[1]
Walaa, H.M.; Reem, G.D.; Gehad, G.M. Novel Schiff base ligand and its metal complexes with some transition elements. Synthesis, spectroscopic, thermal analysis, antimicrobial and in vitro anticancer activity. Appl. Organomet. Chem., 2016, 30, 221-230.
[2]
Jin, V.X.; Tan, S.I.; Ranford, J.D. Platinum(II) triammine antitumour complexes: Structure-activity relationship with guanosine 5 '-monophosphate (5 '-GMP). Inorg. Chem. Acta, 2005, 358, 677-686.
[3]
Ashu, C.; Anshul, S. Schiff bases: An emerging potent class of pharmaceuticals. Int. J. Curr. Res. Med. Sci, 2017, 3, 60-74.
[4]
Abu-Dief, A.M.; Mohamed, I.M.A. A review on versatile applications of transition metal complexes incorporating Schiff bases. Beni-Suef Univ. J. Basic Appl. Sci., 2015, 4, 119-133.
[5]
Spinu, C.; Kriza, A. Co(II), Ni(II) and Cu(II) complexes of bidentate Schiff bases. Acta Chim. Slov., 2000, 47, 179-185.
[6]
Zoubi, W.A. Biological activities of schiff bases and their complexes: A review of recent works. Int. J. Org. Chem., 2013, 3, 73-95.
[7]
Ejidike, I.P.; Ajibade, P.A. Synthesis, characterization and biological studies of metal(II) complexes of (3e)-3-[(2-(e)-[1-(2,4-dihydroxyphenyl) ethylidene]aminoethyl)imino]-1-phenylbutan-1-one Schiff base. Molecules, 2015, 20(6), 9788-9802.
[8]
Da Silva, C.M.; da Silva, D.L.; Modolo, L.V.; Alves, R.B.; de Resende, M.A.; Martins, C.V.B.; de Fátima, A. Schiff bases: A short review of their antimicrobial activities. J. Adv. Res., 2011, 2, 1-8.
[9]
Qin, W.; Long, S.; Panunzio, M.; Biondi, S. Schiff Bases: A short survey on an evergreen chemistry tool. Molecules, 2013, 18, 12264-12289.
[10]
Kajal, A.; Bala, S.; Kamboj, S.; Sharma, N.; Saini, V. Schiff bases: A versatile pharmacophore. J. Catal., 2013, 2013, 1-14.
[11]
Shagufta, S.; Irash, A. An insight into the therapeutic potential of quinazoline derivates as anticancer agents. MedChemComm, 2017, 8, 871-885.
[13]
Babasaheb, P.B.; Shrikant, S.G.; Ragini, G.B.; Jalinder, V.T.; Chandrahas, N.K. Synthesis and biological evaluation of simple methoxylated chalcones as anticancer, anti-inflammatory and antioxidant agents. Bioorg. Med. Chem., 2010, 18, 1364-1370.
[14]
Baselga, J.; Swain, S.M. Novel anticancer targets: Revisiting ERBB2 and discovering ERBB3. Nat. Rev. Cancer, 2009, 9, 463-475.
[15]
Brown, C.H.J.; Lain, S.; Verma, C.H.S.; Fersht, A.R.; Lane, D.P. Awakening guardian angels: Drugging the p53 pathway. Nat. Rev. Cancer, 2009, 9, 862-873.
[16]
Semenza, G.L. Hypoxia and cancer. Cancer Metastasis Rev., 2007, 26, 223-224.
[17]
Hanif, M.; Babak, M.V.; Hartinger, C.G. Development of anticancer agents: wizardry with osmium. Drug Discov. Today, 2014, 19, 1640-1648.
[18]
Abu-Surrah, A.S.; Kettunen, M. Platinum group antitumor chemistry: design and development of new anticancer drugs complementary to cisplatin. Curr. Med. Chem., 2006, 13, 1337-1357.
[19]
Lease, N.; Vasilevski, V.; Carreira, M.; de Almeida, A.; Sanaú, M.; Hirva, P.; Casini, A.; Contel, M. Potential anticancer heterometallic Fe-Au and Fe-Pd agents: initial mechanistic insights. J. Med. Chem., 2013, 56, 5806-5818.
[20]
Jamaludin, N.S.; Goh, Z.J.; Cheah, Y.K.; Ang, K.P.; Sim, J.H.; Khoo, C.H.; Fairuz, Z.A.; Halim, S.N.; Ng, S.W.; Seng, H.L.; Tieknk, E.R. Phosphanegold(I)dithiocarbamates,R3PAu[SC(=S)N((i) Pr)CH2CH2OH] for R = Ph, Cy and Et: Role of phosphane-bound R substituents upon in vitro cytotoxicity against MCF-7R breast cancer cells and cell death pathways. Eur. J. Med. Chem., 2013, 67, 127-141.
[21]
Hu, C.; Li, X.; Wang, W.; Zhang, R.; Deng, L. Metal-N-heterocyclic carbene complexes as anti-tumor agents. Curr. Med. Chem., 2014, 21, 1220-1230.
[22]
Au-Yeung, S.C.F.; Pang, P.S.K.; Ho, Y.P. Innovative platinum derived anticancer agents-risk or opportunity? Nat. Rev. Drug Discov., 2006, 5, 1.
[23]
Wheate, N.J.; Walker, S.; Craig, G.E.; Oun, R. The status of platinum anticancer drugs in the clinic and in clinical trials. Dalton Trans., 2010, 39, 8113-8127.
[24]
Ahmed, M.A.; Ibrahim, M.A. A review on versatile applications of transition metal complexes incorporating Schiff bases. J. Basic Appl. Sci., 2015, 4, 119-133.
[25]
Salerno, S.; Da Settimo, F.; Taliani, S.; Simorini, F.; La Motta, C.; Fornaciari, G.; Marini, A.M. Recent advances in the development of dual Topoisomerase I and II inhibitors as anticancer drugs. Curr. Med. Chem., 2010, 17, 4270-4290.
[26]
De Vita, J.; Samuel, V.T.; Steven, H. Cancer e principles and practice of oncology, 7th ed; NewYork: Lippincott Williams & Wilkins, 2005.
[27]
Thomas, P.S.; Vinay, K., Eds.; Robbins basic pathology, 8th ed; Saunders: Philadelphia, 2007.
[28]
Al-Shamary, D.S.; Al-Alshaikh, M.A.; Kheder, N.A.; Mabkhot, Y.N.; Badshah, S.L. Molecular docking and biological evaluation of some thioxoquinazolin-4(3H)- one derivatives as anticancer, antioxidant and anticonvulsant agents. Chem. Cent. J., 2017, 11, 48.
[29]
Mossman, T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods, 1983, 65, 55-63.
[30]
Hui, Y.; Wei, Z.; Qing, Y.; Fu-Ping, H.; He-Dong, B.; Hong, L. Ni(II) Complexes with schiff base ligands: Preparation, characterization, DNA/Protein interaction and cytotoxicity studies. Molecules, 2017, 22(10), 3-10.
[31]
Xiao, Y-J.; Diao, Q-C.; Liang, Y-H.; Zeng, K. Two novel Co(II) complexes with two different Schiff bases: Inhibiting growth of human skin cancer cells. Braz. J. Med. Biol. Res., 2017, 50, 1-5.
[32]
Jacqueline, K.B.; Brian, M.Z.; Valerie, C.P. Metallointercalators and metalloinsertors. Chem. Commun., 2007, 44, 4565-4579.
[33]
Kavitha, A.; Anandhavelu, S.; Easwaramoorthy, D.; Karuppasamy, K.; Hyun-Seok, K.; Dhanasekaran, V. In vitro cytotoxicity activity of novel Schiff base ligand-lanthanide complexes. Sci. Rep., 2018, 8, 2-8.
[34]
El-Kholy, N.G. Synthesis, Spectroscopic characterization, Antimicrobial, Antitumor Properties of new 4-amino-2,3 dimethyl-1-phenyl -3- pyrazolone-5-one (antipyrine) Schiff Bases and its transition metal complexes. J. Am. Sci., 2017, 13, 133-143.
[35]
Brindha, G.; Vijayanthimala, R. Mixed ligand complexes of Copper(II), Nickel(II) and Zinc(II) with salicylaldehyde tyrosine Schiff base and dimethylaminopyridine/ dimethylaminopyridine and Phenanthroline - Synthesis, spectral characterization and biological studies. Res. J. Pharm. Biol. Chem. Sci., 2017, 8, 930-936.
[36]
Muthusamy, S.; Natarajan, R. Pharmacological activity of a few transition metal complexes: A short review. J. Chem. Biol. Ther., 2016, 1, 108.
[37]
Redouane, T.; Nassera, T.; Christian, G.; Embarek, B.; Laurent, D. Progress in copper complexes as anticancer agents. Med. Chem., 2017, 7, 875-879.
