[1]
Sakai, H.; Fujii, T.; Takeguchi, N. Proton-potassium (H+/K+)
ATPases: Properties and roles in health and diseases. In Astrid, S.;
Helmut, S.; Roland K.O.S (Eds). . The Alkali Metal Ions: Their Role
in Life. Metal Ions in Life Sciences; , 2016, 16, pp. 459-483.
[2]
Shin, J.M.; Munson, K.; Vagin, O.; Sachs, G. The gastric HK-ATPase: Structure, function and inhibition. Pflugers Arch., 2009, 457, 609-622.
[3]
Berg, J.M.; Tymoczko, J.L.; Stryer, L. Biochemistry , ((7th ed.). ), NewYork: W.H. Freeman and Company.
[4]
Shin, J.M.; Vagin, O.; Munson, K.; Kidd, M.; Modlin, I.M.; Sachs, G. Molecular mechanisms in therapy of acid-related diseases. Cell. Mol. Life Sci., 2008, 65, 264-281.
[5]
Michelle, L. Gumz, M.L.; Lynch, I.J.; Greenlee, M.M.; Cain, B.D.; Wingo, C.S. The renal H+-K+-ATPases: Physiology, regulation, and structure. Am. J. Physiol. Renal Physiol., 2010, 298, F12-F21.
[6]
Sachs, G.; Shin, J.M.; Vagin, O. lambrecht, N.; Yacubov, I.; Munson, K. The gastric H,K ATPase as a drug target: Past, present, and future. J. Clin. Gastroenterol., 2007, 41, S226-S242.
[7]
Bamford, M.H. +, K+-ATPase inhibitors in the treatment of acid related disorders. Prog. Med. Chem., 2009, 47, 76-162.
[8]
Panchal, T.; Bailey, N.; Bamford, M.; Demont, E.; Elliott, R.; Farre-Gutierrez, I.; Garton, N.; Hayhow, T.; Hutley, G.; Naylor, A. Evaluation of basic, heterocyclic ring systems as templates for use as potassium competitive acid blockers (pCABs). Bioorg. Med. Chem. Lett., 2009, 19, 6813-6817.
[9]
Zimmermann, P.J.; Brehm, C.; Buhr, W.; Palmer, A.M.; Volz, J.; Simon, W.A. Novel imidazo[1, 2-a]pyrazine derivatives as potent reversible inhibitors of the gastric H+/K+-ATPase. Bioorg. Med. Chem., 2008, 16, 536-541.
[10]
Zimmermann, P.J.; Buhr, W.; Brehm, C.; Palmer, A.M.; Feth, M.P.; Bilfinger, J.; Simon, W.A. Novel indanyl-substituted imidazo[1,2-a]pyridines as potent reversible inhibitors of the gastric H+/K+-ATPase. Bioorg. Med. Chem. Lett., 2007, 17, 5374-5378.
[11]
Ghose, A.K.; Viswanadhan, V.N.; Wendoloski, J.J. Prediction of hydrophobic (lipophilic) properties of small organic molecules using fragmental methods: An analysis of ALOGP and CLOGP methods. J. Phys. Chem., 1998, 102, 3762-3772.
[12]
Ghose, A.K.; Crippen, G.M. Atomic physicochemical parameters for three-dimensional-structure-directed quantitative structure-activity relationships. 2. Modeling dispersive and hydrophobic interactions. J. Chem. Inf. Comput. Sci., 1987, 27, 21-35.
[13]
Sander, T.; Freyss, J.; Korff, M.V.; Rufener, C. DataWarrior: An open-source program for chemistry aware data visualization and analysis. J. Chem. Inf. Model., 2015, 55, 460-473.
[14]
Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev., 2001, 46, 3-26.
[15]
Lipinski, C.A. Lead- and drug-like compounds: The rule-of-five revolution. Drug Discov. Today. Technol., 2004, 1, 337-341.
[16]
Abe, K.; Tani, K.; Fujiyoshi, Y. Conformational rearrangement of gastric H+,K+ ATPase induced by an acid suppressant. Nat. Commun., 2011, 2, 155.
[17]
Gupta, S.P. Roles of fluorine in drug design and drug action. Lett. Drug Des. Discov., 2019, 16 in Press
[18]
Ahmad, I.; Shaik, B.; Singh, N.; Agrawal, V.K.; Anita, K.; Gupta, S.P. Quantitative structure-activity relationship and molecular modeling studies on a series of H+/K+ -ATPase inhibitors. J. Appld. Biophar. Pharmacokinetics., 2016, 4, 20-39.
[19]
Agrawal, N.; Bajpai, A.; Srivastava, V.; Gupta, S.P. A quantitative structure activity relationship and molecular modeling study on a series of biaryl imidazole derivatives acting as H+/K+-ATPase inhibitors. Struc. Biol., 2013, 810691, 11.
[20]
Agarwal, N.; Bajpai, A.; Gupta, S.P. A quantitative structure-activity relationship and molecular modeling study on a series of heteroaryl- and heterocyclyl-substituted imidazo[1, 2-a]pyridine derivatives acting as acid pump antagonists. Biochem. Res. Int., 2013, 141469, 15.