Generic placeholder image

Current Analytical Chemistry

Editor-in-Chief

ISSN (Print): 1573-4110
ISSN (Online): 1875-6727

Research Article

Preparation and Thermal Analysis of Flame-retardant Chitosan Thin Films on Ammonium Polyphosphate Treated Reconstituted Tobacco Sheet

Author(s): Xiaolan Zhu*, Ning Shao, Dongliang Li*, Fang Xue, Li Hou and Yun Gao

Volume 16, Issue 6, 2020

Page: [711 - 721] Pages: 11

DOI: 10.2174/1573412915666190227165046

Price: $65

Abstract

Background: Burning temperature is one of the most important factors affecting the chemical structure of the smoke and the addition of reconstituted tobacco sheet to cut tobacco has been widely used by the tobacco industry to reduce the cost of cigarettes and the health risks of smoking.

Methods: A flame retardant film, made from chitosan and ammonium polyphosphate, has been coated on the surface of the reconstituted tobacco sheet substrate by Layer-by-Layer and spray coating techniques. The thermal degradation properties and flame retardancy of these reconstituted tobacco sheets were analyzed by TG-FTIR and micro-scale combustion calorimetry.

Results: It was found that the reconstituted tobacco sheet with the ratio of chitosan (5%) and ammonium polyphosphate (3%) film coating showed significant reductions in the peak heat release rate (50.7%), total heat release (35.8%) and the highest temperature in the temperature distribution diagram (77°C). The main gases released during the pyrolysis of these reconstituted tobacco sheet samples were H2O, CO2, CO, NH3, carbonyl compounds and the presence of film coating changed the formation of evolved volatile products and formed less gaseous products except NH3 during the thermal decomposition process.

Conclusion: The coating film can greatly enhance the char forming ability and reduce the flammability of reconstituted tobacco sheet, and therefore, reduce the health risks of smoking with the addition of these reconstituted tobacco sheets.

Keywords: Chitosan, flame retardants, micro-scale combustion calorimetry, reconstituted tobacco sheet, TG-FTIR, thermal analysis.

