[1]
WHO-global tuberculosis report. World Health Organization 2017, 1-262.
[2]
Yadav, D.K.; Ahmad, I.; Shukla, A.; Khan, F.; Negi, A.S.; Gupta, A. QSAR and docking studies of chalcone derivatives for antitubercular activity against M. tuberculosis H37Rv. J. Chemometr., 2014, 28, 499-507. [http://dx.doi.org/10.1002/cem.2606].
[3]
Bhat, Z.S.; Rather, M.A.; Syed, K.Y.; Ahmad, Z. α-pyrones and their hydroxylated analogs as promising scaffolds against Mycobacterium tuberculosis. Future Med. Chem., 2017, 9(17), 2053-2067. [http://dx.doi.org/10.4155/fmc-2017-0116]. [PMID: 29076769].
[4]
Makarov, V.; Manina, G.; Mikusova, K.; Möllmann, U.; Ryabova, O.; Saint-Joanis, B.; Dhar, N.; Pasca, M.R.; Buroni, S.; Lucarelli, A.P.; Milano, A.; De Rossi, E.; Belanova, M.; Bobovska, A.; Dianiskova, P.; Kordulakova, J.; Sala, C.; Fullam, E.; Schneider, P.; McKinney, J.D.; Brodin, P.; Christophe, T.; Waddell, S.; Butcher, P.; Albrethsen, J.; Rosenkrands, I.; Brosch, R.; Nandi, V.; Bharath, S.; Gaonkar, S.; Shandil, R.K.; Balasubramanian, V.; Balganesh, T.; Tyagi, S.; Grosset, J.; Riccardi, G.; Cole, S.T. Benzothiazinones kill Mycobacterium tuberculosis by blocking arabinan synthesis. Science, 2009, 324(5928), 801-804. [http://dx.doi.org/10.1126/science.1171583]. [PMID: 19299584].
[5]
Sharma, K.; Tanwar, O.; Sharma, S.; Ali, S.; Alam, M.M.; Zaman, M.S.; Akhter, M. Structural comparison of Mtb-DHFR and h-DHFR for design, synthesis and evaluation of selective non-pteridine analogues as antitubercular agents. Bioorg. Chem., 2018, 80, 319-333. [http://dx.doi.org/10.1016/j.bioorg.2018.04.022]. [PMID: 29986181].
[6]
Fioravanti, R.; Biava, M.; Porretta, G.C.; Artico, M.; Lampis, G.; Deidda, D.; Pompei, R. N-substituted 1-aryl-2(1H-imidazol-1-yl)1-ethanamines with broad spectrum in vitro antimycobacterial and antifungal activities. Med. Chem. Res., 1997, 7, 87-97.
[7]
Biava, M.; Fioravanti, R.; Porretta, G.C.; Sleiter, G.; Ettorre, A.; Deidda, D.; Lampis, G.; Pompei, R. New toluidine derivatives with antimycobacterial and antifungal activities. Med. Chem. Res., 1997, 7, 228-250.
[8]
Mamolo, M.G.; Zampieri, D.; Falagiani, V.; Vio, L.; Fermeglia, M.; Ferrone, M.; Pricl, S.; Banfi, E.; Scialino, G. Antifungal and antimycobacterial activity of new N1-[1-aryl-2-(1Himidazol-1-yl and 1H-1,2,4-triazol-1-yl)-ethylidene]-pyridine-2-carboxami-drazone derivatives: a combined experimental and computational approach. ARKIVOC, 2004, 5, 231-250.
[9]
Banfi, E.; Scialino, G.; Zampieri, D.; Mamolo, M.G.; Vio, L.; Ferrone, M.; Fermeglia, M.; Paneni, M.S.; Pricl, S. Antifungal and antimycobacterial activity of new imidazole and triazole derivatives. A combined experimental and computational approach. J. Antimicrob. Chemother., 2006, 58(1), 76-84. [http://dx.doi.org/ 10.1093/jac/dkl182]. [PMID: 16709593].
[10]
Zampieri, D.; Mamolo, M.G.; Vio, L.; Banfi, E.; Scialino, G.; Fermeglia, M.; Ferrone, M.; Pricl, S. Synthesis, antifungal and antimycobacterial activities of new bis-imidazole derivatives, and prediction of their binding to P450(14DM) by molecular docking and MM/PBSA method. Bioorg. Med. Chem., 2007, 15(23), 7444-7458. [http://dx.doi.org/10.1016/j.bmc.2007.07.023]. [PMID: 17888669].
[11]
Zampieri, D.; Mamolo, M.G.; Laurini, E.; Scialino, G.; Banfi, E.; Vio, L. Antifungal and antimycobacterial activity of 1-(3,5-diaryl-4,5-dihydro-1H-pyrazol-4-yl)-1H-imidazole derivatives. Bioorg. Med. Chem., 2008, 16(8), 4516-4522. [http://dx.doi.org/ 10.1016/j.bmc.2008.02.055]. [PMID: 18321714].
[12]
Zampieri, D.; Mamolo, M.G.; Laurini, E.; Scialino, G.; Banfi, E.; Vio, L. 2-aryl-3-(1H-azol-1-yl)-1H-indole derivatives: a new class of antimycobacterial compounds - conventional heating in comparison with MW-assisted synthesis. Arch. Pharm. (Weinheim), 2009, 342(12), 716-722. [http://dx.doi.org/10.1002/ardp. 200900031]. [PMID: 19921681].
[13]
Bellamine, A.; Mangla, A.T.; Nes, W.D.; Waterman, M.R. Characterization and catalytic properties of the sterol 14alpha-demethylase from Mycobacterium tuberculosis. Proc. Natl. Acad. Sci. USA, 1999, 96(16), 8937-8942. [http://dx.doi.org/10.1073/pnas. 96.16.8937]. [PMID: 10430874].
[14]
Dyer, R.L.; Ellames, G.J.; Hamill, B.J.; Manley, P.W.; Pope, A.M. Synthesis of (E)-1-(5-chlorothien-2-yl)-2-(1H-imidazol-1-yl)ethanone 2,6-dichlorophenylhydrazone hydrochloride, a novel, orally active antifungal agent. J. Med. Chem., 1983, 26(3), 442-445. [http://dx.doi.org/10.1021/jm00357a023]. [PMID: 6298430].
[15]
Ali, M.A.; Shaharyar, M.; Siddiqui, A.A. Synthesis, structural activity relationship and anti-tubercular activity of novel pyrazoline derivatives. Eur. J. Med. Chem., 2007, 42(2), 268-275. [http://dx.doi.org/10.1016/j.ejmech.2006.08.004]. [PMID: 17007966].
[16]
Ali, M.A.; Yar, M.S. Antitubercular activity of novel substituted 4,5-dihydro-1H-1-pyrazolylmethanethiones. J. Enzyme Inhib. Med. Chem., 2007, 22(2), 183-189. [http://dx.doi.org/10.1080/ 14756360601072437]. [PMID: 17518345].
[17]
Mullen, J.B.; Swift, P.A.; Marinyak, D.M.; Allen, S.D.; Mitchell, J.T.; Kinsolvin, C.R.; Georgiev, V.St. Studies on antifungal agents. Part 22. 3-Aryl-5[(aryloxy)alkyl]-3-[(1H-imidazol-1-yl)methyl]-2-methylisoxazolidines and related derivatives. Helv. Chim. Acta, 1988, 71, 18-32. [http://dx.doi.org/10.1002/hlca.19880710406].
[18]
Chapman, D.R.; Bauer, L. Synthesis and carbon-13 NMR spectra of cis- and trans-2-(haloaryl)-2-(1H-imidazol-1-ylmethyl)-1,3-dioxolane-4-methanols. J. Het. Chem., 1990, 27, 2053-2061. [http://dx.doi.org/10.1002/jhet.5570270738].
[19]
Lakshmanan, B.; Mazumder, P.M.; Sasmal, D.; Ganguly, S. Synthesis, antispasmodic and antidiarrheal activities of some 1-substituted imidazole derivatives. Acta Pharm., 2011, 61(2), 227-236. [http://dx.doi.org/10.2478/v10007-011-0014-6]. [PMID: 21684849].
[20]
Astleford, B.A.; Goe, G.L.; Keay, J.G.; Scriven, E.F.V. Synthesis of 1-alkyl-1,2,4-triazoles: a new one-pot regiospecific procedure. J. Org. Chem., 1989, 54, 731-732. [http://dx.doi.org/10.1021/ jo00264a048].
[21]
Roman, G.; Vlahakis, J.Z.; Vukomanovic, D.; Nakatsu, K.; Szarek, W.A. Heme oxygenase inhibition by 1-aryl-2-(1h-imidazol-1-yl/1h-1,2,4-triazol-1-yl)ethanones and their derivatives. ChemMedChem, 2010, 5(9), 1541-1555. [http://dx.doi.org/10.1002/ cmdc.201000120]. [PMID: 20652928].
[22]
Xu, Liang-zhong; Zhang, Shu-sheng; Gao, Hong-rong; Jiao, Kui. Studies on synthesis and biological activities of novel triazole compounds containing pyrimidine or N,N-dialkyldithiocarbamate ring. Chem. Res. In China Univ, 2003, 19, 437-441.
[23]
Fellner, P.J.; Hamill, B.J.; Manley, P.W.G.D. Searle & Co. US Patent 4351948 1982.
[24]
Palomino, J.C.; Martin, A.; Camacho, M.; Guerra, H.; Swings, J.; Portaels, F. Resazurin microtiter assay plate: simple and inexpensive method for detection of drug resistance in Mycobacterium tuberculosis. Antimicrob. Agents Chemother., 2002, 46(8), 2720-2722. [http://dx.doi.org/10.1128/AAC.46.8.2720-2722.2002]. [PMID: 12121966].
[25]
Taneja, N.K.; Tyagi, J.S. Resazurin reduction assays for screening of anti-tubercular compounds against dormant and actively growing Mycobacterium tuberculosis, Mycobacterium bovis BCG and Mycobacterium smegmatis. J. Antimicrob. Chemother., 2007, 60(2), 288-293. [http://dx.doi.org/10.1093/jac/dkm207]. [PMID: 17586560].
[26]
Zampieri, D.; Mamolo, M.G.; Laurini, E.; Fermeglia, M.; Posocco, P.; Pricl, S.; Banfi, E.; Scialino, G.; Vio, L. Antimycobacterial activity of new 3,5-disubstituted 1,3,4-oxadiazol-2(3H)-one derivatives. Molecular modeling investigations. Bioorg. Med. Chem., 2009, 17(13), 4693-4707. [http://dx.doi.org/10.1016/ j.bmc.2009.04.055]. [PMID: 19467603].
[27]
Morris, G.M.; Huey, R.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem., 2009, 30(16), 2785-2791. [http://dx.doi.org/10. 1002/jcc.21256]. [PMID: 19399780].
[28]
Mehler, E.L.; Solmajer, T. Electrostatic effects in proteins: comparison of dielectric and charge models. Protein Eng., 1991, 4(8), 903-910. [http://dx.doi.org/10.1093/protein/4.8.903]. [PMID: 1667878].
[29]
aOnufriev, A.; Bashford, D.; Case, D.A. Modification of the Generalized Born Model Suitable for Macromolecules. J. Phys. Chem., 2000, 104, 3712-3720.
bFeig, M.; Onufriev, A.; Lee, M.S. Im, W.; Case, D.A.; Brooks, C.L., III Performance comparison of generalized born and Poisson methods in the calculation of electrostatic solvation energies for protein structures. J. Comput. Chem., 2004, 25(2), 265-284. [http://dx.doi.org/10.1002/jcc.10378]. [PMID: 14648625].
[30]
Case, D.A.; Darden, T.A.; Cheatham, T.E., III; Babin, V.; Berryman, J.; Betz, R.M.; Cai, Q.; Cerutti, D.S.; Duke, R.E.; Gohlke, H.; Goetz, A.W.; Gusarov, S.; Homeyer, N.; Janowski, P.; Kaus, J.; Kolossváry, I.; Kovalenko, A.; Lee, T.S.; LeGrand, S.; Luchko, T.; Luo, R.; Madej, B.; Merz, K.M.; Paesani, F.; Roe, D.R.; Roitberg, A.; Sagui, C.; Salomon-Ferrer, R.; Seabra, G.; Simmerling, C.L.; Smith, W.; Swails, J.; Walker, R.C.; Wang, J.; Wolf, R.M.; Wu, X.; Kollman, P.A. AMBER 14; University of California: San Francisco, 2012.
[31]
Jorgensen, W.L.; Chandrasekhar, J.; Madura, J.D.; Impey, R.W.; Klein, M.L. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys., 1983, 79, 926-935. [http://dx.doi.org/10.1063/1.445869].
[32]
Ryckaert, J.P.; Ciccotti, G.; Berendsen, H.J.C. Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. Comput. Phys., 1977, 23, 327-341. [http://dx.doi.org/10.1016/0021-9991(77)90098-5].
[33]
Toukmaji, A.; Sagui, C.; Board, J.; Darden, T. Efficient particle-mesh Ewald based approach to fixed and induced dipolar interactions. J. Chem. Phys., 2000, 113, 10913-10927. [http://dx.doi.org/ 10.1063/1.1324708].
[34]
Briguglio, I.; Loddo, R.; Laurini, E.; Fermeglia, M.; Piras, S.; Corona, P.; Giunchedi, P.; Gavini, E.; Sanna, G.; Giliberti, G.; Ibba, C.; Farci, P.; La Colla, P.; Pricl, S.; Carta, A. Synthesis, cytotoxicity and antiviral evaluation of new series of imidazo[4,5-g]quinoline and pyrido[2,3-g]quinoxalinone derivatives. Eur. J. Med. Chem., 2015, 105, 63-79. [http://dx.doi.org/10.1016/ j.ejmech.2015.10.002]. [PMID: 26479028].
