Nikitin, S.I.; Osin, Y.N. Rev. Adv. Mater. Sci., 2014, 38, 160-175.
[35]
Khwaja, S.S.; Azamal, H. Nanoscale Res. Lett., 2016, 11, 482-495.
[36]
Massart, R. IEEE Trans. Magn., 1981, 17, 1247-1248.
[37]
Upadhyay, P.R.; Srivastava, V. Catal. Lett., 2017, 147, 1051-1060.

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy