[1]
Stingl N, Krischke M, Fekete A, Mueller MJ. Analysis of defense signals in Arabidopsis thaliana leaves by ultra-performance liquid chromatography/tandem mass spectrometry: jasmonates, salicylic acid, abscisic acid Plant Lipid Signaling Protocols. Springer 2013; pp. 103-13.
[2]
Okamoto M, Tsuboi Y, Goda H, et al. Multiple hormone treatment revealed novel cooperative relationships between abscisic acid and biotic stress hormones in cultured cells. Plant Biotechnol 2012; 29(1): 19-34.
[3]
Bosco R, Daeseleire E, Van Pamel E, Scariot V, Leus L. Development of an ultrahigh-performance liquid chromatography–electrospray ionization–tandem mass spectrometry method for the simultaneous determination of salicylic acid, jasmonic acid, and abscisic acid in rose leaves. J Agric Food Chem 2014; 62(27): 6278-84.
[4]
Delaney TP, Uknes S, Vernooij B, Friedrich L. A central role of salicylic acid in plant disease resistance. Science 1994; 266(5188): 1247.
[5]
Jiang CJ, Shimono M, Sugano S, et al. Abscisic acid interacts antagonistically with salicylic acid signaling pathway in rice-Magnaporthe grisea interaction. Mol Plant Microbe Interact 2010; 23(6): 791-8.
[6]
Creelman RA, Mullet JE. Jasmonic acid distribution and action in plants: regulation during development and response to biotic and abiotic stress. Proc Natl Acad Sci
1995; 92(10): 4114-9.
[7]
Lackman P, González-Guzmán M, Tilleman S, et al. Jasmonate signaling involves the abscisic acid receptor PYL4 to regulate metabolic reprogramming in Arabidopsis and tobacco. Proc Natl Acad Sci 2011; 108(14): 5891-6.
[8]
Anderson JP, Badruzsaufari E, Schenk PM, et al. Antagonistic interaction between abscisic acid and jasmonate-ethylene signaling pathways modulates defense gene expression and disease resistance in Arabidopsis. Plant Cell 2004; 16(12): 3460-79.
[9]
Langfelder P, Horvath S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics 2008; 9(1): 559.
[10]
Zhang B, Horvath S. A general framework for weighted gene co-expression network analysis. Stat Appl Genet Mol Biol 2005; 4(1): 17.
[11]
Smoot ME, Ono K, Ruscheinski J, Wang PL, Ideker T. Cytoscape 2.8: new features for data integration and network visualization. Bioinformatics 2011; 27(3): 431-2.
[12]
Du Z, Zhou X, Ling Y, Zhang Z, Su Z. agriGO: a GO analysis toolkit for the agricultural community. Nucleic Acids Res 2010; 38: 64-70.
[13]
Yi X, Du Z, Su Z. PlantGSEA: a gene set enrichment analysis toolkit for plant community. Nucleic Acids Res 2013; 41(1): 98-103.
[14]
Chen YA, Wen YC, Chang WC. AtPAN: an integrated system for reconstructing transcriptional regulatory networks in Arabidopsis thaliana. BMC Genomics 2012; 13(1): 85.
[15]
Duek PD, Fankhauser C. bHLH class transcription factors take centre stage in phytochrome signalling. Trends Plant Sci 2005; 10(2): 51-4.
[16]
Castillon A, Shen H, Huq E. Phytochrome interacting factors: central players in phytochrome-mediated light signaling networks. Trends Plant Sci 2007; 12(11): 514-21.
[17]
Sailsbery JK, Dean RA. Accurate discrimination of bHLH domains in plants, animals, and fungi using biologically meaningful sites. BMC Evol Biol 2012; 12(1): 154.
[18]
Yang T, Hao L, Yao S, et al. TabHLH1, a bHLH-type transcription factor gene in wheat, improves plant tolerance to Pi and N deprivation via regulation of nutrient transporter gene transcription and ROS homeostasis. Plant Physiol Biochem 2016; 104: 99-113.
[19]
Moon J, Zhu L, Shen H, Huq E. PIF1 directly and indirectly regulates chlorophyll biosynthesis to optimize the greening process in Arabidopsis. Proc Natl Acad Sci 2008; 105(27): 9433-8.