[35]
Carta, A.; Briguglio, I.; Piras, S.; Corona, P.; Ibba, R.; Laurini, E.; Fermeglia, M.; Pricl, S.; Desideri, N.; Atzori, E.M.; La Colla, P.; Collu, G.; Delogu, I.; Loddo, R. A combined in silico/in vitro approach unveils common molecular requirements for efficient BVDV RdRp binding of linear aromatic N-polycyclic systems. Eur. J. Med. Chem., 2016, 117, 321-334. [http://dx.doi.org/ 10.1016/j.ejmech.2016.03.080]. [PMID: 27161176].
[36]
Zampieri, D.; Vio, L.; Fermeglia, M.; Pricl, S.; Wünsch, B.; Schepmann, D.; Romano, M.; Mamolo, M.G.; Laurini, E. Computer-assisted design, synthesis, binding and cytotoxicity assessments of new 1-(4-(aryl(methyl)amino)butyl)-heterocyclic sigma 1 ligands. Eur. J. Med. Chem., 2016, 121, 712-726. [http://dx.doi.org/10.1016/j.ejmech.2016.06.001]. [PMID: 27366902].
[37]
Wilson, E.B.; Decius, J.C.; Cross, P.C. Molecular Vibrations; McGraw-Hill: New York, 1995.
[38]
Hartkoorn, R.C.; Chandler, B.; Owen, A.; Ward, S.A.; Bertel Squire, S.; Back, D.J.; Khoo, S.H. Differential drug susceptibility of intracellular and extracellular tuberculosis, and the impact of P-glycoprotein. Tuberculosis (Edinb.), 2007, 87(3), 248-255. [http://dx.doi.org/10.1016/j.tube.2006.12.001]. [PMID: 17258938].
[39]
Podust, L.M.; Poulos, T.L.; Waterman, M.R. Crystal structure of cytochrome P450 14alpha -sterol demethylase (CYP51) from Mycobacterium tuberculosis in complex with azole inhibitors. Proc. Natl. Acad. Sci. USA, 2001, 98(6), 3068-3073. [http://dx.doi.org/ 10.1073/pnas.061562898]. [PMID: 11248033].
[40]
Yadav, D.K.; Khan, F.; Negi, A.S. Pharmacophore modeling, molecular docking, QSAR, and in silico ADMET studies of gallic acid derivatives for immunomodulatory activity. J. Mol. Model., 2012, 18(6), 2513-2525. [http://dx.doi.org/10.1007/s00894-011-1265-3]. [PMID: 22038459].
[41]
Yadav, D.K.; Kalani, K.; Khan, F.; Srivastava, S.K. QSAR and docking based semi-synthesis and in vitro evaluation of 18 β-glycyrrhetinic acid derivatives against human lung cancer cell line A-549. Med. Chem., 2013, 9(8), 1073-1084. [http://dx.doi.org/ 10.2174/1573406411309080009]. [PMID: 23675978].
[42]
Yadav, D.K.; Khan, F. QSAR, docking and ADMET studies of camptothecin derivatives as inhibitors of DNA topoisomerase‐I. J. Chemom., 2013, 27, 21-33.
[43]
Yadav, D.K.; Dhawan, S.; Chauhan, A.; Qidwai, T.; Sharma, P.; Bhakuni, R.S.; Dhawan, O.P.; Khan, F. QSAR and docking based semi-synthesis and in vivo evaluation of artemisinin derivatives for antimalarial activity. Curr. Drug Targets, 2014, 15(8), 753-761. [http://dx.doi.org/10.2174/1389450115666140630102711]. [PMID: 24975562].
[44]
Yadav, D.K.; Kalani, K.; Singh, A.K.; Khan, F.; Srivastava, S.K.; Pant, A.B. Design, synthesis and in vitro evaluation of 18β-glycyrrhetinic acid derivatives for anticancer activity against human breast cancer cell line MCF-7. Curr. Med. Chem., 2014, 21(9), 1160-1170. [http://dx.doi.org/10.2174/09298673113206660330]. [PMID: 24180274].
[45]
Raag, R.; Li, H.; Jones, B.C.; Poulos, T.L. Inhibitor-induced conformational change in cytochrome P-450CAM. Biochemistry, 1993, 32(17), 4571-4578. [http://dx.doi.org/10.1021/bi00068a013]. [PMID: 8485133].