Generic placeholder image

Current Enzyme Inhibition

Editor-in-Chief

ISSN (Print): 1573-4080
ISSN (Online): 1875-6662

Research Article

High Antioxidant Capacities and Anti-inflammatory Effects of Hammada elegans Botsch. Extracts: An in vitro Assessment

Author(s): Bensafiddine Feriha, Asseli Brahim, Mahfoudi Reguia, Djeridane Amar* and Yousfi Mohamed

Volume 15, Issue 1, 2019

Page: [55 - 68] Pages: 14

DOI: 10.2174/1573408015666190225151916

Abstract

Introduction: Plants supply traditional Algerian medicines for the treatment of antiinflammatory effect. The reasons for the use of traditional treatments were that pure compounds obtained were also effective in reducing the toxicities of toxic agents or other drugs.

Methods: In this study, we explore the phytochemical composition and the phenolic content by indirect method to evaluate the antioxidants and the anti-inflammatory capacities of twelve extracts from three plants.

Results: The total phenolic content ranged from 0.168 ± 0.020 to 4.166 ± 0.124 mg per gram of dry weight. Phytochemical screening revealed that tannins, C-heterosides, O-reduced heterosides and reducing compounds are the most common chemical groups. The highest antiradical activity was achieved with methanolic extract of Hammada elegans (EC50 = 0.551 ± 0.171mg/mL). However, the acetonic extract of Hammada elegans represents the most important reducing activity (EC50 = 0.747 ± 0.004mg/mL). Moreover, this extract also displays the highest chelating ferrous ions effect (EC50 = 5.749 ± 0.009 mg/mL) while the hydromethanolic extract of Cleome arabica has the best antilipoperoxidative effect (EC50 = 0.031 ± 0.000mg/mL). Furthermore, all extracts inhibit the activity of lipooxygenase and cyclooxygenase with IC50 values less than 19.210 ± 0.297 mg/mL. Therefore, the acetonic extract of Hammada elegans appears to be twice greater than that of standard inhibitors.

Conclusion: The fractionation of the acetonic extract of Hammada elegans has given a potent bioactive compound which seems to have potential therapeutic possibilities for the prevention of the inflammatory effects.

Keywords: Anti-inflammatory effect, antioxidant capacity, CPA, Hammada elegans, isolation, phytochemical screening.

Graphical Abstract

[1]
Hill, A.F. Economic Botany A textbook of useful plants and plant products.2nd ed. McGarw-Hill Book Company Inc. New York., 1952.
[2]
Jacob, R.A. The integrated antioxidant system. Nutr. Res., 1995, 15, 755-766.
[3]
Freidovich, I. Fundamental aspects of reactive oxygen species, or what’s the matter with oxygen? N.Y. Acad. Sci, 1999, 893, 13-18.
[4]
Dubois, R.N.; Abramson, S.B.; Crofford, L.; Gupta, R.A.; Simon, L.S.; Van De Putte, L.B.; Lipsky, P.E. Cyclooxygenase in biology and disease. FASEB J., 1998, 12, 1063-1073.
[5]
Smith, W.L.; DeWitt, D.L.; Garavito, R.M. Cyclooxygenases: Structural, cellular, and molecular biology. Annu. Rev. Biochem., 2000, 69, 145-182.
[6]
Rahman, K. Studies on free radicals, antioxidants, and co-factors. Clin. Interv. Aging, 2007, 2, 219-236.
[7]
Rates, S.M. Plants as source of drugs. Toxicon, 2001, 39, 603-613.
[8]
Benarba, B.; Belabid, L.; Righi, K.; Bekkar, A.A.; Elouissi, M.; Khaldi, A. Study of medicinal plants used by traditional healers in Mascara (North West of Algeria). J. Ethnopharmacol., 2015, 175, 626-637.
[9]
Sofowora, A. Medicinal plants and traditional medicine in Africa, 2nd ed; Spectrum Books Limited: Ibadan, Nigeria, 1993, pp. 1-153.
[10]
Trease, G.E.; Evans, W.C.W.B. Scandars Company Ltd.London. Pharmacognosy; , 1989, 14, pp. 269-300.
[11]
Harborne, J.B. Phytochemical methods guide to modern technique of plant analysis, 2nd ed; Chapman and Hall: London, 1984, pp. 4-16.
[12]
Govindarajan, R.; Rastogi, S.; Vijayakumar, M. Studies on antioxidant activities of Bull. J. Biol. Pharm. Bull, 2003, 55, 1424-1427.
[13]
Apak, R.; Güçlü, K.; Demirata, B.; Özyürek, M.; Esin Çelik, S.; Bektaşoğlu, B.; Işıl Berker, K.; Özyurt, D. Comparative evaluation of various total antioxidant capacity assays applied to phenolic compounds with the CUPRAC assay. Molecules, 2007, 12, 1496-1547.
[14]
Le, K.; Chiu, F.; Ng, K. Identification and quantification of antioxidants in Fructus lycii. Food Chem., 2007, 105, 353-363.
[15]
Foti, M.; Piattelli, M.; Baratta, M.T.; Ruberto, G. Flavonoids, coumarins, and cinnamic acids as antioxidants in a micellar system. Structure-activity relationship. Agric. Food Chem, 1996, 44, 497-501.
[16]
Haraguchi, H.; Hashimoto, K.; Yagi, A. Antioxidative substances in leaves of Polygonum hydropiper. Agric. Food Chem., 1992, 40, 1349-1351.
[17]
Lyckander, I.M.; Malterud, K.I. Lipophilic flavonoids from Orthosiphon spicatus as inhibitors of 15-lipoxygenase. Acta Pharm. Nord., 1992, 4, 159-166.
[18]
Gacche, R.; Shaikh, R.; Pund, M. Cyclooxygenase inhibitory, cytotoxicity and free radical scavenging activities of selected medicinal plants used in indian traditional medicine. Pharmacogno, 2011, 3, 57-64.
[19]
Bouriche, H.; Selloum, L.; Tigrine, C.; Boudoukha, C. Effect of Cleome Arabica leaf extract on rat paw oedema and human neutrophil migration. Pharm. Biol., 2003, 41, 10-15.
[20]
Madi, A.; Zaghed, N. Halmi, Belkhiri, S. Antioxidant activity and phenolic compounds contents of spider flower (Cleome Arabica Ssp. Arabica), A well acclimated species in the algerian desert areas. E.S.J., 2017, 13, 1857-7881.
[21]
El-Waziry, A.M. Nutritive value assessment of ensiling or mixing Acacia and Atriplex using in vitro gas production technique. Res. J. Agric. Biol. Sci., 2007, 3, 605-614.
[22]
Khechba, I.; Djeridane, A.; Yousfi, M. Twenty traditional Algerian plants used in diabetes therapy as strong inhibtion of α-amylase activity. I. J. Carb. Chem, 2014, 10, 58-67.
[23]
Chakraverty, A.S.; Mujmumdar, A.R.; Ramaswamy, H. Handbook of Posthavest Technology Cereal; Fruits, Vegetables, Tea and Spices, Marcel Dekkar, 2003, p. 83.
[24]
Benhammou, N.; Atik Bekkara, F.; Kadifkova Panovska, T. Antioxidant activity of methanolic extracts and some bioactive compounds of Atriplex halimus. C. R. Chimie., 2009, 12, 1259-1266.
[25]
Djeridane, A.; Yousfi, M.; Brunel, J.M.; Stocker, P. Isolation and characterization of a new steroid derivative as a powerful antioxidant from Cleome arabica in screening the in vitro antioxidant capacity of 18 Algerian medicinal plants. Food Chem. Toxicol., 2010, 48, 2599-2606.
[26]
Ismail, I.S.; Ito, H.; Selloum, L.; Bouriche, H.; Yoshida, T. Constituents of Cleome arabica leaves and twigs. J. Natural. Med., 2005, 59, 53.
[27]
Touil, A.; Rhouati, S. Flavonol glycosides from Cleome arabica. J. Soc. Alg. Chim, 1998, 8, 117-120.
[28]
Wael, A.; Wael, M.; Khaled, A.; Naglaa, M.; Abdel Nasser, B. Chemical constituents and biological activities of cleome genus: a brief review. Int. J. Pharmacogn. Phytochem. Res, 2016, 8, 777-787.
[29]
Havsteen, B.H. The biochemistry and medical significance of the flavonoids. Pharmacol. Ther., 2002, 96, 67-202.
[30]
Dave, H.; Ledwani, L. A review on anthraquinones isolated from Cassia species and their application. Indian J. Nat. Prod. Resour., 2012, 3, 291-319.
[31]
Konrath, E.L.; Passos Cdos, S.; Klein, L.C., Jr; Henriques, A.T. Alkaloids as a source of potential anticholinesterase inhibitors for the treatment of Alzheimer’s disease. J. Pharm. Pharmacol., 2013, 65, 1701-1725.
[32]
Bott, M.; Distrutti, E.; Mencarelli, A.; Parlato, M.C.; Raffi, F.; Cipriani, S.; Fiorucci, S. Anti-inflammatory activity of a new class of nitric oxide synthase inhibitors that release nitric oxide. ChemMedChem, 2008, 3, 1580-1588.
[33]
Tsai, P.J.; Tsai, T.H.; Yun, C.H., and; Cho, S. Evaluation of NO suppressing activity of several Mediterranean culinary spices. Food Chem. Toxicol., 2007, 45, 440-447.
[34]
Prior, R.L.; Cao, G. Hort Sci. Antioxidant phytochemicals in fruits and vegetables Diet and health implications. HortSci, 2000, 35, 588-592.
[35]
Badarinath, A.V.; Mallikarjuna, K.; Madhu Sudhana, C.C.; Ramkanth, S.; Rajan, T.V.S.; Gnanaprakash, K.A. Review on in vitro antioxidant methods: comparisions, correlations and considerations. Int. J. Pharm. Tech. Res., 2010, 2, 1276-1285.
[36]
Ghasemzadeh, A.; Hawa, Z.E.J.; Rahmat, A. Antioxidant activities, total phenolics and flavonoids content in two varieties of malaysia young ginger (Zingiber officinale Roscoe). Molecules, 2010, 15, 4324-4333.
[37]
Tiong, S.; Yeng Looi, C.; Hazni, H.; Arya, A.; Paydar, M.; Fen Wong, W.; Cheah, S.; Mohd Rais, M.; Awang, K. Antidiabetic and Antioxidant properties of Alkaloids from Catharanthus roseus (L.) G. Don. Molecules, 2013, 18, 9770-9784.
[38]
Grazul, M.; Budzisz, E. Biological activity of metal ions complexes of chromones, coumarins and flavones. Coordin. Chem. Rev., 2009, 253, 2588-2598.
[39]
Abdille, M.H.; Singh, R.P.; Jayaprakasha, G.K.; Jena, B.S. Antioxidant activity of the extracts from Dillenia indica fruits. Food Chem., 2004, 90, 891-896.
[40]
Bakasso, S.; Lamien-meda, A.; Lamien, C.E.; Kiendrebeogo, M.; Coulibaly, A.Y.; Compaoré, M. In vitro Inhibition of Acetyl Cholinesterase, Lipoxygenase, Xanthine Oxidase and Antibacterial Activities of Five Indigofera (Fabaceae) Aqueous Acetone Extracts from Burkina Faso. Curr. Res. J. Biol. Sci, 2013, 5, 115-122.
[41]
Sekhar, S.; Kumara, S.; Niranjana, S.; Prakash, H. In vitro antioxidant activity, lipoxygenase, cyclooxygenase-2 inhibition and DNA protection properties of memecylon species. Int. J. Pharm. pharm. Sci., 2013, 5, 257-262.
[42]
Shalabia, S.E. Bioactive constituents of Atriplex halimus plant. J. Nat. Prod., 2011, 4, 25-41.
[43]
Wangensteen, H.; Miron, A.; Alamgir, M.; Rajia, S.; Samuelsen, A.B.; Malterud, K.E. Antioxidant and 15-lipoxygenase inhibitory activity of rotenoids, isoflavones and phenolic glycosides from Sarcolobus globosus. Fitoterapia, 2016, 77, 290-295.
[44]
Le Sage, F. Meilhac, O.; Gonthier, M. P. anti-inflammatory and antioxidant effects of polyphenols extracted from Antirhea borbonica medicinal plant on adipocytes exposed to Porphyromonas gingivalis and Escherichia coli lipopolysaccharides. Pharmacol. Res., 2017, 119, 303-312.
[45]
Kasparavičienė, G.; Ramanauskienė, K.; Savickas, A. Evaluation of total phenolic content and antioxidant activity of different Rosmarinus officinalis L. ethanolic extracts. Biologija, 2013, 59, 39-44.
[46]
Huang, D.; Ou, B.; Prior, R.L. The Chemistry behind Antioxidant Capacity Assays. J. Agric. Food Chem., 2005, 53, 1841-1856.
[47]
Ying, X.; Mingtao, F.; Junjian, R.; Z., Tingjing; Huiye, S.; Mei, D.; Zhe, Z.; Haiyan, Z. Variation in phenolic compounds and antioxidant activity in apple seeds of seven cultivars. J. Hum. Nutr., 2016, 23, 279-388.
[48]
Wang, L.; Xiaojie, H.; Zhuwen, Y.; Wei, X.; Yan, D. Chelidonine suppresses LPS-Induced production of inflammatory mediators through the inhibitory of the TLR4/NF-κB signaling pathway in RAW264.7 macrophages. Inflamm. Res., 2018, 107, 1151-1159.
[49]
Rackova, L.; Oblozinsky, M.; Kostalova, D.; Kettmann, V.; Bezakova, L. Free radical scavenging activity and lipoxygenase inhibition of Mahonia aquifolium extract and isoquinoline alkaloids. Int. J. Inflam., 2007, 4, 15.
[50]
Jonathan, P.; Adjimani, P.A. Antioxidant and free radical scavenging activity of iron chelators. Toxicol. Rep., 2015, 2, 721-728.
[51]
Milaeva, E.R.; Orlova, S.I.; Osolodkin, D.I.; Palyulin, V.A.; Fursova, E.Yu.; Ovcharenko, V.I.; Zefirov, N.S. Copper complexes with nitronylnitroxyl radicals as lipoxygenase inhibitors with antioxidant activity. Russ. Chem. B., 2011, 60, 2564-2571.
[52]
Mitali, G.; Palash, M. In vitro antidiabetic and antioxidant activity of Calamus erectus Roxb. Fruit: A wild plant of Darjeeling Himalaya. Int. J. Pharm Bio Sci., 2013, 4, 671-684.

© 2024 Bentham Science Publishers | Privacy Policy