Generic placeholder image

Current Pharmaceutical Analysis

Editor-in-Chief

ISSN (Print): 1573-4129
ISSN (Online): 1875-676X

Review Article

Voltammetric Pathways for the Analysis of Ophthalmic Drugs

Author(s): Onur Inam*, Ersin Demir and Bengi Uslu*

Volume 16, Issue 4, 2020

Page: [367 - 391] Pages: 25

DOI: 10.2174/1573412915666190225163637

Price: $65

Abstract

Background: This review investigates the ophthalmic drugs that have been studied with voltammetry in the web of science database in the last 10 years.

Introduction: Ophthalmic drugs are used in the diagnosis, evaluation and treatment of various ophthalmological diseases and conditions. A significant literature has emerged in recent years that investigates determination of these active compounds via electroanalytical methods, particularly voltammetry. Low cost, rapid determination, high availability, efficient sensitivity and simple application make voltammetry one of the most used methods for determining various kinds of drugs including ophthalmic ones.

Methods: In this particular review, we searched the literature via the web of science database for ophthalmic drugs which are investigated with voltammetric techniques using the keywords of voltammetry, electrochemistry, determination and electroanalytical methods.

Results: We found 33 types of pharmaceuticals in nearly 140 articles. We grouped them clinically into seven major groups as antibiotics, antivirals, non-steroidal anti-inflammatory drugs, anti-glaucomatous drugs, steroidal drugs, local anesthetics and miscellaneous. Voltammetric techniques, electrodes, optimum pHs, peak potentials, limit of detection values, limit of quantification values, linearity ranges, sample type and interference effects were compared.

Conclusion: Ophthalmic drugs are widely used in the clinic and it is important to determine trace amounts of these species analytically. Voltammetry is a preferred method for its ease of use, high sensitivity, low cost, and high availability for the determination of ophthalmic drugs as well as many other medical drugs. The low limits of detection values indicate that voltammetry is quite sufficient for determining ophthalmic drugs in many media such as human serum, urine and ophthalmic eye drops.

Keywords: Ophthalmology, ophthalmic drugs, voltammetry, determination, electrochemistry, electroanalytical methods.

Graphical Abstract

[1]
Baum, J.L. Initial therapy of suspected microbial corneal ulcers. I. Broad antibiotic therapy based on prevalence of organisms. Surv. Ophthalmol., 1979, 24(2), 97-105.
[http://dx.doi.org/10.1016/0039-6257(79)90127-9] [PMID: 92811]
[2]
Sheikh, A.; Hurwitz, B. Topical antibiotics for acute bacterial conjunctivitis: a systematic review. Br. J. Gen. Pract., 2001, 51(467), 473-477.
[PMID: 11407054]
[3]
Baranowski, P.; Karolewicz, B.; Gajda, M.; Pluta, J. Ophthalmic drug dosage forms: characterisation and research methods. ScientificWorldJournal, 2014, 2014861904
[http://dx.doi.org/10.1155/2014/861904] [PMID: 24772038]
[4]
Nisha, S.; Deepak, K. An insight to ophthalmic drug delivery system. Int. J. Pharm. Sci. Res., 2012, 3, 9-13.
[5]
Rajasekaran, A.; Kumaran, K.; Preetha, J.P.; Karthika, K. A comparative review on conventional and advanced ocular drug delivery formulations. Int. J. Pharm. Tech. Res., 2010, 2, 668-674.
[6]
Tangri, P.; Khurana, S. Basics of ocular drug delivery systems. Int. J. Pharm. Biomed. Res., 2011, 2, 1541-1552.
[7]
Jung, H.J.; Abou-Jaoude, M.; Carbia, B.E.; Plummer, C.; Chauhan, A. Glaucoma therapy by extended release of timolol from nanoparticle loaded silicone-hydrogel contact lenses. J. Control. Release, 2013, 165(1), 82-89.
[http://dx.doi.org/10.1016/j.jconrel.2012.10.010] [PMID: 23123188]
[8]
Weyenberg, W.; Vermeire, A.; Vandervoort, J.; Remon, J.P.; Ludwig, A. Effects of roller compaction settings on the preparation of bioadhesive granules and ocular minitablets. Eur. J. Pharm. Biopharm., 2005, 59(3), 527-536.
[http://dx.doi.org/10.1016/j.ejpb.2004.09.012] [PMID: 15760734]
[9]
Teich, S.A.; Cheung, T.W.; Friedman, A.H. Systemic antiviral drugs used in ophthalmology. Surv. Ophthalmol., 1992, 37(1), 19-53.
[http://dx.doi.org/10.1016/0039-6257(92)90003-C] [PMID: 1324532]
[10]
Kim, S.J.; Flach, A.J.; Jampol, L.M. Nonsteroidal anti-inflammatory drugs in ophthalmology. Surv. Ophthalmol., 2010, 55(2), 108-133.
[http://dx.doi.org/10.1016/j.survophthal.2009.07.005] [PMID: 20159228]
[11]
Schuman, J.S. Antiglaucoma medications: a review of safety and tolerability issues related to their use. Clin. Ther., 2000, 22(2), 167-208.
[http://dx.doi.org/10.1016/S0149-2918(00)88478-7] [PMID: 10743979]
[12]
Demir, E.; Inam, O.; Inam, R.; Aboul-Enein, H.Y. Voltammetric determination of ophthalmic drug dexamethasone using poly-glycine multi walled carbon nanotubes modified paste electrode. Curr. Anal. Chem., 2018, 14, 83-89.
[http://dx.doi.org/10.2174/1573411013666161219161320]
[13]
McGee, H.T.; Fraunfelder, F.W. Toxicities of topical ophthalmic anesthetics. Expert Opin. Drug Saf., 2007, 6(6), 637-640.
[http://dx.doi.org/10.1517/14740338.6.6.637] [PMID: 17967152]
[14]
Demir, E.; Inam, O.; Inam, R. Determination of ophthalmic drug proparacaine using multi-walled carbon nanotube paste electrode by square wave stripping voltammetry. Anal. Sci., 2018, 34(7), 771-776.
[http://dx.doi.org/10.2116/analsci.17P589] [PMID: 29998957]
[15]
Kiratli, H.; Kocabeyoğlu, S.; Bilgiç, S. Severe pseudo-preseptal cellulitis following sub-Tenon’s carboplatin injection for intraocular retinoblastoma. J. AAPOS, 2007, 11(4), 404-405.
[http://dx.doi.org/10.1016/j.jaapos.2006.11.005] [PMID: 17306997]
[16]
Kiratli, H.; Koç, İ.; Inam, O.; Varan, A.; Akyüz, C. Retrospective analysis of primarily treated group D retinoblastoma. Graefes Arch. Clin. Exp. Ophthalmol., 2018, 256(11), 2225-2231.
[http://dx.doi.org/10.1007/s00417-018-4051-4] [PMID: 29961117]
[17]
Ozkan, S.A. Principles and techniques of electroanalytical stripping methods for pharmaceutically active compounds in dosage forms and biological samples. Curr. Pharm. Anal., 2009, 5, 127-143.
[http://dx.doi.org/10.2174/157341209788172870]
[18]
Karadurmuz, L.; Kurbanoglu, S.; Uslu, B.; Ozkan, S.A. Electrochemical DNA biosensors in drug analysis. Curr. Pharm. Anal., 2017, 13, 195-207.
[http://dx.doi.org/10.2174/1573412912666160422152634]
[19]
İnam, R.; Somer, G. A direct method for the determination of selenium and lead in cow’s milk by differential pulse stripping voltammetry. Food Chem., 2000, 69, 345-350.
[http://dx.doi.org/10.1016/S0308-8146(00)00045-5]
[20]
Demir, E.; Inam, R.; Ozkan, S.A.; Uslu, B. Electrochemical behavior of tadalafil on TiO2 nanoparticles–MWCNT composite paste electrode and its determination in pharmaceutical dosage forms and human serum samples using adsorptive stripping square wave voltammetry. J. Solid State Electrochem., 2014, 18, 2709-2720.
[http://dx.doi.org/10.1007/s10008-014-2529-5]
[21]
Inam, R.; Mercan, H.; Yılmaz, E.; Uslu, B. Differential pulse polarographic determination of moxifloxacin hydrochloride in pharmaceuticals and biological fluids. Anal. Lett., 2007, 40, 529-546.
[http://dx.doi.org/10.1080/00032710600964817]
[22]
Inam, R.; Somer, G. Determination of selenium in garlic by cathodic stripping voltammetry. Food Chem., 1999, 66, 381-385.
[http://dx.doi.org/10.1016/S0308-8146(99)00087-4]
[23]
Çaykara, T.; İnam, R. Determination of the competitive adsorption of heavy metal ions on poly(n-vinyl-2-pyrrolidone/acrylic acid) hydrogels by differential pulse polarography. J. Appl. Polym. Sci., 2003, 89, 2013-2018.
[http://dx.doi.org/10.1002/app.12328]
[24]
Demir, E.; İnam, R. Electrochemical behaviour and determination of rimsulfuron herbicide by square wave voltammetry. Int. J. Environ. Anal. Chem., 2014, 94, 1330-1341.
[http://dx.doi.org/10.1080/03067319.2014.940340]
[25]
Demir, E.; İnam, R. Square wave voltammetric determination of fomesafen herbicide using modified nanostructure carbon paste electrode as a sensor and application to food samples. Food Anal. Methods, 2017, 10, 74-82.
[http://dx.doi.org/10.1007/s12161-016-0551-1]
[26]
Li, Y.; Hsu, P.C.; Chen, S.M.; Lou, B.S.; Ali, M.A.; Al-Hemaid, F.M.A. Simultaneously Determination of procaine and catechol at functionalized multi-walled carbon nanotube with poly-glutamic acid modified electrode. J. Biobased Mater. Bioenergy, 2014, 8, 149-157.
[http://dx.doi.org/10.1166/jbmb.2014.1417]
[27]
Zhang, J.; Liu, J.; Zhang, Y.; Yu, F.; Wang, F.; Peng, Z.; Li, Y. Voltammetric lidocaine sensor by using a glassy carbon electrode modified with porous carbon prepared from a MOF, and with a molecularly imprinted polymer. Mikrochim. Acta, 2017, 185(1), 78.
[http://dx.doi.org/10.1007/s00604-017-2551-2] [PMID: 29594562]
[28]
Motoc, S.; Manea, F.; Iacob, A.; Martinez-Joaristi, A.; Gascon, J.; Pop, A.; Schoonman, J. Electrochemical selective and simultaneous detection of diclofenac and ibuprofen in aqueous solution using HKUST-1 metal-organic framework-carbon nanofiber composite electrode. Sensors (Basel), 2016, 16(10), 1719.
[http://dx.doi.org/10.3390/s16101719] [PMID: 27763509]
[29]
Kruid, J.; Fogel, R.; Limson, J. Voltammetric investigation of complex growth media at a bare glassy carbon electrode: A case study of oxytetracycline. Electrochim. Acta, 2014, 128, 41-47.
[http://dx.doi.org/10.1016/j.electacta.2013.08.188]
[30]
Tan, F.; Zhao, Q.; Teng, F.; Sun, D.; Gao, J.; Quan, X.; Chen, J. Molecularly imprinted polymer/mesoporous carbon nanoparticles as electrode sensing material for selective detection of ofloxacin. Mater. Lett., 2014, 129, 95-97.
[http://dx.doi.org/10.1016/j.matlet.2014.05.039]
[31]
Kissinger, P.T.; Heineman, W.R. Cyclic voltammetry. J. Chem. Educ., 1983, 60, 702.
[http://dx.doi.org/10.1021/ed060p702]
[32]
Vilas-Boas, Â.; Valderrama, P.; Fontes, N.; Geraldo, D.; Bento, F. Evaluation of total polyphenol content of wines by means of voltammetric techniques: Cyclic voltammetry vs differential pulse voltammetry. Food Chem., 2019, 276, 719-725.
[http://dx.doi.org/10.1016/j.foodchem.2018.10.078] [PMID: 30409654]
[33]
Bao, J.; Huang, T.; Wang, Z.; Yang, H.; Geng, X.; Xu, G.; Samalo, M.; Sakinati, M.; Huo, D.; Hou, C. 3D graphene/copper oxide nano-flowers based acetylcholinesterase biosensor for sensitive detection of organophosphate pesticides. Sens. Actuators B Chem., 2019, 279, 95-101.
[http://dx.doi.org/10.1016/j.snb.2018.09.118]
[34]
Kurniawan, A.; Kurniawan, F.; Gunawan, F.; Chou, S.H.; Wang, M.J. Disposable electrochemical sensor based on copper-electrodeposited screen-printed gold electrode and its application in sensing l-Cysteine. Electrochim. Acta, 2019, 293, 318-327.
[http://dx.doi.org/10.1016/j.electacta.2018.08.140]
[35]
Eteya, M.M.; Rounaghi, G.H.; Deiminiat, B. Fabrication of a new electrochemical sensor based on AuPt bimetallic nanoparticles decorated multi-walled carbon nanotubes for determination of diclofenac. Microchem. J., 2019, 144, 254-260.
[http://dx.doi.org/10.1016/j.microc.2018.09.009]
[36]
Bakirhan, N.K.; Tok, T.T.; Ozkan, S.A. The redox mechanism investigation of non-small cell lung cancer drug: Erlotinib via theoretical and experimental techniques and its host–guest detection by β-Cyclodextrin nanoparticles modified glassy carbon electrode. Sens. Actuators B Chem., 2019, 278, 172-180.
[http://dx.doi.org/10.1016/j.snb.2018.09.090]
[37]
Pletcher, D.; Robinson, J.; Peter, L.M.; Peat, R.; Greef, R. Instrumental Methods in Electrochemistry (Ellis Horwood Series in Physical Chemistry); John Wiley & Sons, Ltd: New York, United States, 1985.
[38]
Ozkan, S.A. Electroanalytical Methods in Pharmaceutical Analysis and Their Validation; HNB Publishing: New York, 2012.
[39]
Barker, G.C.; Jenkins, I.L. Square-wave polarography. Analyst (Lond.), 1952, 77, 685-696.
[http://dx.doi.org/10.1039/an9527700685]
[40]
Bard, A.J.; Faulkner, L.R. Electrochemical Methods: Fundamentals and Applications; Wiley, 2000.
[41]
İnam, R.; Bilgin, C. Square wave voltammetric determination of methiocarb insecticide based on multiwall carbon nanotube paste electrode. J. Appl. Electrochem., 2013, 43, 425-432.
[http://dx.doi.org/10.1007/s10800-013-0526-5]
[42]
Wang, J. Analytical Electrochemistry, 2nd ed; Wiley-VCH: New York, 2000.
[http://dx.doi.org/10.1002/0471228230]
[43]
Sarigül, T.; Inam, R. A direct method for the polarographic determination of herbicide triasulfuron and application to natural samples and agrochemical formulation. Bioelectrochemistry, 2009, 75(1), 55-60.
[http://dx.doi.org/10.1016/j.bioelechem.2008.11.009] [PMID: 19141372]
[44]
İnam, R.; Sarigül, T.; Gülerman, E.Z.; Uncu, N. Polarographic determination of herbicide thifensulfuron methyl/application to agrochemical pesticide, soil, and fruit juice. Int. J. Environ. Anal. Chem., 2006, 86, 1135-1149.
[http://dx.doi.org/10.1080/03067310600797606]
[45]
Bai, X.; Qin, C.; Huang, X. Voltammetric determination of chloramphenicol using a carbon fiber microelectrode modified with Fe3O4 nanoparticles. Mikrochim. Acta, 2016, 183, 2973-2981.
[http://dx.doi.org/10.1007/s00604-016-1945-x]
[46]
Yang, T.; Chen, H.; Ge, T.; Wang, J.; Li, W.; Jiao, K. Highly sensitive determination of chloramphenicol based on thin-layered MoS2/polyaniline nanocomposite. Talanta, 2015, 144, 1324-1328.
[http://dx.doi.org/10.1016/j.talanta.2015.08.004] [PMID: 26452965]
[47]
Giribabu, K.; Jang, S.C.; Haldorai, Y.; Rethinasabapathy, M.; Oh, S.Y.; Rengaraj, A.; Han, Y.K.; Cho, W.S.; Roh, C.; Huh, Y.S. Electrochemical determination of chloramphenicol using a glassy carbon electrode modified with dendrite-like Fe3O4 nanoparticles. Carbon Lett., 2017, 23, 38-47.
[48]
Li, X.; Chen, Y.; Huang, X. Electrochemical behavior of neomycin at DNA-modified gold electrodes. J. Inorg. Biochem., 2007, 101(6), 918-924.
[http://dx.doi.org/10.1016/j.jinorgbio.2007.03.001] [PMID: 17445903]
[49]
Sun, N.; Mo, W.; Hu, B.; Shen, Z. Adsorptive stripping voltammetric determination of netilmicin in the presence of formaldehyde. Anal. Bioanal. Chem., 2006, 385(1), 161-167.
[http://dx.doi.org/10.1007/s00216-006-0383-8] [PMID: 16604342]
[50]
Alizadeh, T.; Ganjali, M.R.; Zare, M.; Norouzi, P. Selective determination of chloramphenicol at trace level in milk samples by the electrode modified with molecularly imprinted polymer. Food Chem., 2012, 130, 1108-1114.
[http://dx.doi.org/10.1016/j.foodchem.2011.08.016]
[51]
Liu, G.; Chai, C. Towards the development of a sensitive electrochemical sensor for the determination of chloramphenicol residues in milk. Anal. Methods, 2015, 7, 1572-1577.
[http://dx.doi.org/10.1039/C4AY02847C]
[52]
Radi, A.E.; Wahdan, T.; Anwar, Z.; Mostafa, H. Electrochemical and spectroscopic studies on the interaction of gatifloxacin, moxifloxacin and sparfloxacin with DNA and their analytical applications. Electroanalysis, 2010, 22, 2665-2671.
[http://dx.doi.org/10.1002/elan.201000285]
[53]
Upadhyay, S.S.; Kalambate, P.K.; Srivastava, A.K. Enantioselective analysis of Moxifloxacin hydrochloride enantiomers with graphene-β-Cyclodextrin-nanocomposite modified carbon paste electrode using adsorptive stripping differential pulse voltammetry. Electrochim. Acta, 2017, 248, 258-269.
[http://dx.doi.org/10.1016/j.electacta.2017.07.141]
[54]
Fekry, A.M. A new simple electrochemical Moxifloxacin Hydrochloride sensor built on carbon paste modified with silver nanoparticles. Biosens. Bioelectron., 2017, 87, 1065-1070.
[http://dx.doi.org/10.1016/j.bios.2016.07.077] [PMID: 27736686]
[55]
Sun, J.; Gan, T.; Meng, W.; Shi, Z.; Zhang, Z.; Liu, Y. Determination of oxytetracycline in food using a disposable montmorillonite and acetylene black modified microelectrode. Anal. Lett., 2015, 48, 100-115.
[http://dx.doi.org/10.1080/00032719.2014.930874]
[56]
Gupta, V.K.; Yola, M.L.; Özaltın, N.; Atar, N.; Üstündağ, Z.; Uzun, L. Molecular imprinted polypyrrole modified glassy carbon electrode for the determination of tobramycin. Electrochim. Acta, 2013, 112, 37-43.
[http://dx.doi.org/10.1016/j.electacta.2013.08.132]
[57]
Zhou, T.; Tao, Y.; Jin, H.; Song, B.; Jing, T.; Luo, D.; Zhou, Y.; Zhou, Y.; Lee, Y.I.; Mei, S. Fabrication of a selective and sensitive sensor based on molecularly imprinted polymer/acetylene black for the determination of azithromycin in pharmaceuticals and biological samples. PLoS One, 2016, 11(1)e0147002
[http://dx.doi.org/10.1371/journal.pone.0147002] [PMID: 26820753]
[58]
Vajdle, O.; Guzsvány, V.; Škorić, D.; Csanádi, J.; Petković, M.; Avramov-Ivić, M.; Kónya, Z.; Petrović, S.; Bobrowski, A. Voltammetric behavior and determination of the macrolide antibiotics azithromycin, clarithromycin and roxithromycin at a renewable silver–amalgam film electrode. Electrochim. Acta, 2017, 229, 334-344.
[http://dx.doi.org/10.1016/j.electacta.2017.01.146]
[59]
Zhong, Y.S.; Ni, Y.N.; Kokot, S. Application of differential pulse stripping voltammetry and chemometrics for the determination of three antibiotic drugs in food samples. Chin. Chem. Lett., 2012, 23, 339-342.
[http://dx.doi.org/10.1016/j.cclet.2012.01.007]
[60]
Kumar, N.; Goyal, R.N. Gold-palladium nanoparticles aided electrochemically reduced graphene oxide sensor for the simultaneous estimation of lomefloxacin and amoxicillin. Sens. Actuators B Chem., 2017, 243, 658-668.
[http://dx.doi.org/10.1016/j.snb.2016.12.025]
[61]
Han, H.; Li, J.Z.; Pang, X.Z. Electrochemical sensor using glassy carbon electrode modified with hpmαfp/ppy/gce composite film for determination of ofloxacin. Int. J. Electrochem. Sci., 2013, 8, 9060-9070.
[62]
Zhang, F.; Gu, S.; Ding, Y.; Li, L.; Liu, X. Simultaneous determination of ofloxacin and gatifloxacin on cysteic acid modified electrode in the presence of sodium dodecyl benzene sulfonate. Bioelectrochemistry, 2013, 89, 42-49.
[http://dx.doi.org/10.1016/j.bioelechem.2012.08.008] [PMID: 23044173]
[63]
Ribeiro, F.W.P.; Soares, T.R.V. do N. Oliveira S, Melo LC, Soares JE, Becker H, De Souza D, de Lima-Neto P, Correia AN, Analytical determination of nimesulide and ofloxacin in pharmaceutical preparations using square-wave voltammetry. J. Anal. Chem., 2014, 69, 62-71.
[http://dx.doi.org/10.1134/S1061934814010079]
[64]
Ensafi, A.A.; Allafchian, A.R.; Rezaei, B. A sensitive and selective voltammetric sensor based on multiwall carbon nanotubes decorated with MgCr2O4 for the determination of azithromycin. Colloids Surf. B Biointerfaces, 2013, 103, 468-474.
[http://dx.doi.org/10.1016/j.colsurfb.2012.11.021] [PMID: 23261568]
[65]
Kor, K.; Zarei, K. Electrochemical determination of chloramphenicol on glassy carbon electrode modified with multi-walled carbon nanotube–cetyltrimethylammonium bromide–poly (diphenylamine). J. Electroanal. Chem. (Lausanne Switz.), 2014, 733, 39-46.
[http://dx.doi.org/10.1016/j.jelechem.2014.09.013]
[66]
Zhu, M.; Zhang, Y.; Ye, J.; Du, H. Sensitive and selective determination of chloramphenicol on ordered mesoporous carbon/Nafion composite film. Int. J. Electrochem. Sci., 2015, 10, 8263-8275.
[67]
Zhai, H.; Liang, Z.; Chen, Z.; Wang, H.; Liu, Z.; Su, Z.; Zhou, Q. Simultaneous detection of metronidazole and chloramphenicol by differential pulse stripping voltammetry using a silver nanoparticles/sulfonate functionalized graphene modified glassy carbon electrode. Electrochim. Acta, 2015, 171, 105-113.
[http://dx.doi.org/10.1016/j.electacta.2015.03.140]
[68]
Bagheri Hashkavayi, A.; Bakhsh Raoof, J.; Ojani, R.; Hamidi Asl, E. Label‐free electrochemical aptasensor for determination of chloramphenicol based on gold nanocubes‐modified screen‐printed gold electrode. Electroanalysis, 2015, 27, 1449-1456.
[http://dx.doi.org/10.1002/elan.201400718]
[69]
Zhao, X.; Zhang, Q.; Chen, H.; Liu, G.; Bai, W. Highly sensitive molecularly imprinted sensor based on platinum thin‐film microelectrode for detection of chloramphenicol in food samples. Electroanalysis, 2017, 29, 1918-1924.
[http://dx.doi.org/10.1002/elan.201700164]
[70]
Zhang, W.; Zhang, Z.; Li, Y.; Chen, J.; Li, X.; Zhang, Y.; Zhang, Y. Novel nanostructured MIL-101 (Cr)/XC-72 modified electrode sensor: A highly sensitive and selective determination of chloramphenicol. Sens. Actuators B Chem., 2017, 247, 756-764.
[http://dx.doi.org/10.1016/j.snb.2017.03.104]
[71]
Xiao, L.; Xu, R.; Yuan, Q.; Wang, F. Highly sensitive electrochemical sensor for chloramphenicol based on MOF derived exfoliated porous carbon. Talanta, 2017, 167, 39-43.
[http://dx.doi.org/10.1016/j.talanta.2017.01.078] [PMID: 28340736]
[72]
Meenakshi, S.; Jancy Sophia, S.; Pandian, K. High surface graphene nanoflakes as sensitive sensing platform for simultaneous electrochemical detection of metronidazole and chloramphenicol. Mater. Sci. Eng. C, 2018, 90, 407-419.
[http://dx.doi.org/10.1016/j.msec.2018.04.064] [PMID: 29853107]
[73]
Sun, Y.; Wei, T.; Jiang, M.; Xu, L.; Xu, Z. Voltammetric sensor for chloramphenicol determination based on a dual signal enhancement strategy with ordered mesoporous carbon@ polydopamine and β-cyclodextrin. Sens. Actuators B Chem., 2018, 255, 2155-2162.
[http://dx.doi.org/10.1016/j.snb.2017.09.016]
[74]
Jiang, Z.; Li, G.; Zhang, M. A novel sensor based on bifunctional monomer molecularly imprinted film at graphene modified glassy carbon electrode for detecting traces of moxifloxacin. RSC Advances, 2016, 6, 32915-32921.
[http://dx.doi.org/10.1039/C6RA01494A]
[75]
Radi, A.E.; Wahdan, T.; Anwar, Z.; Mostafa, H. Electrochemical determination of gatifloxacin, moxifloxacin and sparfloxacin fluoroquinolonic antibiotics on glassy carbon electrode in pharmaceutical formulations. Drug Test. Anal., 2010, 2(8), 397-400.
[http://dx.doi.org/10.1002/dta.143] [PMID: 20641048]
[76]
Wong, A.; Silva, T.A.; Vicentini, F.C.; Fatibello-Filho, O. Electrochemical sensor based on graphene oxide and ionic liquid for ofloxacin determination at nanomolar levels. Talanta, 2016, 161, 333-341.
[http://dx.doi.org/10.1016/j.talanta.2016.08.035] [PMID: 27769415]
[77]
Li, R.; Lv, S.; Shan, J.; Zhang, J. A novel electrochemical method for ofloxacin determination based on interaction of ofloxacin with cupric ion. Ionics, 2015, 21, 3117-3124.
[http://dx.doi.org/10.1007/s11581-015-1492-1]
[78]
Solangi, A.; Mallah, A.; Khuhawar, M.; Bhanger, M. Cathodic stripping voltammetry of pipemidic acid and ofloxacin in pharmaceutical dosages and human urine. J. Iran. Chem. Soc., 2009, 6, 71-76.
[http://dx.doi.org/10.1007/BF03246503]
[79]
Chen, T.S.; Huang, K.L.; Chen, J.L. An electrochemical approach to simultaneous determination of acetaminophen and ofloxacin. Bull. Environ. Contam. Toxicol., 2012, 89(6), 1284-1288.
[http://dx.doi.org/10.1007/s00128-012-0833-2] [PMID: 23007374]
[80]
Pınar, P.T. Electrochemical behaviour of ofloxacin in pharmaceutical and biological samples using a boron-doped diamond electrode in using anionic surfactant. Gazi Univ. J. Sci., 2018, 31, 66-80.
[81]
Nagles, E.; Alvarez, P.; Arancibia, V.; Baez, M.; Garreton, V.; Ehrenfeld, N. Amperometric and voltammetric determination of oxytetracycline in trout salmonid muscle using multi-wall carbon nanotube, ionic liquid and gold nanoparticle film electrodes. Int. J. Electrochem. Sci., 2012, 7, 11745-11757.
[82]
Ajami, N.; Panah, N.B.; Danaee, I. Oxytetracycline nanosensor based on poly-ortho-aminophenol/multi-walled carbon nanotubes composite film. Iran. Polym. J., 2014, 23, 121-126.
[http://dx.doi.org/10.1007/s13726-013-0207-6]
[83]
Saleh, G.A.; Askal, H.F.; Refaat, I.H.; Abdel-aal, F.A. A new electrochemical method for simultaneous determination of acyclovir and methotrexate in pharmaceutical and human plasma samples. Anal. Bioanal. Electrochem., 2016, 8, 691-716.
[84]
Dorraji, P.S.; Jalali, F. Differential pulse voltammetric determination of nanomolar concentrations of antiviral drug acyclovir at polymer film modified glassy carbon electrode. Mater. Sci. Eng. C, 2016, 61, 858-864.
[http://dx.doi.org/10.1016/j.msec.2016.01.030] [PMID: 26838917]
[85]
Karim-Nezhad, G.; Sarkary, A.; Khorablou, Z.; Seyed Dorraji, P. Synergistic effect of zno nanoparticles and carbon nanotube and polymeric film on electrochemical oxidation of acyclovir. Iran. J. Pharm. Res., 2018, 17(1), 52-62.
[PMID: 29755538]
[86]
Zhou, Y.; Zhi, J.; Zhang, X.; Xu, M. Electrochemical studies of ganciclovir at boron-doped nanocrystalline diamond electrodes. Diamond Related Materials, 2011, 20, 18-22.
[http://dx.doi.org/10.1016/j.diamond.2010.10.008]
[87]
Paimard, G.; Gholivand, M.B.; Shamsipur, M. Determination of ganciclovir as an antiviral drug and its interaction with DNA at Fe3O4/carboxylated multi-walled carbon nanotubes modified glassy carbon electrode. Measurement, 2016, 77, 269-277.
[http://dx.doi.org/10.1016/j.measurement.2015.09.019]
[88]
Yari, A.; Shams, A. A sensitive electrochemical sensor for voltammetric determination of ganciclovir based on Au‐ZnS nanocomposite. Electroanalysis, 2018, 30, 803-809.
[http://dx.doi.org/10.1002/elan.201700757]
[89]
Ozcelikay, G.; Dogan‐Topal, B.; Ozkan, S.A. An electrochemical sensor based on silver nanoparticles‐benzalkonium chloride for the voltammetric determination of antiviral drug tenofovir. Electroanalysis, 2018, 30, 943-954.
[http://dx.doi.org/10.1002/elan.201700753]
[90]
Tarlekar, P.; Khan, A.; Chatterjee, S. Nanoscale determination of antiviral drug acyclovir engaging bifunctionality of single walled carbon nanotubes - nafion film. J. Pharm. Biomed. Anal., 2018, 151, 1-9.
[http://dx.doi.org/10.1016/j.jpba.2017.12.006] [PMID: 29291454]
[91]
Joseph, R.; Kumar, K.G. Electrochemical sensing of acyclovir at a gold electrode modified with 2-mercaptobenzothiazole-[5,10,15,20-tetrakis-(3-methoxy-4-hydroxyphenyl)porphyrinato]copper(II). Anal. Sci., 2011, 27(1), 67-72.
[http://dx.doi.org/10.2116/analsci.27.67] [PMID: 21233563]
[92]
Shetti, N.P.; Malode, S.J.; Nandibewoor, S.T. Electrochemical behavior of an antiviral drug acyclovir at fullerene-C(60)-modified glassy carbon electrode. Bioelectrochemistry, 2012, 88, 76-83.
[http://dx.doi.org/10.1016/j.bioelechem.2012.06.004] [PMID: 22796504]
[93]
Can, S.; Yilmaz, S.; Saglikoglu, G.; Sadikoglu, M.; Menek, N. Electrocatalytic oxidation of acyclovir on poly (p‐aminobenzene sulfonic acid) film modified glassy carbon electrode. Electroanalysis, 2015, 27, 2431-2438.
[http://dx.doi.org/10.1002/elan.201500102]
[94]
Saleh, G.A.; Askal, H.F.; Refaat, I.H.; Abdel-aal, F.A. Adsorptive square wave voltammetric determination of acyclovir and its application in a pharmacokinetic study using a novel sensor of β-cyclodextrin modified pencil graphite electrode. Bull. Chem. Soc. Jpn., 2015, 88, 1291-1300.
[http://dx.doi.org/10.1246/bcsj.20150112]
[95]
Shahrokhian, S.; Azimzadeh, M.; Amini, M.K. Modification of glassy carbon electrode with a bilayer of multiwalled carbon nanotube/tiron-doped polypyrrole: Application to sensitive voltammetric determination of acyclovir. Mater. Sci. Eng. C, 2015, 53, 134-141.
[http://dx.doi.org/10.1016/j.msec.2015.04.030] [PMID: 26042700]
[96]
Dilgin, D.G.; Karakaya, S. Differential pulse voltammetric determination of acyclovir in pharmaceutical preparations using a pencil graphite electrode. Mater. Sci. Eng. C, 2016, 63, 570-576.
[http://dx.doi.org/10.1016/j.msec.2016.02.079] [PMID: 27040252]
[97]
Martínez‐Rojas, F.; Del Valle, M.; Isaacs, M.; Ramírez, G.; Armijo, F. Electrochemical behaviour study and determination of guanine, 6‐thioguanine, acyclovir and gancyclovir on fluorine‐doped SnO2 electrode application in pharmaceutical preparations. Electroanalysis, 2017, 29, 2888-2895.
[http://dx.doi.org/10.1002/elan.201700516]
[98]
Gholivand, M.; Karimian, N. Fabrication of a highly selective and sensitive voltammetric ganciclovir sensor based on electropolymerized molecularly imprinted polymer and gold nanoparticles on multiwall carbon nanotubes/glassy carbon electrode. Sens. Actuators B Chem., 2015, 215, 471-479.
[http://dx.doi.org/10.1016/j.snb.2015.04.007]
[99]
Santhosh, P.; Senthil Kumar, N.; Renukadevi, M.; Gopalan, A.I.; Vasudevan, T.; Lee, K.P. Enhanced electrochemical detection of ketorolac tromethamine at polypyrrole modified glassy carbon electrode. Anal. Sci., 2007, 23(4), 475-478.
[http://dx.doi.org/10.2116/analsci.23.475] [PMID: 17420555]
[100]
Ihos, M.; Remes, A.; Manea, F. Electrochemical determination of diclofenac using boron-doped diamond electrode. J. Environ. Prot. Ecol., 2012, 13, 2096-2103.
[101]
Ensafi, A.A.; Izadi, M.; Karimi-Maleh, H. Sensitive voltammetric determination of diclofenac using room-temperature ionic liquid-modified carbon nanotubes paste electrode. Ionics, 2013, 19, 137-144.
[http://dx.doi.org/10.1007/s11581-012-0705-0]
[102]
Afkhami, A.; Bahiraei, A.; Madrakian, T. Gold nanoparticle/multi-walled carbon nanotube modified glassy carbon electrode as a sensitive voltammetric sensor for the determination of diclofenac sodium. Mater. Sci. Eng. C, 2016, 59, 168-176.
[http://dx.doi.org/10.1016/j.msec.2015.09.097] [PMID: 26652361]
[103]
Parvizi-Fard, G.; Alipour, E.; Yardani Sefidi, P.; Emamali Sabzi, R. Pretreated pencil graphite electrode as a versatile platform for easy measurement of diclofenac sodium in a number of biological and pharmaceutical samples. J. Chin. Chem. Soc. (Taipei), 2018, 65, 472-484.
[http://dx.doi.org/10.1002/jccs.201700258]
[104]
Hasanzadeh, M.; Shadjou, N.; Saghatforoush, L.; Dolatabadi, J.E.N. Preparation of a new electrochemical sensor based on iron (III) complexes modified carbon paste electrode for simultaneous determination of mefenamic acid and indomethacin. Colloids Surf. B Biointerfaces, 2012, 92, 91-97.
[http://dx.doi.org/10.1016/j.colsurfb.2011.11.026] [PMID: 22192613]
[105]
Babaei, A.; Yousefi, A.; Afrasiabi, M.; Shabanian, M. A sensitive simultaneous determination of dopamine, acetaminophen and indomethacin on a glassy carbon electrode coated with a new composite of MCM-41 molecular sieve/nickel hydroxide nanoparticles/multiwalled carbon nanotubes. J. Electroanal. Chem. (Lausanne Switz.), 2015, 740, 28-36.
[http://dx.doi.org/10.1016/j.jelechem.2014.12.042]
[106]
Nigović, B.; Jurić, S.; Mornar, A. Electrochemical determination of nepafenac topically applied nonsteroidal anti-inflammatory drug using graphene nanoplatelets-carbon nanofibers modified glassy carbon electrode. J. Electroanal. Chem. (Lausanne Switz.), 2018, 817, 30-35.
[http://dx.doi.org/10.1016/j.jelechem.2018.03.068]
[107]
Azadbakht, A.; Beirnvand, S. Voltammetric aptamer-based switch probes for sensing diclofenac using a glassy carbon electrode modified with a composite prepared from gold nanoparticles, carbon nanotubes and amino-functionalized Fe3O4 nanoparticles. Mikrochim. Acta, 2017, 184, 2825-2835.
[http://dx.doi.org/10.1007/s00604-017-2285-1]
[108]
Arvand, M.; Gholizadeh, T.M.; Zanjanchi, M.A. MWCNTs/Cu(OH)2 nanoparticles/IL nanocomposite modified glassy carbon electrode as a voltammetric sensor for determination of the non-steroidal anti-inflammatory drug diclofenac. Mater. Sci. Eng. C, 2012, 32(6), 1682-1689.
[http://dx.doi.org/10.1016/j.msec.2012.04.066] [PMID: 24364977]
[109]
Mokhtar, A.; Karimi-Maleh, H.; Ensafi, A.A.; Beitollahi, H. Application of modified multiwall carbon nanotubes paste electrode for simultaneous voltammetric determination of morphine and diclofenac in biological and pharmaceutical samples. Sens. Actuators B Chem., 2012, 169, 96-105.
[http://dx.doi.org/10.1016/j.snb.2012.03.059]
[110]
Thiagarajan, S.; Rajkumar, M.; Chen, S.M. Nano TiO2-PEDOT film for the simultaneous detection of ascorbic acid and diclofenac. Int. J. Electrochem. Sci., 2012, 7, 2109-2122.
[111]
Sarhangzadeh, K.; Khatami, A.A.; Jabbari, M.; Bahari, S. Simultaneous determination of diclofenac and indomethacin using a sensitive electrochemical sensor based on multiwalled carbon nanotube and ionic liquid nanocomposite. J. Appl. Electrochem., 2013, 43, 1217-1224.
[http://dx.doi.org/10.1007/s10800-013-0609-3]
[112]
Goodarzian, M.; Khalilzade, M.A.; Karimi, F.; Kumar Gupta, V.; Keyvanfard, M.; Bagheri, H.; Fouladgar, M. Square wave voltammetric determination of diclofenac in liquid phase using a novel ionic liquid multiwall carbon nanotubes paste electrode. J. Mol. Liq., 2014, 197, 114-119.
[http://dx.doi.org/10.1016/j.molliq.2014.04.037]
[113]
Arvand, M.; Hassannezhad, M. Square wave voltammetric determination of uric acid and diclofenac on multi-walled carbon nanotubes decorated with magnetic core-shell Fe3O4@SiO2 nanoparticles as an enhanced sensing interface. Ionics, 2015, 21, 3245-3256.
[http://dx.doi.org/10.1007/s11581-015-1514-z]
[114]
Yilmaz, B.; Kaban, S.; Akcay, B.K.; Ciltas, U. Differential pulse voltammetric determination of diclofenac in pharmaceutical preparations and human serum. Braz. J. Pharm. Sci., 2015, 51, 285-294.
[http://dx.doi.org/10.1590/S1984-82502015000200005]
[115]
Ciltas, U.; Yilmaz, B.; Kaban, S.; Akcay, B.K.; Nazik, G. Square wave voltammetric determination of diclofenac in pharmaceutical preparations and human serum. Iran. J. Pharm. Res., 2015, 14(3), 715-722.
[PMID: 26330859]
[116]
Karuppiah, C.; Cheemalapati, S.; Chen, S.M.; Palanisamy, S. Carboxyl-functionalized graphene oxide-modified electrode for the electrochemical determination of nonsteroidal anti-inflammatory drug diclofenac. Ionics, 2015, 21, 231-238.
[http://dx.doi.org/10.1007/s11581-014-1161-9]
[117]
Damiri, S.; Oskoei, Y.M.; Fouladgar, M. Highly sensitive voltammetric and impedimetric sensor based on an ionic liquid/cobalt hexacyanoferrate nanoparticle modified multi-walled carbon nanotubes electrode for diclofenac analysis. J. Exp. Nanosci., 2016, 11, 1384-1401.
[http://dx.doi.org/10.1080/17458080.2016.1233581]
[118]
Aguilar-Lira, G.Y.; Álvarez-Romero, G.A.; Zamora-Suárez, A.; Palomar-Pardavé, M.; Rojas-Hernández, A.; Rodríguez-Ávila, J.A.; Páez-Hernández, M.E. New insights on diclofenac electrochemistry using graphite as working electrode. J. Electroanal. Chem. (Lausanne Switz.), 2017, 794, 182-188.
[http://dx.doi.org/10.1016/j.jelechem.2017.03.050]
[119]
Basir, F.; Taei, M. Application of spinel-structured MgFe2O4 nanoparticles for simultaneous electrochemical determination diclofenac and morphine. Mikrochim. Acta, 2017, 184, 155-162.
[http://dx.doi.org/10.1007/s00604-016-1995-0]
[120]
Mofidi, Z.; Norouzi, P.; Sajadian, M.; Ganjali, M.R. Simultaneous extraction and determination of trace amounts of diclofenac from whole blood using supported liquid membrane microextraction and fast Fourier transform voltammetry. J. Sep. Sci., 2018, 41(7), 1644-1650.
[http://dx.doi.org/10.1002/jssc.201701119] [PMID: 29350466]
[121]
Cid-Cerón, M.; Guzmán-Hernández, D.; Ramírez-Silva, M.; Galano, A.; Romero-Romo, M.; Palomar-Pardavé, M. New insigths on the kinetics and mechanism of the electrochemical oxidation of diclofenac in neutral aqueous medium. Electrochim. Acta, 2016, 199, 92-98.
[http://dx.doi.org/10.1016/j.electacta.2016.03.094]
[122]
Sarhangzadeh, K.; Mmohamma-Rezaei, R.; Jabbri, M. Room-temperature ionic liquid and multi-walled carbon nanotube composite modified carbon-ceramic electrode as a sensitive voltammetric sensor for indomethacin. Anal. Lett., 2014, 47, 134-145.
[http://dx.doi.org/10.1080/00032719.2013.832267]
[123]
Arvand, M.; Gholizadeh, T.M. Gold nanorods–graphene oxide nanocomposite incorporated carbon nanotube paste modified glassy carbon electrode for voltammetric determination of indomethacin. Sens. Actuators B Chem., 2013, 186, 622-632.
[http://dx.doi.org/10.1016/j.snb.2013.06.059]
[124]
Liu, Y.; Zhang, Z.; Zhang, C.; Huang, W.; Liang, C.; Peng, J. Manganese dioxide-graphene nanocomposite film modified electrode as a sensitive voltammetric sensor of indomethacin detection. Bull. Korean Chem. Soc., 2016, 37, 1173-1179.
[http://dx.doi.org/10.1002/bkcs.10815]
[125]
Liu, Y.; Huang, Q.; Zhang, C.; Liang, C.; Wei, L.; Peng, J. A novel method for indomethacin determination based on graphene loaded nickel oxides nanoparticles film. Int. J. Electrochem. Sci., 2018, 13, 1484-1494.
[http://dx.doi.org/10.20964/2018.02.39]
[126]
Erk, N. Voltammetric and HPLC determination of dorzolamide hydrochloride in eye drops. Pharmazie, 2003, 58(12), 870-873.
[PMID: 14703963]
[127]
Alizadeh, T.; Ganjali, M.R.; Rafiei, F.; Akhoundian, M. Synthesis of nano-sized timolol-imprinted polymer via ultrasonication assisted suspension polymerization in silicon oil and its use for the fabrication of timolol voltammetric sensor. Mater. Sci. Eng. C, 2017, 77, 300-307.
[http://dx.doi.org/10.1016/j.msec.2017.03.168] [PMID: 28532033]
[128]
Nekoueian, K.; Amiri, M.; Sillanpaa, M. Carbon paste electrode with Au/Pd/MWCNT nanocomposite for nanomolar determination of timolol. Int. J. Electrochem. Sci., 2017, 12, 1612-1624.
[http://dx.doi.org/10.20964/2017.02.56]
[129]
Bulut, I. Study of binary complexes of nickel (II), copper (II), and vanadium (V) with acetazolamide in aqueous medium by voltammetry. Turk. J. Chem., 2009, 33, 507-520.
[130]
Rupar, J.; Aleksić, M.M.; Nikolić, K.; Popović-Nikolić, M.R. Comparative electrochemical studies of kinetic and thermodynamic parameters of Quinoxaline and Brimonidine redox process. Electrochim. Acta, 2018, 271, 220-231.
[http://dx.doi.org/10.1016/j.electacta.2018.03.114]
[131]
Aleksić, M.M.; Radulović, V.; Agbaba, D.; Kapetanović, V. An extensive study of electrochemical behavior of brimonidine and its determination at glassy carbon electrode. Electrochim. Acta, 2013, 106, 75-81.
[http://dx.doi.org/10.1016/j.electacta.2013.05.053]
[132]
Ghoneim, M.M.; Abdel-Azzem, M.K.; El-Desoky, H.S.; Ghoneim, A.M.; Khattab, A.E. Electrochemical reduction and stripping voltammetric determination of the anti-glaucoma drug levobunolol HCl in formulation and human serum at the mercury electrode. J. Braz. Chem. Soc., 2014, 25, 1407-1418.
[http://dx.doi.org/10.5935/0103-5053.20140123]
[133]
Shakibaian, V.; Parvin, M.H. Determination of acetazolamide by graphene paste electrode. J. Electroanal. Chem. (Lausanne Switz.), 2012, 683, 119-124.
[http://dx.doi.org/10.1016/j.jelechem.2012.07.042]
[134]
Khodadadian, M.; Ahmadi, F. Computer-assisted design and synthesis of molecularly imprinted polymers for selective extraction of acetazolamide from human plasma prior to its voltammetric determination. Talanta, 2010, 81(4-5), 1446-1453.
[http://dx.doi.org/10.1016/j.talanta.2010.02.049] [PMID: 20441921]
[135]
Gholivand, M.B.; Parvin, M.H. Voltammetric study of acetazolamide and its determination in human serum and urine using carbon paste electrode modified by gold nanoparticle. J. Electroanal. Chem. (Lausanne Switz.), 2011, 660, 163-168.
[http://dx.doi.org/10.1016/j.jelechem.2011.06.026]
[136]
Bulut, İ. Simultaneous square-wave voltammetric determination of acetazolamide and theophylline in pharmaceutical formulations. Russ. J. Electrochem., 2016, 52, 427-434.
[http://dx.doi.org/10.1134/S1023193516050025]
[137]
Radulović, V.; Aleksić, M.M.; Agbaba, D.; Kapetanović, V. An electroanalytical approach to brimonidine at boron doped diamond electrode based on its extensive voltammetric study. Electroanalysis, 2013, 25, 230-236.
[http://dx.doi.org/10.1002/elan.201200400]
[138]
Goyal, R.N.; Chatterjee, S.; Rana, A.R.S. A comparison of edge- and basal-plane pyrolytic graphite electrodes towards the sensitive determination of hydrocortisone. Talanta, 2010, 83(1), 149-155.
[http://dx.doi.org/10.1016/j.talanta.2010.08.054] [PMID: 21035656]
[139]
Smajdor, J.; Piech, R.; Rumin, M.; Bator, B.P. New high sensitive hydrocortisone determination by means of adsorptive stripping voltammetry on renewable mercury film silver based electrode. Electrochim. Acta, 2015, 182, 67-72.
[http://dx.doi.org/10.1016/j.electacta.2015.09.057]
[140]
Ni, Y.; Li, S.; Kokot, S. Simultaneous determination of three synthetic glucocorticoids by differential pulse stripping voltammetry with the aid of chemometrics. Anal. Lett., 2008, 41, 2058-2076.
[http://dx.doi.org/10.1080/00032710802208708]
[141]
Goyal, R.N.; Chatterjee, S.; Rana, A.R.S. Effect of cetyltrimethyl ammonium bromide on electrochemical determination of dexamethasone. Electroanalysis, 2010, 22, 2330-2338.
[http://dx.doi.org/10.1002/elan.201000227]
[142]
Balaji, K.; Reddy, G.R.; Reddy, T.M.; Reddy, S.J. Determination of prednisolone, dexamethasone and hydrocortisone in pharmaceutical formulations and biological fluid samples by voltammetric techniques using b-cyclodextrin modified carbon paste electrode. Afr. J. Pharm. Pharmacol., 2008, 2, 157-166.
[143]
Goyal, R.N.; Gupta, V.K.; Chatterjee, S. Fullerene-C60-modified edge plane pyrolytic graphite electrode for the determination of dexamethasone in pharmaceutical formulations and human biological fluids. Biosens. Bioelectron., 2009, 24(6), 1649-1654.
[http://dx.doi.org/10.1016/j.bios.2008.08.024] [PMID: 18829297]
[144]
Smajdor, J.; Piech, R.; Paczosa-Bator, B. Highly sensitive voltammetric determination of dexamethasone on amalgam film electrode. J. Electroanal. Chem. (Lausanne Switz.), 2018, 809, 147-152.
[http://dx.doi.org/10.1016/j.jelechem.2017.12.042]
[145]
Goyal, R.N.; Oyama, M.; Bachheti, N.; Singh, S.P. Fullerene C60 modified gold electrode and nanogold modified indium tin oxide electrode for prednisolone determination. Bioelectrochemistry, 2009, 74(2), 272-277.
[http://dx.doi.org/10.1016/j.bioelechem.2008.10.001] [PMID: 19028444]
[146]
Rezaei, B.; Mirahmadi‐Zare, S. Nanoscale Manipulation of prednisolone as electroactive configuration using molecularly imprinted‐multiwalled carbon nanotube paste electrode. Electroanalysis, 2011, 23, 2724-2734.
[http://dx.doi.org/10.1002/elan.201100261]
[147]
Smajdor, J.; Piech, R.; Paczosa‐Bator, B. A novel method of high sensitive determination of prednisolone on renewable mercury film silver based electrode. Electroanalysis, 2016, 28, 394-400.
[http://dx.doi.org/10.1002/elan.201500262]
[148]
Baranowska, I.; Markowski, P.; Gerle, A.; Baranowski, J. Determination of selected drugs in human urine by differential pulse voltammetry technique. Bioelectrochemistry, 2008, 73(1), 5-10.
[http://dx.doi.org/10.1016/j.bioelechem.2008.04.022] [PMID: 18515190]
[149]
Oliveira, T.M.B.; Ribeiro, F.W.P.; Soares, J.E.; de Lima-Neto, P.; Correia, A.N. Square-wave adsorptive voltammetry of dexamethasone: redox mechanism, kinetic properties, and electroanalytical determinations in multicomponent formulations. Anal. Biochem., 2011, 413(2), 148-156.
[http://dx.doi.org/10.1016/j.ab.2011.02.033] [PMID: 21356193]
[150]
Rezaei, B.; Zare, S.; Ensafi, A.A. Square wave voltammetric determination of Dexamethasone on a multiwalled carbon nanotube modified pencil electrode. J. Braz. Chem. Soc., 2011, 22, 897-904.
[http://dx.doi.org/10.1590/S0103-50532011000500012]
[151]
Oliveira, T.M.; Ribeiro, F.W.; do Nascimento, J.M.; Soares, J.E.; Freire, V.N.; Becker, H. Lima-Neto Pd, Correia AN, Direct electrochemical analysis of dexamethasone endocrine disruptor in raw natural waters. J. Braz. Chem. Soc., 2012, 23, 110-119.
[http://dx.doi.org/10.1590/S0103-50532012000100016]
[152]
Fatahi, A.; Malakooti, R.; Shahlaei, M. Electrocatalytic oxidation and determination of dexamethasone at an Fe3O4/PANI–Cu II microsphere modified carbon ionic liquid electrode. RSC Advances, 2017, 7, 11322-11330.
[http://dx.doi.org/10.1039/C6RA26125F]
[153]
Goyal, R.N.; Bishnoi, S. Simultaneous voltammetric determination of prednisone and prednisolone in human body fluids. Talanta, 2009, 79(3), 768-774.
[http://dx.doi.org/10.1016/j.talanta.2009.04.067] [PMID: 19576443]
[154]
Zayed, S.I. Cathodic adsorptive stripping voltammetric determination of prednisolone in pharmaceutical preparation and human urine. Acta Chim. Slov., 2011, 58(1), 75-80.
[PMID: 24061946]
[155]
Hammam, E. Determination of triamcinolone acetonide in pharmaceutical formulation and human serum by adsorptive cathodic stripping voltammetry. Chem. Anal. (Pol.), 2007, 52, 43-53.
[156]
Vedhi, C.; Eswar, R.; Prabu, H.G.; Manisankar, P. Determination of triamcinolone acetonide steroid on glassy carbon electrode by stripping voltammetric methods. Int. J. Electrochem. Sci., 2008, 3, 509-518.
[157]
Goyal, R.N.; Gupta, V.K.; Chatterjee, S. A sensitive voltammetric sensor for determination of synthetic corticosteroid triamcinolone, abused for doping. Biosens. Bioelectron., 2009, 24(12), 3562-3568.
[http://dx.doi.org/10.1016/j.bios.2009.05.016] [PMID: 19523805]
[158]
Rahbar, N.; Ramezani, Z.; Babapour, A. Electro-oxidation mechanism and direct square-wave voltammetric determination of lidocaine with a carbon-paste electrode. Jundishapur J. Nat. Pharm. Prod., 2015, 10(1)e19382
[http://dx.doi.org/10.17795/jjnpp-19382] [PMID: 25866720]
[159]
Rahbar, N.; Ramezani, Z.; Ghanavati, J. CuO-nanoparticles modified carbon paste electrode for square wave voltammetric determination of lidocaine: Comparing classical and Box–Behnken optimization methodologies. Chin. Chem. Lett., 2016, 27, 837-842.
[http://dx.doi.org/10.1016/j.cclet.2016.04.017]
[160]
Wei, M.; Zhou, Y.; Zhi, J.; Fu, D.; Einaga, Y.; Fujishima, A.; Wang, X.; Gu, Z. Comparison of boron-doped diamond and glassy carbon electrodes for determination of procaine hydrochloride. Electroanalysis, 2008, 20, 137-143.
[http://dx.doi.org/10.1002/elan.200704024]
[161]
Dutu, G.; Tertis, M.; Sandulescu, R.; Cristea, C. Differential pulse and square wave voltammetric methods for procaine hydrochloride determination using graphite based spes modified with p-tertbutyl-diester-calix[4]arene. Rev. Chim. Bucharest, 2014, 65, 142-147.
[162]
Matos, C.R.S.; Souza, H.O.; Santana, T.B.S.; Candido, L.P.M.; Cunha, F.G.C.; Sussuchi, E.M.; Gimenez, I.F. Cd1-xMgxTe semiconductor nanocrystal alloys: Synthesis, preparation of nanocomposites with graphene-based materials, and electrochemical detection of lidocaine and epinephrine. Mikrochim. Acta, 2017, 184, 1755-1764.
[http://dx.doi.org/10.1007/s00604-017-2165-8]
[163]
Zhang, X.; Zhao, D.; Feng, L.; Jia, L.; Wang, S. Electrochemical sensor for procaine based on a glassy carbon electrode modified with poly-amidosulfonic acid and multi-walled carbon nanotubes. Mikrochim. Acta, 2010, 169, 153-159.
[http://dx.doi.org/10.1007/s00604-010-0330-4]
[164]
Liu, A.L.; Wang, J.D.; Chen, W.; Xia, X.H.; Chen, Y.Z.; Lin, X.H. Simultaneous and sensitive determination of procaine and its metabolite for pharmaceutical quality control and pharmacokinetic research by using a graphite paste electrode. J. Solid State Electrochem., 2012, 16, 1343-1351.
[http://dx.doi.org/10.1007/s10008-011-1517-2]
[165]
Silva, T.G.; Salles, M.O.; Paixão, T.R.L.C. Investigatıon of the use of glassy carbon electrode modified with ruthenium hexacyanoferrate for detection of procaine. Quim. Nova, 2015, 38, 85-90.
[166]
Guan, X.; Li, X.; Chai, S.; Zhang, X.; Zou, Q.; Zhang, J. A sensitive electrochemical sensor based on solution polymerized molecularly imprinted polymers for procaine detection. Electroanalysis, 2016, 28, 2007-2015.
[http://dx.doi.org/10.1002/elan.201600007]
[167]
Yue, Y.; Liang, Q.; Liao, Y.; Guo, Y.; Shao, S. Electrooxidation behavior and electrochemistry determination method of the xanthophylls: Lutein in nonaqueous media. J. Electroanal. Chem. (Lausanne Switz.), 2012, 682, 90-94.
[http://dx.doi.org/10.1016/j.jelechem.2012.07.029]
[168]
Gholivand, M.B.; Malekzadeh, G.; Torkashvand, M. Enhancement effect of sodium-dodecyl sulfate on the anodic stripping voltammetric signal of phenylephrine hydrochloride at carbon paste electrode. J. Electroanal. Chem. (Lausanne Switz.), 2013, 704, 50-56.
[http://dx.doi.org/10.1016/j.jelechem.2013.06.013]
[169]
Li, K.; Zhu, M.; Zhang, H.; Zhao, J. Electrochemical determination of phenylephrine hydrochloride based on graphene-tio2 modified glassy carbon electrode. Int. J. Electrochem. Sci., 2013, 8, 4047-4054.
[170]
Dar, R.A.; Brahman, P.K.; Tiwari, S.; Pitre, K.S. Electrochemical determination of atropine at multi-wall carbon nanotube electrode based on the enhancement effect of sodium dodecyl benzene sulfonate. Colloids Surf. B Biointerfaces, 2012, 91, 10-17.
[http://dx.doi.org/10.1016/j.colsurfb.2011.10.020] [PMID: 22118893]
[171]
Daneshgar, P.; Norouzi, P.; Ganjali, M.R. Application of a continuous square-wave potential program for sub nano molar determination of ketotifen. Chem. Pharm. Bull. (Tokyo), 2009, 57(2), 117-121.
[http://dx.doi.org/10.1248/cpb.57.117] [PMID: 19182398]
[172]
Kalambate, P.K.; Srivastava, A.K. Simultaneous voltammetric determination of paracetamol, cetirizine and phenylephrine using a multiwalled carbon nanotube-platinum nanoparticles nanocomposite modified carbon paste electrode. Sens. Actuators B Chem., 2016, 233, 237-248.
[http://dx.doi.org/10.1016/j.snb.2016.04.063]
[173]
Habibi, B.; Jahanbakhshi, M. Simultaneous determination of ascorbic acid, paracetamol and phenylephrine: Carbon nanotubes ceramic electrode as a renewable electrode. Anal. Bioanal. Electrochem., 2015, 7, 45-58.
[174]
Zhu, Y.H.; Zhang, Z.L.; Zhao, W.; Pang, D.W. Voltammetric behavior and determination of phenylephrine at a glassy carbon electrode modified with multi-wall carbon nanotubes. Sens. Actuators B Chem., 2006, 119, 308-314.
[http://dx.doi.org/10.1016/j.snb.2005.12.026]
[175]
Amiri, M.; Rezapour, F.; Bezaatpour, A. Hydrophilic carbon nanoparticulates at the surface of carbon paste electrode improve determination of paracetamol, phenylephrine and dextromethorphan. J. Electroanal. Chem. (Lausanne Switz.), 2014, 735, 10-18.
[http://dx.doi.org/10.1016/j.jelechem.2014.10.006]

© 2025 Bentham Science Publishers | Privacy Policy