[38]
Brindha, G.; Vijayanthimala, R. Complexes of copper (II) with thiosemicarbazone and chloroethanol-synthesis, characterization and biological studies. IOSR J. App. Chem, 2016, 9, 90-93.
[39]
Heng, L.; Yu-Fen, X.; Bao-Fei, S.; Li-Rong, H.; Xing-Hui, W.; Hua-Yong, L.; Xu-Hui, Z.; Wei-Dong, P.; Xiao-Dong, Z. Synthesis and evaluation of in vitro antibacterial and antitumor activities of novel N,N-disubstituted schiff bases. Biochem. Res. Int., 2017, 20176257240
[40]
Ikechukwu, P.E.; Peter, A.A. Synthesis, characterization, anticancer, and antioxidant studies of Ru(III) complexes of monobasic tridentate schiff bases. Bioinorg. Chem. Appl., 2016, 2016, 1-11.
[41]
Sava, G.; Zorzet, S.; Giraldi, T.; Mestroni, G.; Zassinovich, G. Antineoplastic activity and toxicity of an organometallic complex of ruthenium(II) in comparison with cis-PDD in mice bearing solid malignant neoplasms. Eur. J. Cancer Clin. Oncol., 1984, 20, 841-847.
[42]
Sava, G.; Bergamo, A. Ruthenium-based compounds and tumour growth control. Int. J. Oncol., 2000, 17, 353-365.
[43]
Izet, E.; Emira, K.; Aner, M.; Emir, T.; Dzenana, K.; Adnan, Z.; Zana, D. Cytogenotoxic effects of two potential anticancer Ruthenium(III) Schiff Bases complexes. J. Hear. Sci., 2016, 6, 112-120.
[44]
Brabec, V.; Novakova, O. DNA binding mode of ruthenium complexes and relationship to tumor cell toxicity. Drug Resist. Updat., 2006, 9, 111-122.
[45]
Menezes, C.S.; de Paula Costa, L.C.; de Melo Rodrigues Avila, V.; Ferreira, M.J.; Vieira, C.U.; Pavanin, L.A. Analysis in vivo of antitumor activity, cytotoxicity and interaction between plasmid DNA and the cis-dichloro-tetra-amine-ruthenium(III) chloride. Chem. Biol. Interact., 2007, 167, 116-124.
[46]
Hazarika, P.; Bezbaruah, B.; Deka, J.; Deka, R.P.; Medhi, O.K.; Medhi, C. The features of protein binding by ruthenium complexes: Docking, force field and QM/MM studies. IJRRAS, 2013, 14, 64-74.
[47]
Kratz, F.; Hartmann, M.; Keppler, B.; Messori, L. The binding properties of two antitumor ruthenium(III) complexes to apotransferrin. J. Biol. Chem., 1994, 269, 2581-2588.
[48]
Ljubijankić, N.; Zahirović, A.; Turkušić, E.; Kahrović, E. DNA binding properties of two Ruthenium(III) complexes containing Schiff bases derived from salicylaldehyde: Spectroscopic and electrochemical evidence of CT DNA intercalation. Croat. Chem. Acta, 2013, 86, 215-222.
[49]
Kahrović, E.; Bektaš, S.; Turkušić, E.; Zahirović, A. Evidence on antimicrobial activity of Sodium dichloro-bis[N-phenyl-5-chlorosalicylideneiminato-N,O]ruthenate(III) against gram positive bacteria. SYLWAN, 2014, 158, 482-493.
[50]
Williams, J.L.; Lewis-Alleyne, L.C.; Solomon, M.; Nguyen, L.; Johnson, R.; Vital, J.; Ji, P.; Durant, J.; Cooper, C.; Cagle, P.; Martin, P.; VanDerveer, D.; Jarrett, W.L.; Holder, A.A. An in vitro study on the effect of synthesized tin(IV) complexes on glioblastoma, colorectal, and skin cancer cell lines. Biomed. Res. Clin. Pra, 2016, 1, 7-15.
[51]
Jing, X.; Shanshan, S.; Ruhua, C.; Jun, X.; Kun, D.; Jiancui, H.; Qin, L.; Wenjiao, Z.; Tieliang, M.A.; Lei, J.I.A.; Hongxin, C.A.I.; Taofeng, Z.H.U. Synthesis, characterization and antitumor activity of Ln(III) complexes with hydrazone Schiff base derived from 2-acetylpyridine and isonicotinohydrazone. Oncol. Lett., 2017, 13, 4413-4419.
[52]
Zeinab, A.M.; Mastoura, M.E.; Rasha, A.M.; Faty, S.M.; Gomha, S.S.A.; Yahia, N.M. Synthesis, antitumor evaluation and molecular docking of new morpholine based heterocycles. Molecules, 2017, 22, 1211.
[53]
da Silva, C.M.; Silva, M.M.; Reis, F.S.; Ruiz, A.T.G.; de Carvalho, J.E.; Santos, J.C.C.; Figueiredo, I.M.; Alves, R.B.; Modoloe, L.V.; de Fátima, Â. Studies on free radical scavenging, cancer cell antiproliferation and calf thymus DNA interaction of Schiff bases. J. Photochem. Photobiol., 2017, 172, 129-138.
[54]
Arun, K.; Samya, B.; Sanjoy, M.; Akhil, R.C. Vitamin-B6 Schiff base dioxovanadium(V) complex for targeted visible light-induced anticancer activity. Indian J. Chem., 2017, 56, 806-813.
[55]
Wang, F-Y.; Tang, X-M.; Wang, X.; Huang, K-B.; Feng, H-W.; Chen, Z-F.; Liu, Y-N.; Liang, H. Mitochondria-targeted platinum(II) complexes induce apoptosis-dependent autophagic cell death mediated by ER-stress in A549 cancer cells. Eur. J. Med. Chem., 2018, 155, 639-650.
[56]
Awad, S.M.; Ahmed, N.M.; Haffez, H.R. Synthesis, anticancer activity and molecular docking study of some novel 2-thiouracil sulfonamide derivatives. Pharmacophore, 2018, 9, 30-41.
[57]
Vichai, V.; Kirtikara, K. Sulforhodamine B colorimetric assay for cytotoxicity screening. Nat. Protoc., 2006, 1, 1112-1116.
[58]
El-Tabl, A.S.; Mohamed, A.M.; Wahba, M.A.; Abd El-Halim, A.N. Synthesis, characterization, and anticancer activity of new metal complexes derived from 2-hydroxy-3-(hydroxyimino)-4-oxopentan-2-ylidene) benzohydrazide. Bioinorg. Chem. Appl., 2015, 2015126023
[59]
Abdou, S.; El-Tabl, M.M.; Abd-El, W.; Mohammed, H.; Abu-Setta, H. Metallo- bioactive compounds as potential novel anticancer therapy. Int. J. Adv. Chem, 2018, 4, 17-37.
[60]
Ghaidan, F.L.F.; Aseel, F.; Zaynab, S.A. Synthesis, characterization and cytotoxic activity of new indole schiff bases, derived from 2-(5-Chloro-3,3-dimethyl-1,3-dihydro-indol-2-ylidene)-malonaldehyde with substituted aniline. Orient. J. Chem., 2018, 34, 169-181.
[61]
Mello-Andrade, F.; da Costa, W.L.; Pires, W.C.; Pereira, F.C.; Cardoso, C.G.; Lino-Junior, R.S.; Irusta, V.R.C.; Carneiro, C.C.; de Melo-Reis, P.R.; Castro, C.H.; Almeida, M.A.P.; Batista, A.A.; Silveira-Lacerda, E.P. Antitumor effectiveness and mechanism of action of Ru(II)/amino acid/diphosphine complexes in the peritoneal carcinomatosis progression. Tumour Biol., 2017, 39(10), 1-18.
[62]
Jagadish, T.; Satyanarayana, B. Anticancer, DNA cleavage and docking studies of metal(II) complexes with imine base (E)-N-((1H-Imidazol-2-Yl) methylene)-benzo(D)thiazol-2amine. Int. J. Eng. Tech. Sc. Res, 2018, 5, 496-505.
[63]
Zhang, Y.S.; Liu, J.C.; Gu, J.J. Synthesis, crystal structure, and anti-breast cancer activity of a novel metal-porphyrinic complex [YK(TCPP)(OH)2. (solvents)x]. Braz. J. Med. Biol. Res., 2018, 51, 1414-1431.
[64]
Chang, H.Q.L.; Jia, J.X.; Zhu, T.F.; Xu, Z.Q.; Chen, R.H.; Ma, T.L.; Wang, Y.; Wu, W.N. Syntheses, crystal structures, anticancer activities of three reduce Schiff base ligand based transition metal complexes. Molec. Struc, 2016, 1106, 366-372.
[65]
Suyue, P.; Guohu, W.; Bo, Z.; Guoqiang, W.; Shixiong, H. Two novel Ni (II) complexes with two different Schiff bases: Inhibiting glioma cells growth. Biomed. Res., 2017, 28, 2526-2529.
[66]
Palanimurugan, A.; Kulandaisamy, A. Synthesis, characterization,antimicrobial and anticancer activities 14-membered macrocyclic Schiff bases metal complexes. Asian J. Chem., 2018, 30, 1262-1268.
[67]
Křikavová, R.; Vančo, J.; Trávníček, Z.; Hutyra, J.; Dvořák, Z. Design and characterization of highly in vitro antitumor active ternary copper(II) complexes containing 2′-hydroxychalcone ligands. J. Inorg. Biochem., 2016, 163, 8-17.
[68]
Abd El-Halim, H.F.; Mohamed, G.G.; Anwar, M.N. Antimicrobial and anticancer activities of Schiff base ligand and its transition metal mixed ligand complexes with heterocyclic base. Appl. Organomet. Chem., 2017, 32, 3899.
[69]
Dilshad, E.; Mirza, B.; Shabbir, M.; Haq, Z.; Akhter, Z. Biological evaluation of azaheterocyclic derivatives and their intermediates. World J. Pharm. Res, 2014, 3, 2111-2126.
[70]
Coker, P.S.; Radecke, J.; Guy, C.; Camper, N.D. Potato disc tumor induction assay: A multiple mode of drug action assay. Phytomedicine, 2003, 10(2-3), 133-138.
[71]
Ferrigni, N.R.; Putnam, J.E.; Anderson, B.; Jacobsen, L.B.; Nichols, D.E.; Moore, D.S.; McLaughlin, J.L.; Powell, P.G.; Smith, C.R.J. Modification and evaluation of the potato disc assay and antitumor screening of Euphorbiacae seeds. J. Nat. Prod., 1982, 45, 679-686.
[72]
Sobola, A.O.; Watkins, G.M.; Van Brecht, B. Synthesis, characterization and antimicrobial activity of copper(II) complexes of some ortho-substituted an-iline Schiff bases; crystal structure of bis (2-methoxy-6-imino) methyl phenol copper(II) complex. S. Afr. J. Chem., 2014, 67, 45-51.
[73]
Dilshad, E.; Mirza, B.; Shabbir, M.; Haq, Z.; Akhter, Z. Biological evaluation of aza-heterocyclic derivatives and their intermediates. Wor. J. Pharm. Res, 2014, 3, 2111-2126.
[74]
Hanif, M.; Hussain, M.; Ali, S.; Bhatti, M.H.; Ahmed, M.S.; Mirza, B.; Evans, H.S. Synthesis, spectroscopic investigation, crystal structure, and biological screening, including antitumor activity of organotin(IV) derivatives of piper- onylic acid. Turk. J. Chem., 2007, 31, 349-361.
[75]
Bushra, I.; Kanwal, J.; Muhammad, S.; Ullah, K.; Zareen, A.; Bushra, M.; Vickie, M. Synthesis, characterization and biological assay of Salicylaldehyde Schiff base Cu(II) complexes and their precursors. J. Mol. Struct., 2018, 1155, 337-348.
[76]
Tripathi, L.; Kumar, P.; Singhal, A.K. Role of chelates in treatment of cancer. Indian J. Cancer, 2007, 44, 62-71.
[77]
Hellen, F.G.B.; Maha, A.; Ana, P.G.F.; Edward, R.D.; Nour, E.E.; Bruno, M.M.; Éder Tadeu, G.C. Synthesis, characterization and biological activities of biopolymeric schiff bases prepared with chitosan and salicylaldehydes and their Pd(II) and Pt(II) complexes. Molecules, 2017, 22(11), 12.
[78]
Kavitha, P.; Laxma, R.K. Synthesis, spectral characterisation, morphology, biological activity and DNA cleavage studies of metal complexes with chromone Schiff base. Arab. J. Chem., 2016, 9, 596-605.
[79]
Quiroga, A.G.; Pérez, J.M.; López-Solera, I.; Masaguer, J.R.; Luque, A.; Román, P.; Edwards, A.; Alonso, C.; Navarro-Ranninger, C. Novel tetranuclear orthometalated complexes of Pd(II) and Pt(II) derived from p-isopropylbenzaldehyde thiosemicarbazone with cytotoxic activity in cis-DDP resistant tumor cell lines. Interaction of these complexes with DNA. J. Med. Chem., 1998, 41, 1399-1408.