[20]
Seo JS, Joo J, Kim MJ, et al. OsbHLH148, a basic helix-loop-helix protein, interacts with OsJAZ proteins in a jasmonate signaling pathway leading to drought tolerance in rice. Plant J 2011; 65(6): 907-21.
[21]
Feng XM, Zhao Q, Zhao LL, et al. The cold-induced basic helix-loop-helix transcription factor gene MdCIbHLH1 encodes an ICE-like protein in apple. BMC Plant Biol 2012; 12(1): 22.
[22]
Goossens J, Swinnen G, Vanden-Bossche R, Pauwels L, Goossens A. Change of a conserved amino acid in the MYC2 and MYC3 transcription factors leads to release of JAZ repression and increased activity. New Phytol 2015; 206(4): 1229-37.
[23]
Pauwels L, Morreel K, De Witte E, et al. Mapping methyl jasmonate-mediated transcriptional reprogramming of metabolism and cell cycle progression in cultured Arabidopsis cells. Proc Natl Acad Sci 2008; 105(4): 1380-5.
[24]
Abe H, Urao T, Ito T, et al. Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling. Plant Cell 2003; 15(1): 63-78.
[25]
Yadav V, Mallappa C, Gangappa SN, Bhatia S, Chattopadhyay S. A basic helix-loop-helix transcription factor in Arabidopsis, MYC2, acts as a repressor of blue light–mediated photomorphogenic growth. Plant Cell 2005; 17(7): 1953-66.
[26]
Toledo-Ortiz G, Johansson H, Lee KP, et al. The HY5-PIF regulatory module coordinates light and temperature control of photosynthetic gene transcription. PLoS Genet 2014; 10(6)e1004416
[27]
Casal JJ, Luccioni LG, Oliverio KA, Boccalandro HE. Light, phytochrome signalling and photomorphogenesis in Arabidopsis. Photochem Photobiol Sci 2003; 2(6): 625-36.
[28]
Carvalho RF, Campos ML, Azevedo RA. The role of phytochrome in stress tolerance. J Integr Plant Biol 2011; 53(12): 920-9.
[29]
Bu Q, Zhu L, Dennis MD, et al. Phosphorylation by CK2 enhances the rapid light-induced degradation of phytochrome interacting factor 1 in Arabidopsis. J Biol Chem 2011; 286(14): 12066-74.
[30]
Brock MT, Maloof JN, Weinig C. Genes underlying quantitative variation in ecologically important traits: PIF4 (phytochrome interacting factor 4) is associated with variation in internode length, flowering time, and fruit set in Arabidopsis thaliana. Mol Ecol 2010; 19(6): 1187-99.
[31]
de Lucas M, Davière JM, Rodríguez-Falcón M, et al. A molecular framework for light and gibberellin control of cell elongation. Nature 2008; 451(7177): 480-4.
[32]
Genoud T, Buchala AJ, Chua NH, Métraux JP. Phytochrome signalling modulates the SA‐perceptive pathway in Arabidopsis. Plant J 2002; 31(1): 87-95.
[33]
Chen F, Li B, Li G, et al. Arabidopsis phytochrome A directly targets numerous promoters for individualized modulation of genes in a wide range of pathways. Plant Cell 2014; 26(5): 1949-66.
[34]
Svyatyna K, Riemann M. Light-dependent regulation of the jasmonate pathway. Protoplasma 2012; 249(2): 137-45.
[35]
Staneloni RJ, Rodriguez-Batiller MJ, Casal JJ. Abscisic acid, high-light, and oxidative stress down-regulate a photosynthetic gene via a promoter motif not involved in phytochrome-mediated transcriptional regulation. Mol Plant 2008; 1(1): 75-83.
[36]
Schwechheimer C, Willige BC. Shedding light on gibberellic acid signalling. Curr Opin Plant Biol 2009; 12(1): 57-62.
[37]
Kidokoro S, Maruyama K, Nakashima K, et al. The phytochrome-interacting factor PIF7 negatively regulates DREB1 expression under circadian control in Arabidopsis. Plant Physiol 2009; 151(4): 2046-57.
[38]
Kim HJ, Kim YK, Park JY, Kim J. Light signalling mediated by phytochrome plays an important role in cold‐induced gene expression through the C‐repeat/dehydration responsive element (C/DRE) in Arabidopsis thaliana. Plant J 2002; 29(6): 693-704.
[39]
Zhang Y, Liu Z, Liu R, Hao H, Bi Y. Gibberellins negatively regulate low temperature-induced anthocyanin accumulation in a HY5/HYH-dependent manner. Plant Signal Behav 2011; 6(5): 632-4.
[40]
Catalá R, Medina J, Salinas J. Integration of low temperature and light signaling during cold acclimation response in Arabidopsis. Proc Natl Acad Sci 2011; 108(39): 16475-80.
[41]
Rushton PJ, Somssich IE, Ringler P, Shen QJ. WRKY transcription factors. Trends Plant Sci 2010; 15(5): 247-58.
[42]
Li J, Brader G, Palva ET. The WRKY70 transcription factor: a node of convergence for jasmonate-mediated and salicylate-mediated signals in plant defense. Plant Cell 2004; 16(2): 319-31.
[43]
Li J, Brader G, Kariola T, Tapio Palva E. WRKY70 modulates the selection of signaling pathways in plant defense. Plant J 2006; 46(3): 477-91.
[44]
Spoel SH, Koornneef A, Claessens SM, et al. NPR1 modulates cross-talk between salicylate-and jasmonate-dependent defense pathways through a novel function in the cytosol. Plant Cell 2003; 15(3): 760-70.
[45]
Wang D, Amornsiripanitch N, Dong X. A genomic approach to identify regulatory nodes in the transcriptional network of systemic acquired resistance in plants. PLoS Pathog 2006; 2(11)e123
[46]
Kim KC, Lai Z, Fan B, Chen Z. Arabidopsis WRKY38 and WRKY62 transcription factors interact with histone deacetylase 19 in basal defense. Plant Cell 2008; 20(9): 2357-71.
[47]
Pieterse CM, Van Loon L. NPR1: the spider in the web of induced resistance signaling pathways. Curr Opin Plant Biol 2004; 7(4): 456-64.
[48]
Fu ZQ, Yan S, Saleh A, et al. NPR3 and NPR4 are receptors for the immune signal salicylic acid in plants. Nature 2012; 486(7402): 228-32.
[49]
Moreau M, Tian M, Klessig DF. Salicylic acid binds NPR3 and NPR4 to regulate NPR1-dependent defense responses. Cell Res 2012; 22(12): 1631-3.
[50]
Ding Y, Dommel M, Mou Z. Abscisic acid promotes proteasome‐mediated degradation of the transcription coactivator NPR1 in Arabidopsis thaliana. Plant J 2016.
[51]
Shi Z, Maximova S, Liu Y, Verica J, Guiltinan MJ. The salicylic acid receptor NPR3 is a negative regulator of the transcriptional defense response during early flower development in Arabidopsis. Mol Plant 2013; 6(3): 802-16.
[52]
Zhang J, Liu B, Li M, et al. The bHLH transcription factor bHLH104 interacts with IAA-LEUCINE RESISTANT3 and modulates iron homeostasis in Arabidopsis. Plant Cell 2015; 27(3): 787-805.
[53]
Long TA, Tsukagoshi H, Busch W, et al. The bHLH transcription factor POPEYE regulates response to iron deficiency in Arabidopsis roots. Plant Cell 2010; 22(7): 2219-36.
[54]
Rodríguez-Celma J, Pan IC, Li W, et al. The transcriptional response of Arabidopsis leaves to Fe deficiency. Front Plant Sci 2013; 4: 276.
[55]
Montgomery BL, Oh S, Karakkat B. Molecular basis and fitness implications of the interplay between light and the regulation of iron homeostasis in photosynthetic organisms. Environ Exp Bot 2015; 114: 48-56.
[56]
Salomé PA, Oliva M, Weigel D, Krämer U. Circadian clock adjustment to plant iron status depends on chloroplast and phytochrome function. EMBO J 2013; 32(4): 511-23.
[57]
Li H, Wang L, Yang ZM. Co-expression analysis reveals a group of genes potentially involved in regulation of plant response to iron-deficiency. Gene 2015; 554(1): 16-24.
[58]
Aznar A, Chen NW, Rigault M, et al. Scavenging iron: a novel mechanism of plant immunity activation by microbial siderophores. Plant Physiol 2014; 164(4): 2167-83.