Graphical Abstract

[1]
Pisinger, C.; Døssing, M. A systematic review of health effects of electronic cigarettes. Prev. Med.,, 2014, 69,, 248-260..
[http://dx.doi.org/10.1016/j.ypmed.2014.10.009] [PMID: 25456810]
[2]
Ahmad, I.; Dutra, L.M. Imitating waterpipe: Another tobacco industry attempt to create a cigarette that seems safer. Addict. Behav., 2018, 91, 244-252.
[3]
Li, B.; Pang, H.R.; Zhao, L.C.; Liu, C.; McAdam, K.; Luo, D. Quantifying gas-phase temperature inside a burning cigarette. Ind. Eng. Chem. Res., 2014, 53, 7810-7820.
[http://dx.doi.org/10.1021/ie5009822]
[4]
Zhou, S.; Ning, M.; Xu, Y.; Hu, Y.; Shu, J.; Wang, C.; Ge, S.; Tian, Z.; She, S.; He, Q. Effects of melamine phosphate on the thermal decompositionand combustion behavior of reconstituted tobacco sheet. J. Therm. Anal. Calorim., 2013, 112, 1269-1276.
[http://dx.doi.org/10.1007/s10973-012-2674-y]
[5]
Chen, M.; She, S.; Xu, Z.; Yin, C.; Zhou, Z.; Sun, W.; Li, Y.; Zhong, F. Effect of exogenous softwood on thermal decomposition of reconstituted tobacco sheet. J. Therm. Anal. Calorim., 2014, 117, 893-900.
[http://dx.doi.org/10.1007/s10973-014-3832-1]
[6]
Ge, S.L.; Xu, Y.B.; Tian, Z.F.; Zhou, S.; Sheng, H. Effect of urea phosphate on thermal decomposition of reconstituted tobacco and CO evolution. J. Anal. Appl. Pyrolysis, 2013, 99, 178-183.
[http://dx.doi.org/10.1016/j.jaap.2012.09.013]
[7]
Marcilla, A.; Beltran, M.I.; Gomez-Siurana, A.; Martinez-Castellanos, I.; Berengure, D.; Pastor, V.; Garcia, A.N. TGA/FTIR study of the pyrolysis of diammonium hydrogen phosphate-tobacco mixtures. J. Anal. Appl. Pyrolysis, 2015, 112, 48-55.
[http://dx.doi.org/10.1016/j.jaap.2015.02.023]
[8]
Gao, W.; Chen, K.; Yang, R.; Yang, F. Process for coating of reconstituted tobacco sheet with citrates. J. Anal. Appl. Pyrolysis, 2015, 114, 138-142.
[http://dx.doi.org/10.1016/j.jaap.2015.05.013]
[9]
Liu, C.; Parry, A. Potassium organic salts as burn additives in cigarettes. Beitr. Tabforsch. Int., 2014, 20, 341-347.
[10]
Pereira, F.S.; da Silva Agostini, D.L.; Job, A.E.; González, E.R.P. Thermal studies of chitin-chitosan derivatives. J. Therm. Anal. Calorim., 2013, 114, 321-327.
[http://dx.doi.org/10.1007/s10973-012-2835-z]
[11]
Bonilla, J.; Bittante, A.M.Q.B.; Sobral, P.J.A. Thermal analysis of gelatin-chitosan edible film mixed with plant ethanolic extracts. J. Therm. Anal. Calorim., 2018, 130, 1221-1227.
[http://dx.doi.org/10.1007/s10973-017-6472-4]
[12]
Pereira, M.A.V.; Fonseca, G.D.; Silva-Júnior, A.A.; Fernandes-Pedros, M.F.; de Moura, M.F.V.; Barbosa, E.G.; Gomes, A.P.B.; dos Santos, K.S.C.R. Compatibility study between chitosan and pharmaceutical excipients used in solid dosage forms. J. Therm. Anal. Calorim., 2014, 116, 1091-1100.
[http://dx.doi.org/10.1007/s10973-014-3769-4]
[13]
Liu, Y.; Ma, X.; Zhou, T.; Wang, R.; Hou, J.; Tang, J.; Zhu, B.; Su, Y.; Zhu, X. Layer by layer assembled phosphorylcholine groups on paclitaxel/chitosan nanofibers coatings for hemocompatibility improvement. Surf. Coat. Tech., 2019, 357, 984-992.
[http://dx.doi.org/10.1016/j.surfcoat.2018.10.074]
[14]
Huang, M. Study on chitosan in purification treatment of tobacco extract solution in reconstituted tobacco made through papermaking process. Food Ind., 2014, 35, 1-4.
[15]
Ding, X.; Fang, F.; Du, T.; Zheng, K.; Chen, L.; Tian, X.; Zhang, X. Carbon nanotube-filled intumescent multilayer nanocoating on cotton fabric for enhancing flame retardant property. Surf. Coat. Tech., 2016, 305, 185-191.
[http://dx.doi.org/10.1016/j.surfcoat.2016.08.035]
[16]
