[1]
Cuello, A.C. Intracellular and extracellular Abeta, a tale of two
neuropathologies Brain Pathol, 2005, 15(1), 66-71.
[2]
Gouras, G.K.; Tsai, J.; Naslund, J.; Vincent, B.; Edgar, M.; Checler, F.; Greenfield, J.P.; Haroutunian, V.; Buxbaum, J.D.; Xu, H.; Greengard, P.; Relkin, N.R. Intraneuronal Abeta42 accumulation in human brain. Am. J. Pathol., 2000, 156(1), 15-20.
[3]
Walsh, D.M.; Tseng, B.P.; Rydel, R.E.; Podlisny, M.B.; Selkoe, D.J. The oligomerization of amyloid beta-protein begins intracellularly in cells derived from human brain. Biochemistry, 2000, 39(1), 10831-10839.
[4]
Sivanesan, S.; Tan, A.; Rajadas, J. Pathogenesis of Abeta oligomers in synaptic failure. Curr. Alzheimer Res., 2013, 10(3), 316-323.
[5]
Matsumura, S.; Shinoda, K.; Yamada, M.; Yokojima, Inoue, S.;
M.; Ohnishi, T.; Shimada, T.; Kikuchi, K.; Masui, D.; Hashimoto,
S.; Sato, M.; Ito, A.; Akioka, M.; Takagi, S.; Nakamura, Y.;
Nemoto, K.; Hasegawa, Y.; Takamoto, H.; Inoue, H.; Nakamura,
S.; Nabeshima, Y.; Teplow, D.B.; Kinjo, M.; Hoshi, M. Two
distinct amyloid beta-protein (Abeta) assembly pathways leading to
oligomers and fibrils identified by combined fluorescence
correlation spectroscopy, morphology, and toxicity analyses. J.
Biol. Chem, 2011, 286(1), 11555-11562.
[6]
Strodel, B.; Lee, J.W.; Whittleston, C.S.; Wales, D.J. Transmembrane structures for Alzheimer's Aβ(1-42) oligomers. J.
Am. Chem. Soc, 2010, 132, 13300-13312.
[7]
Ono, K.; Condron, M.M.; Teplow, D.B. Structure-neurotoxicity
relationships of amyloid beta-protein oligomers. Proc. Natl. Acad.
Sci. USA, 2009, 106(1), 14745-14750.
[8]
Shanmugam, G.; Polavarapu, P.L. Structure of A beta(25-35)
peptide in different environments. Biophys. J., 2004, 87, 622-630.
[9]
Pike, C.J.; Walencewicz-Wasserman, A.J.; Kosmoski, J.; Cribbs, D.H.; Glabe, C.G.; Cotman, C.W. Structure-activity analyses of β-amyloid peptides: Contributions of the β 25-35 region to aggregation and neurotoxicity. J. Neurochem., 1995, 64, 253-265.
[10]
Misiti, F.; Sampaolese, B.; Pezzotti, M.; Marini, S.; Coletta, M.; Ceccarelli, L.; Giardina, B.; Clementi, M.E. Aβ31–35 peptide induces apoptosis in pc 12 cells: Contrast with Aβ25–35 peptide and examination of underlying mechanisms. Neurochem. Int., 2005, 46(1), 575-583.
[11]
Kohno, T.; Kobayashi, K.; Maeda, T.; Sato, K.; Takashima, A. Three-dimensional structures of the amyloid β peptide (25-35) in membrane-mimicking environment. Biochemistry, 1996, 35, 16094-16104.
[12]
D’Ursi, A.M.; Armenante, M.R.; Guerrini, R.; Salvadori, S.; Sorrentino, G.; Picone, D. Solution structure of amyloid β-peptide (25-35) in different media. J. Med. Chem., 2004, 47(1), 4231-4238.
[13]
El-Agnaf, O.M.; Irvine, G.B.; Fitzpatrick, G.; Glass, W.K.; Guthrie, D.J. Comparative studies on peptides representing the so-called tachykinin-like region of the Alzheimer Aβ peptide Aβ(25-35). Biochem. J., 1998, 336, 419-427.
[14]
Zagorski, M.; Barrow, C. NMR studies of amyloid β-peptide: Proton assignments, secondary structure and mechanism of an α-helix-β-sheet conversion for a homologous, 28 residue, N-terminal fragment. Biochemistry, 1992, 31(1), 5621-5631.
[15]
Shao, H.; Jao, S.; Ma, J.; Zagorski, M. Solution structures of micelle-bound amyloid β-(1-40) and β-(1-42) peptides of Alzheimer’s disease. J. Mol. Biol., 1999, 285(1), 755-773.
[16]
Inayathullah, M.; Rajadas, J. Effect of osmolytes on the conformation and aggregation of some amyloid peptides: CD spectroscopic data. Data Brief, 2016, 7, 1643-1651.
[17]
Inayathullah, M.; Rajadas, J. Conformational dynamics of a hydrophobic prion fragment (113-127) in different pH and osmolyte solutions. Neuropeptides, 2016, 57, 9-14.
[18]
Laczko, I.; Holly, S.; Konya, Z.; Soos, K.; Varga, J.L.; Hollosi, M.; Penke, B. Conformational mapping of amyloid peptides from the putative neurotoxic 25-35 region. Biochem. Biophys. Res. Commun., 1994, 205, 120-126.
[19]
Fezoui, Y.; Teplow, D.B. Kinetic studies of amyloid beta-protein fibril assembly. Differential effects of alpha-helix stabilization. J. Biol. Chem., 2002, 277, 36948-36954.
[20]
Buck, M. Trifluoroethanol and colleagues: Co-solvents come of age. Recent studies with peptides and proteins. Q. Rev. Biophys., 1998, 31, 297-355.
[21]
Satheeshkumar, K.S.; Murali, J.; Jayakumar, R. Assemblages of prion fragments: Novel model systems for understanding amyloid toxicity. J. Struct. Biol., 2004, 148, 176-193.
[22]
Yonath, A.; Podjarny, A.; Honig, B.; Sielecki, A.; Traub, W. Crystallographic studies of protein denaturation and renaturation. Sodium dodecyl sulfate induced structural changes in triclinic lysozyme. Biochemistry, 1977, 16, 1418-1424.
[23]
Huibers, P.D.T. Quantum-chemical calculations of the charge distribution in ionic surfactants. Langmuir, 1999, 15(1), 7546-7550.
[24]
Bag, S.; Chaudhury, S.; Pramanik, D.; DasGupta, S. Hydrophobic tail length plays a pivotal role in amyloid beta (25-35) fibril-surfactant interactions. Proteins, 2016, 84(9), 1213-1223.
[25]
Shabestari, M.H.; Meeuwenoord, N.J.; Filippov, D.V.; Huber, M. Interaction of the amyloid β peptide with sodium dodecyl sulfate as a membrane-mimicking detergent. J. Biol. Phys., 2016, 42(3), 299-315.