[59]
Cakmak I, Kirkby EA. Role of magnesium in carbon partitioning and alleviating photooxidative damage. Physiol Plant 2008; 133(4): 692-704.
[60]
Hermans C, Chen J, Coppens F, Inzé D, Verbruggen N. Low magnesium status in plants enhances tolerance to cadmium exposure. New Phytol 2011; 192(2): 428-36.
[61]
De Veylder L, Beeckman T, Beemster GT, et al. Control of proliferation, endoreduplication and differentiation by the Arabidopsis E2Fa–DPa transcription factor. EMBO J 2002; 21(6): 1360-8.
[62]
Vlieghe K, Vuylsteke M, Florquin K, et al. Microarray analysis of E2Fa-DPa-overexpressing plants uncovers a cross-talking genetic network between DNA replication and nitrogen assimilation. J Cell Sci 2003; 116(20): 4249-59.
[63]
Ganguly A, Dixit R. Mechanisms for regulation of plant kinesins. Curr Opin Plant Biol 2013; 16(6): 704-9.
[64]
Reddy A, Safadi F, Narasimhulu SB, Golovkin M, Hu X. A novel plant calmodulin-binding protein with a kinesin heavy chain motor domain. J Biol Chem 1996; 271(12): 7052-60.
[65]
Vinogradova MV, Malanina GG, Waitzman JS, Rice SE, Fletterick RJ. Plant kinesin-like calmodulin binding protein employs its regulatory domain for dimerization. PLoS One 2013; 8(6)e66669
[66]
Nishihama R, Soyano T, Ishikawa M, et al. Expansion of the cell plate in plant cytokinesis requires a kinesin-like protein/MAPKKK complex. Cell 2002; 109(1): 87-99.
[67]
Zhang Y, Turner JG. Wound-Induced Endogenous Jasmonates Stunt Plant Growth by Inhibiting Mitosis. PLoS One 2008; 3(11)e3699
[68]
Abe M, Shibaoka H, Yamane H, Takahashi N. Cell cycle-dependent disruption of microtubules by methyl jasmonate in tobacco BY-2 cells. Protoplasma 1990; 156(1): 1-8.
[69]
Noir S, Bömer M, Takahashi N, et al. Jasmonate controls leaf growth by repressing cell proliferation and the onset of endoreduplication while maintaining a potential stand-by mode. Plant Physiol 2013; 161(4): 1930-51.
[70]
Świa̧tek A, Lenjou M, Van Bockstaele D, Inzé D, Van Onckelen H. Differential effect of jasmonic acid and abscisic acid on cell cycle progression in tobacco BY-2 cells. Plant Physiol 2002; 128(1): 201-11.
[71]
Takatsuka H, Umeda M. Hormonal control of cell division and elongation along differentiation trajectories in roots. J Exp Bot 2014; 65(10): 2633-43.
[72]
Vanacker H, Lu H, Rate DN, Greenberg JT. A role for salicylic acid and NPR1 in regulating cell growth in Arabidopsis. Plant J 2001; 28(2): 209-16.
[73]
Peres A, Churchman ML, Hariharan S, et al. Novel plant-specific cyclin-dependent kinase inhibitors induced by biotic and abiotic stresses. J Biol Chem 2007; 282(35): 25588-96.
[74]
Chini A, Fonseca S, Fernandez G, et al. The JAZ family of repressors is the missing link in jasmonate signalling. Nature 2007; 448(7154): 666-71.
[75]
Kazan K, Manners JM. JAZ repressors and the orchestration of phytohormone crosstalk. Trends Plant Sci 2012; 17(1): 22-31.
[76]
Pauwels L, Goossens A. The JAZ proteins: a crucial interface in the jasmonate signaling cascade. Plant Cell 2011; 23(9): 3089-100.
[77]
Qi T, Huang H, Wu D, et al. Arabidopsis DELLA and JAZ proteins bind the WD-repeat/bHLH/MYB complex to modulate gibberellin and jasmonate signaling synergy. Plant Cell 2014; 26(3): 1118-33.
[78]
Apel K, Hirt H. Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 2004; 55: 373-99.
[79]
Waszczak C, Akter S, Jacques S, et al. Oxidative post-translational modifications of cysteine residues in plant signal transduction. J Exp Bot 2015; 66(10): 2923-34.