Fang, F.; Zhang, X.; Meng, Y.; Gu, Z.; Bao, C.; Ding, X.; Li, S.; Chen, X.; Tian, X. Intumescent flame retardant coating on cotton fabric of chitosan and ammonium polyphosphate via layer-by-layer assembly. Surf. Coat. Tech., 2015, 262, 9-14.
[http://dx.doi.org/10.1016/j.surfcoat.2014.11.011]
[17]
Wang, N.; Xu, G.; Wu, Y.; Zhang, J.; Hu, L.; Luan, H.; Fang, Q. The influence of expandable graphite on double-layered microcapsules in intumescent flame-retardant natural rubber composites. J. Therm. Anal. Calorim., 2016, 123, 1239-1251.
[http://dx.doi.org/10.1007/s10973-015-5011-4]
[18]
Zhu, F.; Xin, Q.; Feng, Q.; Liu, R.; Li, K. Influence of nano-silica on flame resistance behavior of intumescent flame retardant cellulosic textiles: Remarkable synergistic effect? Surf. Coat. Tech., 2016, 294, 90-94.
[http://dx.doi.org/10.1016/j.surfcoat.2016.03.059]
[19]
Xiao, Y.; Zheng, Y.; Wang, X.; Chen, Z.; Xu, Z. Preparation of a chitosan-based flame-retardant synergist and its application in flame-retardant polypropylene. J. Appl. Polym. Sci., 2014, 131, 5829-5836.
[http://dx.doi.org/10.1002/app.40845]
[20]
Laufer, G.; Kirkland, C.; Cain, A.A.; Grunlan, J.C. Clay-chitosan nanobrick walls: Completely renewable gas barrier and flameretardant nanocoatings. ACS Appl. Mater. Interfaces,, 2012,, 4(3), 1643-1649..
[http://dx.doi.org/10.1021/am2017915] [PMID: 22339671]
[21]
Zhu, X.; He, Q.; Hu, Y.; Huang, R.; Shao, N.; Gao, Y. A comparative study of structure, thermal degradation, and combustion behavior of starch from different plant sources. J. Therm. Anal. Calorim., 2018, 132, 1-9.
[http://dx.doi.org/10.1007/s10973-018-7030-4]
[22]
Zhou, S.; Ning, M.; Xu, Y.; Hu, Y.; Shu, J.; Wang, C.; Ge, S.; Tian, Z.; She, S.; He, Q. Thermal degradation and combustion behavior of reconstituted tobacco sheet treated with ammonium polyphosphate. J. Anal. Appl. Pyrolysis, 2013, 100, 223-229.
[http://dx.doi.org/10.1016/j.jaap.2012.12.027]
[23]
Wang, W.; Wang, Y.; Yang, L.; Liu, B. Studies on thermal behavior of reconstituted tobacco sheet. Thermochim. Acta, 2004, 437, 7-11.
[http://dx.doi.org/10.1016/j.tca.2005.06.002]
[24]
Rimez, B.; Rahier, H.; Biesemans, M.; Bourbigot, S.; Mele, B.V. Flame retardancy and degradation machanism of poly(vinyl acetate) in combination with intumescent flame retardants: I. Ammonium poly(phosphate). Polym. Degrad. Stabil., 2015, 121, 321-330.
[http://dx.doi.org/10.1016/j.polymdegradstab.2015.09.024]
[25]
Fu, P.; Hu, S.; Xiang, J.; Li, P.; Huang, D.; Jiang, L.; Zhang, A.; Zhang, J. FTIR study of pyrolysis products evolving from typical agricultural residues. J. Anal. Appl. Pyrolysis, 2010, 88, 117-123.
[http://dx.doi.org/10.1016/j.jaap.2010.03.004]
[26]
Wu, S.L.; Shen, D.K.; Jun, H.; Wu, S.L.; Shen, D.K.; Jun, H. Rui, X.; Zhang, H.Y. TG-FTIR and Py-GCMS analysis of a model compound of cellulose-glyceraldehyde. J. Anal. Appl. Pyrolysis, 2013, 101, 79-85.
[http://dx.doi.org/10.1016/j.jaap.2013.02.009]
[27]
Shriner, R.L. The Systematic Identification of Organic Compounds; Chemical Industry Press: Beijing, 2007.
[28]
Zhou, S.; Wang, S.X.; He, Q.; Zhang, Y.P.; Wen, P.Y.; Tian, Z.; Xu, Y.; Zhu, D.; Wang, H.; She, S.K.; Chen, G. Thermal degradation and flammability of low ignition propensity cigarette paper. J. Anal. Appl. Pyrolysis, 2014, 110, 24-33.
[http://dx.doi.org/10.1016/j.jaap.2014.07.019]
[29]
Xie, G.; Li, B.; Yin, D.; Qin, G.; Pang, H.; Wang, B. Correlation of temperature distrubution in burning cone of cigarette with deliveries of seven harmful components in mainstream cigarette smoke. Tob. Sci. Technol., 2013, 11, 67-72.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy