Generic placeholder image

当代阿耳茨海默病研究

Editor-in-Chief

ISSN (Print): 1567-2050
ISSN (Online): 1875-5828

Research Article

MAPK信号在体内介导ApoE4驱动的病理学中作用

卷 16, 期 4, 2019

页: [281 - 292] 页: 12

弟呕挨: 10.2174/1567205016666190228120254

价格: $65

conference banner
摘要

背景:阿尔茨海默病(AD)与关键脑丝裂原活化蛋白激酶(MAPK)信号级联的损伤有关,包括p38,c-Jun N末端激酶(JNK),ERK和Akt通路。载脂蛋白E4(ApoE4)是AD中最常见的遗传风险因子。 目的:研究MAPK信号通路在介导apoE4的病理作用中发挥作用的程度,并可通过实验操作逆转。 方法:使用来自幼稚和病毒处理的apoE3和apoE4靶向替代小鼠的海马组织的免疫印迹测定获得的MAPK信号传导途径因子的总水平和活化的测量。 结果:ApoE4小鼠显示出与应激相关的p38和JNK途径的强烈活化以及Akt活性的相应降低,其与GSK3β的激活和tau蛋白过度磷酸化相关。对ERK途径没有影响。我们先前已经证明了apoE4相关的病理学,即;通过利用表达VEGF的腺相关病毒上调VEGF水平,可以逆转Aβ的积累,过度磷酸化的tau,突触损伤和降低的VEGF水平。利用这种方法,我们评估了apoE4的AD标志和突触病理与相应的MAPK信号传导效应相关的程度。这表明通过VEGF治疗逆转apoE4驱动的病理学与p38和Akt相关作用的逆转相关。 结论:总之,这些结果表明p38和Akt通路在介导apoE4在海马中的AD相关病理学作用中起作用。

关键词: 阿尔茨海默病(AD),载脂蛋白E4(apoE4),VEGF,MAPK,信号传导,腺相关病毒,海马,靶向替代小鼠。

[1]
Masters CL, Simms G, Weinman NA, Multhaup G, McDonald BL, Beyreuther K. Amyloid plaque core protein in Alzheimer disease and Down syndrome. Proc Natl Acad Sci USA 82(12): 4245-9. (1985).
[2]
Alzheimer A, Stelzmann RA, Schnitzlein HN, Murtagh FR. An English translation of Alzheimer’s 1907 paper, “Uber eine eigenartige Erkankung der Hirnrinde. Clin Anat 8(6): 429-31. (1995).
[3]
Masliah E, Crews L, Hansen L. Synaptic remodeling during aging and in Alzheimer’s disease. J Alzheimers Dis 9(3)(Suppl.): 91-9. (2006).
[4]
Schwartz M, Deczkowska A. Neurological disease as a failure of brain-immune crosstalk: the multiple faces of neuroinflammation. Trends Immunol 37(10): 668-79. (2016).
[5]
Corder EH, Saunders AM, Strittmatter WJ, Schmechel DE, Gaskell PC, Small GW, et al. Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer's disease in late onset families. Science (New York, NY 261(5123): 921-3 (1993).
[6]
Roses AD. Apolipoprotein E alleles as risk factors in Alzheimer’s disease. Annu Rev Med 47: 387-400. (1996).
[7]
Saunders AM, Strittmatter WJ, Schmechel D, George-Hyslop PH, Pericak-Vance MA, Joo SH, et al. Association of apolipoprotein E allele epsilon 4 with late-onset familial and sporadic Alzheimer’s disease. Neurology 43(8): 1467-72. (1993).
[8]
Liu DS, Pan XD, Zhang J, Shen H, Collins NC, Cole AM, et al. APOE4 enhances age-dependent decline in cognitive function by down-regulating an NMDA receptor pathway in EFAD-Tg mice. Mol Neurodegener 10: 7. (2015).
[9]
Schindler S, Gratia P, Mullenberger G, Arendt J. Adenosarcoma and other uterine sarcomas. Bulletin de la Societe des sciences medicales du Grand-Duche de Luxembourg 134(2): 27-30. (1997).
[10]
Mahley RW, Huang Y. Apolipoprotein e sets the stage: response to injury triggers neuropathology. Neuron 76(5): 871-85. (2012).
[11]
Kutner KC, Erlanger DM, Tsai J, Jordan B, Relkin NR. Lower cognitive performance of older football players possessing apolipoprotein E epsilon4. Neurosurgery 47(3): 651-7, 57-8 (2000).
[12]
Peila R, Rodriguez BL, Launer LJ, Honolulu-Asia Aging S. Type 2 diabetes, APOE gene, and the risk for dementia and related pathologies: the Honolulu-Asia aging study. Diabetes 51(4): 1256-62. (2002).
[13]
Michaelson DM. APOE epsilon4: the most prevalent yet understudied risk factor for Alzheimer’s disease. Alzheimer’s Dementia: J Alzheimer’s Assoc 10(6): 861-8. (2014).
[14]
Ungar L, Altmann A, Greicius MD. Apolipoprotein E, gender, and Alzheimer’s disease: an overlooked, but potent and promising interaction. Brain Imaging Behav 8(2): 262-73. (2014).
[15]
Bar R, Boehm-Cagan A, Luz I, Kleper-Wall Y, Michaelson DM. The effects of apolipoprotein E genotype, alpha-synuclein deficiency, and sex on brain synaptic and Alzheimer’s disease-related pathology. Alzheimers Dement (Amst) 10: 1-11. (2018).
[16]
Kim EK, Choi EJ. Compromised MAPK signaling in human diseases: an update. Arch Toxicol 89(6): 867-82. (2015).
[17]
Yu Q, Du F, Douglas JT, Yu H, Yan SS, Yan SF. Mitochondrial dysfunction triggers synaptic deficits via activation of p38 map kinase signaling in differentiated Alzheimer’s disease trans-mitochondrial cybrid cells. J Alzheimers Dis 59(1): 223-39. (2017).
[18]
Zhu X, Lee HG, Raina AK, Perry G, Smith MA. The role of mitogen-activated protein kinase pathways in Alzheimer’s disease. Neurosignals 11(5): 270-81. (2002).
[19]
Munoz L, Ammit AJ. Targeting p38 MAPK pathway for the treatment of Alzheimer’s disease. Neuropharmacology 58(3): 561-8. (2010).
[20]
Hensley K, Floyd RA, Zheng NY, Nael R, Robinson KA, Nguyen X, et al. p38 kinase is activated in the Alzheimer’s disease brain. J Neurochem 72(5): 2053-8. (1999).
[21]
Cuenda A, Rousseau S. p38 MAP-kinases pathway regulation, function and role in human diseases. Biochim Biophys Acta 1773(8): 1358-75. (2007).
[22]
Mehan S, Meena H, Sharma D, Sankhla R. JNK: a stress-activated protein kinase therapeutic strategies and involvement in Alzheimer’s and various neurodegenerative abnormalities. J Mol Neurosci 43(3): 376-90. (2011).
[23]
Hoe HS, Harris DC, Rebeck GW. Multiple pathways of apolipoprotein E signaling in primary neurons. J Neurochem 93(1): 145-55. (2005).
[24]
Okazawa H, Estus S. The JNK/c-Jun cascade and Alzheimer’s disease. Am J Alzheimers Dis Other Demen 17(2): 79-88. (2002).
[25]
Takashima A. GSK-3 is essential in the pathogenesis of Alzheimer’s disease. J Alzheimers Dis 9(3)(Suppl.): 309-17. (2006).
[26]
Zhang Y, Huang NQ, Yan F, Jin H, Zhou SY, Shi JS, et al. Diabetes mellitus and Alzheimer’s disease: GSK-3beta as a potential link. Behav Brain Res 339: 57-65. (2018).
[27]
Morroni F, Sita G, Tarozzi A, Rimondini R, Hrelia P. Early effects of Abeta1-42 oligomers injection in mice: involvement of PI3K/Akt/GSK3 and MAPK/ERK1/2 pathways. Behav Brain Res 314: 106-15. (2016).
[28]
Sun J, Nan G. The extracellular signal-regulated kinase 1/2 pathway in neurological diseases: a potential therapeutic target. (Review) Intern J Mol Med 39(6): 1338-46. (2017).
[29]
Kirouac L, Rajic AJ, Cribbs DH, Padmanabhan J. Activation of Ras-ERK signaling and GSK-3 by amyloid precursor protein and amyloid beta facilitates neurodegeneration in Alzheimer’s disease. eNeuro 4(2) (2017).
[30]
Gan X, Wu L, Huang S, Zhong C, Shi H, Li G, et al. Oxidative stress-mediated activation of extracellular signal-regulated kinase contributes to mild cognitive impairment-related mitochondrial dysfunction. Free Radic Biol Med 75: 230-40. (2014).
[31]
Lau D, Bengtson CP, Buchthal B, Bading H. BDNF reduces toxic extrasynaptic nmda receptor signaling via synaptic NMDA receptors and nuclear-calcium-induced transcription of inhba/activin A. Cell Reports 12(8): 1353-66. (2015).
[32]
Maezawa I, Maeda N, Montine TJ, Montine KS. Apolipoprotein E-specific innate immune response in astrocytes from targeted replacement mice. J Neuroinflammation 3: 10. (2006).
[33]
DeKroon R, Robinette JB, Hjelmeland AB, Wiggins E, Blackwell M, Mihovilovic M, et al. APOE4-VLDL inhibits the HDL-activated phosphatidylinositol 3-kinase/Akt Pathway via the phosphoinositol phosphatase SHIP2. Circ Res 99(8): 829-36. (2006).
[34]
Ong QR, Chan ES, Lim ML, Cole GM, Wong BS. Reduced phosphorylation of brain insulin receptor substrate and Akt proteins in apolipoprotein-E4 targeted replacement mice. Sci Rep 4: 3754. (2014).
[35]
Salomon-Zimri S, Boehm-Cagan A, Liraz O, Michaelson DM. Hippocampus-related cognitive impairments in young apoE4 targeted replacement mice. Neurodegener Dis 13(2-3): 86-92. (2014).
[36]
Liraz O, Boehm-Cagan A, Michaelson DM. ApoE4 induces Abeta42, tau, and neuronal pathology in the hippocampus of young targeted replacement apoE4 mice. Mol Neurodegener 8: 16. (2013).
[37]
Gilat-Frenkel M, Boehm-Cagan A, Liraz O, Xian X, Herz J, Michaelson DM. Involvement of the Apoer2 and Lrp1 receptors in mediating the pathological effects of ApoE4 in vivo. Curr Alzheimer Res 11(6): 549-57. (2014).
[38]
Salomon-Zimri S, Glat MJ, Barhum Y, Luz I, Boehm-Cagan A, Liraz O, et al. Reversal of ApoE4-driven brain pathology by vascular endothelial growth factor treatment. J Alzheimers Dis 53(4): 1443-58. (2016).
[39]
Liu Y, Deisseroth A. Tumor vascular targeting therapy with viral vectors. Blood 107(8): 3027-33. (2006).
[40]
Hermida MA, Dinesh Kumar J, Leslie NR. GSK3 and its interactions with the PI3K/AKT/mTOR signalling network. Adv Biol Regul 65: 5-15. (2017).
[41]
Hooper C, Killick R, Lovestone S. The GSK3 hypothesis of Alzheimer’s disease. J Neurochem 104(6): 1433-9. (2008).
[42]
Lane-Donovan C, Herz J. ApoE, ApoE receptors, and the synapse in Alzheimer’s disease. Trends Endocrinol Metab 28(4): 273-84. (2017).
[43]
Zhao N, Liu CC, Van Ingelgom AJ, Martens YA, Linares C, Knight JA, et al. Apolipoprotein E4 impairs neuronal insulin signaling by trapping insulin receptor in the endosomes Neuron 96(1): 115-29 e5 (2017).
[44]
Zhao N, Liu CC, Qiao W, Bu G. Apolipoprotein E, receptors, and modulation of Alzheimer’s disease. Biol Psychiatry 83(4): 347-57. (2018).
[45]
Chen Y, Durakoglugil MS, Xian X, Herz J. ApoE4 reduces glutamate receptor function and synaptic plasticity by selectively impairing ApoE receptor recycling. Proc Natl Acad Sci USA 107(26): 12011-6. (2010).
[46]
Cash JG, Kuhel DG, Basford JE, Jaeschke A, Chatterjee TK, Weintraub NL, et al. Apolipoprotein E4 impairs macrophage efferocytosis and potentiates apoptosis by accelerating endoplasmic reticulum stress. J Biol Chem 287(33): 27876-84. (2012).
[47]
Pei JJ, Braak E, Braak H, Grundke-Iqbal I, Iqbal K, Winblad B, et al. Localization of active forms of C-jun kinase (JNK) and p38 kinase in Alzheimer’s disease brains at different stages of neurofibrillary degeneration. J Alzheimers Dis 3(1): 41-8. (2001).
[48]
Hoe HS, Pocivavsek A, Dai H, Chakraborty G, Harris DC, Rebeck GW. Effects of apoE on neuronal signaling and APP processing in rodent brain. Brain Res 1112(1): 70-9. (2006).
[49]
Lee KI, Su CC, Yang CY, Hung DZ, Lin CT, Lu TH, et al. Etoposide induces pancreatic beta-cells cytotoxicity via the JNK/ERK/GSK-3 signaling-mediated mitochondria-dependent apoptosis pathway. Toxicol In vitro: an international journal published in association with BIBRA 36: 142-52 (2016).
[50]
Song G, Ouyang G, Bao S. The activation of Akt/PKB signaling pathway and cell survival. J Cell Mol Med 9(1): 59-71. (2005).
[51]
Steen E, Terry BM, Rivera EJ, Cannon JL, Neely TR, Tavares R, et al. Impaired insulin and insulin-like growth factor expression and signaling mechanisms in Alzheimer’s disease--is this type 3 diabetes? J Alzheimers Dis 7(1): 63-80. (2005).
[52]
Dose J, Huebbe P, Nebel A, Rimbach G. APOE genotype and stress response - a mini review. Lipids Health Dis 15: 121. (2016).
[53]
Dorey E, Bamji-Mirza M, Najem D, Li Y, Liu H, Callaghan D, et al. Apolipoprotein E isoforms differentially regulate alzheimer’s disease and amyloid-beta-induced inflammatory response in vivo and in vitro. J Alzheimers Dis 57(4): 1265-79. (2017).
[54]
Kusaka G, Ishikawa M, Nanda A, Granger DN, Zhang JH. Signaling pathways for early brain injury after subarachnoid hemorrhage. J Cereb Blood Flow Metab 24(8): 916-25. (2004).
[55]
Simpson JE, Ince PG, Shaw PJ, Heath PR, Raman R, Garwood CJ, et al. Microarray analysis of the astrocyte transcriptome in the aging brain: relationship to Alzheimer’s pathology and APOE genotype. Neurobiol Aging 32(10): 1795-807. (2011).
[56]
Majewska E, Szeliga M. AKT/GSK3beta Signaling in Glioblastoma. Neurochem Res 42(3): 918-24. (2017).
[57]
Sun A, Liu M, Nguyen XV, Bing G. P38 MAP kinase is activated at early stages in Alzheimer’s disease brain. Exp Neurol 183(2): 394-405. (2003).
[58]
Lee JK, Kim NJ. Recent advances in the inhibition of p38 MAPK as a potential strategy for the treatment of Alzheimer’s disease. Molecules 22(8) (2017).
[59]
Boehm-Cagan A, Bar R, Liraz O, Bielicki JK, Johansson JO, Michaelson DM. ABCA1 Agonist reverses the ApoE4-driven cognitive and brain pathologies. J Alzheimers Dis 54(3): 1219-33. (2016).
[60]
Luz I, Liraz O, Michaelson DM. An Anti-apoE4 specific monoclonal antibody counteracts the pathological effects of apoE4 in vivo. Curr Alzheimer Res 13(8): 918-29. (2016).
[61]
Kim J, Basak JM, Holtzman DM. The role of apolipoprotein E in Alzheimer’s disease. Neuron 63(3): 287-303. (2009).
[62]
Sun GZ, He YC, Ma XK, Li ST, Chen DJ, Gao M, et al. Hippocampal synaptic and neural network deficits in young mice carrying the human APOE4 gene. CNS Neurosci Ther 23(9): 748-58. (2017).

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy