[1]
Grover, G.; Kini, S.G. Synthesis and evaluation of new quinazolone derivatives of nalidixic acid as potential antibacterial and antifungal agents. Eur. J. Med. Chem., 2006, 41(2), 256-262.
[2]
Kabri, Y.; Azas, N.; Dumètre, A.; Hutter, S.; Laget, M.; Verhaeghe, P.; Gellis, A.; Vanelle, P. Original quinazoline derivatives displaying antiplasmodial properties. Eur. J. Med. Chem., 2010, 45(2), 616-622.
[3]
Henderson, E.A.; Bavetsias, V.; Theti, D.S.; Wilson, S.C.; Clauss, R.; Jackman, A.L. Targeting the α-folate receptor with cyclopenta[g]quinazoline-based inhibitors of thymidylate synthase. Bioorg. Med. Chem., 2006, 14(14), 5020-5042.
[4]
Balakumar, C.; Lamba, P.; Pran Kishore, D.; Lakshmi Narayana, B.; Venkat Rao, K.; Rajwinder, K.; Raghuram Rao, A.; Shireesha, B.; Narsaiah, B. Synthesis, anti-inflammatory evaluation and docking studies of some new fluorinated fused quinazolines. Eur. J. Med. Chem., 2010, 45(11), 4904-4913.
[5]
Chien, T-C.; Chen, C-S.; Yu, F-H.; Chern, J-W.; Nucleosides, X.I. Synthesis and antiviral evaluation of 5′-alkylthio-5′-deoxy quinazolinone nucleoside derivatives as s-adenosyl-l-homocysteine analogs. Chem. Pharm. Bull., 2004, 52(12), 1422-1426.
[6]
Kumar, A.; Sharma, P.; Kumari, P.; Lal Kalal, B. Exploration of antimicrobial and antioxidant potential of newly synthesized 2,3-disubstituted quinazoline-4(3H)-ones. Bioorg. Med. Chem. Lett., 2011, 21(14), 4353-4357.
[8]
Boyapati, S.; Kulandaivelu, U.; Sangu, S.; Vanga, M.R. Synthesis, antimicrobial evaluation, and docking studies of novel 4-substituted quinazoline derivatives as DNA-Gyrase inhibitors. Arch. Pharm. , 2010, 343(10), 570-576.
[9]
Yang, S.H.; Khadka, D.B.; Cho, S.H.; Ju, H-K.; Lee, K.Y.; Han, H.J.; Lee, K-T.; Cho, W-J. Virtual screening and synthesis of quinazolines as novel JAK2 inhibitors. Bioorg. Med. Chem., 2011, 19(2), 968-977.
[10]
Yoshida, S.; Aoyagi, T.; Harada, S.; Matsuda, N.; Ikeda, T.; Naganawa, H.; Hamada, M.; Takeuchi, T. Production of 2-methyl-4(3H)-quinazolinone, an inhibitor of poly(ADP-ribose) synthetase, by bacterium. J. Antibiot., 1991, 44, 111-112.
[11]
Wattanapiromsakul, C.; Forster, P.I.; Waterman, P.G. Alkaloids and limonoids from bouchardatia neurococca: systematic significance. Phytochemistry, 2003, 64(2), 609-615.
[12]
Deng, Y.; Xu, R.; Ye, Y. A new quinazolinone alkaloids from leaves of Dichroa febrifuga. J. Chin. Pharm. Sci., 2000, 9, 116-118.
[13]
Nomura, T.; Ma, Z-Z.; Hano, Y.; Chen, Y-J. Two New Pyrroloquinazolinoquinoline Alkaloids from Peganum nigellastrum. Heterocycles, 1997, 46(1), 541-546.
[14]
Alonso, R.; Caballero, A.; Campos, P.J.; Sampedro, D.; Rodríguez, M.A. An efficient synthesis of quinazolines: a theoretical and experimental study on the photochemistry of oxime derivatives. Tetrahedron, 2010, 66(25), 4469-4473.
[15]
Zhang, Z-H.; Zhang, X-N.; Mo, L-P.; Li, Y-X.; Ma, F-P. Catalyst-free synthesis of quinazoline derivatives using low melting sugar–urea–salt mixture as a solvent. Green Chem., 2012, 14(5), 1502-1506.
[16]
Truong, V.L.; Morrow, M. Mild and efficient ligand-free copper-catalyzed condensation for the synthesis of quinazolines. Tetrahedron Lett., 2010, 51(4), 758-760.
[17]
Finch, N.; Gschwend, H.W. Rearrangement of 3-amino-1-benzylindazole to 4-amino-2-phenylquinazoline. J. Org. Chem., 1971, 36(11), 1463-1465.
[18]
Carrington, H.C. 1:2 Dihydro2:2-dimethyl quinazoline. J. Chem. Soc., 1955, 3, 2527-2528.
[19]
Derabli, C.; Boulcina, R.; Kirsch, G.; Carboni, B.; Debache, A. A DMAP-catalyzed mild and efficient synthesis of 1,2-dihydroquinazolines via a one-pot three-component protocol. Tetrahedron Lett., 2014, 55, 200-204.
[20]
Zhang, Q.; Zhanga, S.; Deng, Y. Recent advances in ionic liquid catalysis. Green Chem., 2011, 13, 2619-2637.
[21]
Hallett, J.P.; Welton, T. Room-temperature ionic liquids: Solvents for synthesis and catalysis. Chem. Rev., 2011, 111, 3508-3576.
[22]
Srivastava, V.; Gaubert, K.; Pucheault, M.; Vaultier, M. Organic–inorganic hybrid materials for enantioselective organocatalysis. ChemCatChem, 2009, 1, 94-98.
[23]
Khan, F.A.; Dash, J.; Satapathy, R.; Upadhyay, S.K. Hydrotalcite catalysis in ionic liquid medium: A recyclable reaction system for heterogeneous Knoevenagel and nitroaldol condensation. Tetrahedron Lett., 2004, 45, 3055-3058.
[24]
Srivastava, V. Recyclable hydrotalcite clay catalysed Baylis–Hillman reaction. J. Chem. Sci., 2013, 125, 1207-1212.
[25]
Wagner, J.; Chen, H.; Brownawell, B.J.; Westall, J.C. Use of cationic surfactants to modify soil surfaces to promote sorption and retard migration of hydrophobic organic compounds. Environ. Sci. Technol., 1994, 28(2), 231-237.
[26]
Upadhyay, P.R.; Srivastava, V. Clays: An Encouraging Catalytic Support. Curr. Catal., 2016, 5(3), 162-181.
[27]
Carrado, K.A.; Decarreau, A.; Petit, S.; Bergaya, F.; Lagaly, G. Synthetic clay minerals and purification of natural clays in:Developments in Clay Science, Bergaya, F.; Theng, B.K.G.; Lagaly, G. Eds.; Elsevier:. 2006, 1 115-139.
[28]
Bowman, R.S.; Haggerty, G.M.; Huddleston, R.G.; Neel, D.; Flynn, M.M. Sorption of nonpolar organic compounds, inorganic cations, and inorganic oxyanions by surfactant-modified zeolites inSurfactant-Enhanced Subsurface Remediation;, American Chemical Society:
. 1995, 594 54-64.
[29]
Choy, J-H.; Park, M.A.N. Cationic and Anionic Clays for Biological Applications. In: Interface Science and Technology; Wypych, F.; Satyanarayana, K.G., Eds.; Elsevier, 2004; Vol. 1, pp. 403-424.
[30]
Rajamathi, M.; Thomas, G.S.; Kamath, P.V. The many ways of making anionic clays. J. Chem. Sci., 2001, 113(5), 671-680.
[31]
Zikmund, M.; Hrnciarova, K. Anionic clays, Structure, synthesis applications. Chem. Listy, 1997, 91, 169-178.
[32]
Alberti, G.; Costantino, U. 5-Intercalation Chemistry of Acid Salts of Tetravalent Metals with Layered Structure and Related Materials. In: Intercalation Chemistry; Whittingham, M.S.; Jacobson, A.J., Eds.; Academic Press, 1982; pp. 147-180.
[33]
Trifirò, F.; Vaccari, A. Two- and Three-dimensional inorganic networks in: Comprehensive Supramol Chem, Atwood, J.L.; Davies, J.E.; Macnicol, D.D.; Vögtle, F.; Lehn, J.M.; Alberti, G; Bein, T., Ed.; Oxford Pergamon: , 1996, Vol. 7, pp. 251-291.
[34]
Cavani, F.; Trifirò, F.; Vaccari, A. Hydrotalcite-type anionic clays: Preparation, properties and applications. Catal. Today, 1991, 11(2), 173-301.
[35]
Tichit, D.; Coq, B. Catalysis by Hydrotalcites and related materials. CATTech, 2003, 7(6), 206-217.
[36]
Angelescu, E.; Pavel, O.D.; Bîrjega, R.; Florea, M.; Zăvoianu, R. The impact of the “memory effect” on the catalytic activity of
Mg/Al; Mg,Zn/Al; Mg/Al,Ga hydrotalcite-like compounds used as
catalysts for cycloxene epoxidation. Appl. Catal., A,, 2008, 341 (1),50-57.
[37]
Romero, M.D.; Calles, J.A.; Ocaña, M.A.; Gómez, J.M. Epoxidation of cyclohexene over basic mixed oxides derived from hydrotalcite materials: Activating agent, solvent and catalyst reutilization. Microporous Mesoporous Mater., 2008, 111(1), 243-253.
[38]
Mahajanam, S.P.V.; Buchheit, R.G. Characterization of inhibitor release from Zn-Al-[V10O28]6- hydrotalcite pigments and corrosion protection from hydrotalcite-pigmented epoxy coatings. Corrosion, 2008, 64(3), 230-240.
[39]
Maggi, R.; Malmassari, C.; Oro, C.; Pela, R.; Sartori, G.; Soldi, L. Reaction between epoxides and carbon disulfide under hydrotalcite catalysis: Eco compatible synthesis of cyclic dithiocarbonates. Synthesis, 2008, 2008(01), 53-56.
[40]
Carriazo, D.; Lima, S.; Martín, C.; Pillinger, M.; Valente, A.A.; Rives, V. Metatungstate and tungstoniobate-containing LDHs: Preparation, characterisation and activity in epoxidation of cyclooctene. J. Phys. Chem. Solids, 2007, 68(10), 1872-1880.
[41]
Angelescu, E.; Pavel, O.D.; Zavoianu, R.; Barjega, R. Cyanoethylation of ethanol over mixed oxides obtained from hydrotalcite precursors. Rev. Roum. Chim., 2004, 49, 367-375.
[42]
Angelescu, E.; Pavel, O.D.; Che, M.; Birjega, R.; Constentin, G. Cyanoethylation of ethanol on Mg–Al hydrotalcites promoted by Y3+ and La3+. Catal. Commun., 2004, 5(10), 647-651.
[43]
Choudary, B.M.; Lakshmi Kantam, M.; Kavita, B. Mg-Al-O-But–Hydrotalcite: A mild and ecofriendly catalyst for the cyanoethylation of alcohols and thiols†. Green Chem., 1999, 1(6), 289-292.
[44]
Kumbhar, P.S. Modified Mg–Al hydrotalcite: a highly active heterogeneous base catalyst for cyanoethylation of alcohols. Chem. Commun., 1998, (10), 1091-1092.
[45]
Akutu, K.; Kabashima, H.; Seki, T.; Hattori, H. Nitroaldol reaction over solid base catalysts. Appl. Catal. A Gen., 2003, 247(1), 65-74.
[46]
Cwik, A.; Fuchs, A.; Hell, Z.; Clacens, J-M. Nitroaldol-reaction of aldehydes in the presence of non-activated Mg:Al 2:1 hydrotalcite; a possible new mechanism for the formation of 2-aryl-1,3-dinitropropanes. Tetrahedron, 2005, 61(16), 4015-4021.
[47]
Khan, F.A.; Dash, J.; Satapathy, R.; Upadhyay, S.K. Hydrotalcite catalysis in ionic liquid medium: a recyclable reaction system for heterogeneous Knoevenagel and nitroaldol condensation. Tetrahedron Lett., 2004, 45(15), 3055-3058.
[48]
Akutu, K.; Kabashima, H.; Seki, T.; Hattori, H. Nitroaldol reaction
over solid base catalysts.Appl. Catal., A,, 2003, 247 (1), 65-74.
[49]
Bhattacharjee, S.; Anderson, J.A. Novel chiral sulphonato-salen-manganese(iii)-pillared hydrotalcite catalysts for the asymmetric epoxidation of styrenes and cyclic alkenes. Adv. Synth. Catal., 2006, 348(12), 151-158.
[50]
Varma, R.S.; Naicker, K.P.; Liesen, P.J. Palladium chloride and tetraphenylphosphonium bromide intercalated clay as a new catalyst for the Heck reaction. Tetrahedron Lett., 1999, 40(11), 2075-2078.
[51]
Welton, T.; Wassersheid, P. Ionic liquids in synthesis, 2nd ed; Wiley-VCH: Weinheim, 2008.
[52]
Srivastava, V. Ionic liquid mediated recyclable sulphonimide based organocatalysis for aldol reaction. Cent. Eur. J. Chem., 2010, 8(2), 269-272.
[53]
Prechtl, M.H.G.; Scholten, J.D.; Dupont, J. Carbon-carbon cross coupling reactions in ionic liquids catalysed by palladium metal nanoparticles. Mol., 2010, 15(5), 3441-3461.
[54]
Hangarge, R.V.; Jarikote, D.V.; Shingare, M.S. Knoevenagel condensation reactions in an ionic liquid. Green Chem., 2002, 4(3), 266-268.
[55]
Jeong, Y.; Ryu, J-S. Synthesis of 1,3-dialkyl-1,2,3-triazolium ionic liquids and their applications to the baylis-hillman reaction. J. Org. Chem., 2010, 75(12), 4183-4191.
[56]
Verron, J.; Joerger, J.M.; Pucheault, M.; Vaultier, M. Task specific onium salts (TSOSs) as efficient soluble supports for Zard radical addition to olefins. Tetrahedron Lett., 2007, 48, 4055-4058.
[57]
Miyata, S. The syntheses of hydrotalcite-like compounds and their structures and physico-chemical properties I: The systems Mg2+-Al3+-NO3-, Mg2+-Al3+-Cl-, Mg2+-Al3+-ClO4-, Ni2+-Al3+-Cl- and Zn2+-Al3+-Cl-. Clays Clay Miner., 1975, 23, 369-375.
[58]
Mohammadi Ziarani, G.; Badiei, A.; Aslani, Z.; Lashgari, N. Application of sulfonic acid functionalized nanoporous silica (SBA-Pr-SO3H) in the green one-pot synthesis of triazoloquinazolinones and benzimidazoquinazolinones. Arab. J. Chem., 2015, 8(1), 54-61.