Generic placeholder image

Protein & Peptide Letters

Editor-in-Chief

ISSN (Print): 0929-8665
ISSN (Online): 1875-5305

Review Article

Little Antimicrobial Peptides with Big Therapeutic Roles

Author(s): Dan Zhang, Yu He, Yang Ye, Yanni Ma, Peng Zhang, Hongxia Zhu, Ningzhi Xu and Shufang Liang*

Volume 26, Issue 8, 2019

Page: [564 - 578] Pages: 15

DOI: 10.2174/1573406415666190222141905

Abstract

Antimicrobial Peptides (AMPs) are short amphipathic biological molecules generally with less than 100 amino acids. AMPs not only present high bioactivities against bacteria, fungi or protists-induced infections, but also play important roles in anticancer activity, immune response and inflammation regulation. AMPs are classified as ribosomally synthesized, non-ribosomally synthesized and post-translationally modified, non-ribosomally synthesized ones and several synthetic or semisynthetic peptides according to their synthesis with or without the involvement of ribosomes. The molecular characterization and bioactivity action mechanisms are summarized for several ribosomally synthesized AMPs and main non-ribosomally synthesized members (cyclopeptides, lipopeptides, glycopeptides, lipoglycopeptides). We also analyze challenges and new strategies to overcome drug resistance and application limitations for AMP discovery. In conclusion, the growing novel small molecular AMPs have huge therapeutic potentials of antibacterial, antiviral, anticancer and immunoregulatory bioactivities through new techniquesdriven drug discovery strategy including bioinformatics prediction, de novo rational design and biosynthesis.

Keywords: Antimicrobial peptides, bioactivity, molecular mechanisms, therapeutic potential, anticancer activity, antibacterial.

Graphical Abstract

[1]
Wang, G.; Li, X.; Wang, Z. APD3: the antimicrobial peptide database as a tool for research and education. Nucleic Acids Res., 2016, 44(D1), D1087-D1093.
[http://dx.doi.org/10.1093/nar/gkv1278] [PMID: 26602694]
[2]
Moravej, H.; Moravej, Z.; Yazdanparast, M.; Heiat, M.; Mirhosseini, A.; Moosazadeh Moghaddam, M.; Mirnejad, R. Moosazadeh, Moghaddam, M.; Mirnejad, R. Antimicrobial peptides: features, action, and their resistance mechanisms in bacteria. Microb. Drug Resist., 2018, 24(6), 747-767.
[http://dx.doi.org/10.1089/mdr.2017.0392] [PMID: 29957118]
[3]
Seefeldt, A.C.; Nguyen, F.; Antunes, S.; Pérébaskine, N.; Graf, M.; Arenz, S.; Inampudi, K.K.; Douat, C.; Guichard, G.; Wilson, D.N.; Innis, C.A. The proline-rich antimicrobial peptide Onc112 inhibits translation by blocking and destabilizing the initiation complex. Nat. Struct. Mol. Biol., 2015, 22(6), 470-475.
[http://dx.doi.org/10.1038/nsmb.3034] [PMID: 25984971]
[4]
Chen, H.L.; Su, P.Y.; Kuo, S.C.; Lauderdale, T.Y.; Shih, C. Adding a C-terminal cysteine (CTC) can enhance the bactericidal activity of three different antimicrobial peptides. Front. Microbiol., 2018, 9, 1440.
[http://dx.doi.org/10.3389/fmicb.2018.01440] [PMID: 30002652]
[5]
Chen, H.L.; Su, P.Y.; Chang, Y.S.; Wu, S.Y.; Liao, Y.D.; Yu, H.M.; Lauderdale, T.L.; Chang, K.; Shih, C. Identification of a novel antimicrobial peptide from human hepatitis B virus core protein arginine-rich domain (ARD). PLoS Pathog., 2013, 9(6)e1003425
[http://dx.doi.org/10.1371/journal.ppat.1003425] [PMID: 23785287]
[6]
Takahashi, H.; Palermo, E.F.; Yasuhara, K.; Caputo, G.A.; Kuroda, K. Molecular design, structures, and activity of antimicrobial peptide-mimetic polymers. Macromol. Biosci., 2013, 13(10), 1285-1299.
[http://dx.doi.org/10.1002/mabi.201300126] [PMID: 23832766]
[7]
Zhao, J.; Zhao, C.; Liang, G.; Zhang, M.; Zheng, J. Engineering antimicrobial peptides with improved antimicrobial and hemolytic activities. J. Chem. Inf. Model., 2013, 53(12), 3280-3296.
[http://dx.doi.org/10.1021/ci400477e] [PMID: 24279498]
[8]
Ageitos, J.M.; Sánchez-Pérez, A.; Calo-Mata, P.; Villa, T.G. Antimicrobial peptides (AMPs): Ancient compounds that represent novel weapons in the fight against bacteria. Biochem. Pharmacol., 2017, 133, 117-138.
[http://dx.doi.org/10.1016/j.bcp.2016.09.018] [PMID: 27663838]
[9]
Kopfnagel, V.; Harder, J.; Werfel, T. Expression of antimicrobial peptides in atopic dermatitis and possible immunoregulatory functions. Curr. Opin. Allergy Clin. Immunol., 2013, 13(5), 531-536.
[http://dx.doi.org/10.1097/ACI.0b013e328364ddfd] [PMID: 23974683]
[10]
Guilhelmelli, F.; Vilela, N.; Albuquerque, P. Derengowski, Lda.S.; Silva-Pereira, I.; Kyaw, C.M. Antibiotic development challenges: the various mechanisms of action of antimicrobial peptides and of bacterial resistance. Front. Microbiol., 2013, 4, 353.
[http://dx.doi.org/10.3389/fmicb.2013.00353] [PMID: 24367355]
[11]
Pi, P.E.; Niemirowicz, K.; Wnorowska, U.; Watek, M.; Wollny, T.; Gluszek, K.; Gozdz, S.; Levental, I.; Bucki, R. The role of cathelicidin LL-37 in cancer development. Arch. Immunol. Ther. Exp. (Warsz.), 2016, 64, 33-46.
[http://dx.doi.org/https://doi.org/10.1007/s00005-015-0359-5] [PMID: 26395996]
[12]
Lu, W. Antimicrobial peptides. Semin. Cell Dev. Biol., 2019, 88, 105-106.
[http://dx.doi.org/10.1016/j.semcdb.2018.05.026] [PMID: 29859256]
[13]
Pasupuleti, M.; Schmidtchen, A.; Malmsten, M. Antimicrobial peptides: key components of the innate immune system. Crit. Rev. Biotechnol., 2012, 32(2), 143-171.
[http://dx.doi.org/10.3109/07388551.2011.594423] [PMID: 22074402]
[14]
Robbel, L.; Marahiel, M.A. Daptomycin, a bacterial lipopeptide synthesized by a nonribosomal machinery. J. Biol. Chem., 2010, 285(36), 27501-27508.
[http://dx.doi.org/10.1074/jbc.R110.128181] [PMID: 20522545]
[15]
Nambiar, S.; Madurawe, R.D.; Zuk, S.M.; Khan, S.R.; Ellison, C.D.; Faustino, P.J.; Mans, D.J.; Trehy, M.L.; Hadwiger, M.E.; Boyne, M.T., II; Biswas, K.; Cox, E.M. Product quality of parenteral vancomycin products in the United States. Antimicrob. Agents Chemother., 2012, 56(6), 2819-2823.
[http://dx.doi.org/10.1128/AAC.05344-11] [PMID: 22314525]
[16]
Campana, C.; Regazzi, M.B.; Buggia, I.; Molinaro, M. Clinically significant drug interactions with cyclosporin. An update. Clin. Pharmacokinet., 1996, 30(2), 141-179.
[http://dx.doi.org/10.2165/00003088-199630020-00004] [PMID: 8906896]
[17]
Patel, S.; Akhtar, N. Antimicrobial peptides (AMPs): The quintessential ‘offense and defense’ molecules are more than antimicrobials. Biomed. Pharmacother., 2017, 95, 1276-1283.
[http://dx.doi.org/10.1016/j.biopha.2017.09.042] [PMID: 28938518]
[18]
Seshadri, S.V.; Gabere, M.N.; Pretorius, A.; Adam, S.; Christoffels, A.; Lehväslaiho, M.; Archer, J.A.C.; Bajic, V.B. DAMPD: A manually curated antimicrobial peptide database. Nucleic Acids Res., 2012, 40, D1108-D1112.
[19]
Conway, K.R.; Boddy, C.N. ClusterMine360: a database of microbial PKS/NRPS biosynthesis. Nucleic Acids Res., 2013, 41(Database issue), D402-D407.
[http://dx.doi.org/https://doi.org/10.1093/nar/gks993] [PMID: 23104377]
[20]
Waghu, F.H.; Gopi, L.; Barai, R.S.; Ramteke, P.; Nizami, B.; Idicula-Thomas, S. CAMP: collection of sequences and structures of antimicrobial peptides. Nucleic Acids Res., 2014, 42(Database issue), D1154-D1158.
[http://dx.doi.org/10.1093/nar/gkt1157] [PMID: 24265220]
[21]
Dürr, U.H.; Sudheendra, U.S.; Ramamoorthy, A. LL-37, the only human member of the cathelicidin family of antimicrobial peptides. Biochim. Biophys. Acta, 2006, 1758(9), 1408-1425.
[http://dx.doi.org/10.1016/j.bbamem.2006.03.030] [PMID: 16716248]
[22]
Hsieh, I.N.; Hartshorn, K.L. The role of antimicrobial peptides in influenza virus infection and their potential as antiviral and immunomodulatory therapy. Pharmaceuticals (Basel), 2016, 9(3)E53
[http://dx.doi.org/10.3390/ph9030053] [PMID: 27608030]
[23]
Lai, R.; Zheng, Y.T.; Shen, J.H.; Liu, G.J.; Liu, H.; Lee, W.H.; Tang, S.Z.; Zhang, Y. Antimicrobial peptides from skin secretions of Chinese red belly toad Bombina maxima. Peptides, 2002, 23(3), 427-435.
[http://dx.doi.org/10.1016/S0196-9781(01)00641-6] [PMID: 11835991]
[24]
Dennison, S.R.; Harris, F.; Phoenix, D.A. Investigations into the potential anticancer activity of Maximin H5. Biochimie, 2017, 137, 29-34.
[http://dx.doi.org/10.1016/j.biochi.2017.02.013] [PMID: 28249727]
[25]
Li, J.; Zhang, C.; Xu, X.; Wang, J.; Yu, H.; Lai, R.; Gong, W. Trypsin inhibitory loop is an excellent lead structure to design serine protease inhibitors and antimicrobial peptides. FASEB J., 2007, 21(10), 2466-2473.
[http://dx.doi.org/10.1096/fj.06-7966com] [PMID: 17384140]
[26]
Zasloff, M. Magainins, a class of antimicrobial peptides from Xenopus skin: isolation, characterization of two active forms, and partial cDNA sequence of a precursor. Proc. Natl. Acad. Sci. USA, 1987, 84(15), 5449-5453.
[http://dx.doi.org/10.1073/pnas.84.15.5449] [PMID: 3299384]
[27]
Cruciani, R.A.; Barker, J.L.; Zasloff, M.; Chen, H.C.; Colamonici, O. Antibiotic magainins exert cytolytic activity against transformed cell lines through channel formation. Proc. Natl. Acad. Sci. USA, 1991, 88(9), 3792-3796.
[http://dx.doi.org/10.1073/pnas.88.9.3792] [PMID: 1708887]
[28]
Mishra, B.; Wang, X.; Lushnikova, T.; Zhang, Y.; Golla, R.M.; Narayana, J.L.; Wang, C.; McGuire, T.R.; Wang, G. Antibacterial, antifungal, anticancer activities and structural bioinformatics analysis of six naturally occurring temporins. Peptides, 2018, 106, 9-20.
[http://dx.doi.org/10.1016/j.peptides.2018.05.011] [PMID: 29842923]
[29]
Nakamura, T.; Furunaka, H.; Miyata, T.; Tokunaga, F.; Muta, T.; Iwanaga, S.; Niwa, M.; Takao, T.; Shimonishi, Y. Tachyplesin, a class of antimicrobial peptide from the hemocytes of the horseshoe crab (Tachypleus tridentatus). Isolation and chemical structure. J. Biol. Chem., 1988, 263(32), 16709-16713.
[PMID: 3141410]
[30]
Hong, J.; Guan, W.; Jin, G.; Zhao, H.; Jiang, X.; Dai, J. Mechanism of tachyplesin I injury to bacterial membranes and intracellular enzymes, determined by laser confocal scanning microscopy and flow cytometry. Microbiol. Res., 2015, 170, 69-77.
[http://dx.doi.org/10.1016/j.micres.2014.08.012] [PMID: 25267486]
[31]
Ding, H.; Jin, G.; Zhang, L.; Dai, J.; Dang, J.; Han, Y. Effects of tachyplesin I on human U251 glioma stem cells. Mol. Med. Rep., 2015, 11(4), 2953-2958.
[http://dx.doi.org/10.3892/mmr.2014.3021] [PMID: 25434611]
[32]
Mallow, E.B.; Harris, A.; Salzman, N.; Russell, J.P.; DeBerardinis, R.J.; Ruchelli, E.; Bevins, C.L. Human enteric defensins. Gene structure and developmental expression. J. Biol. Chem., 1996, 271(8), 4038-4045.
[http://dx.doi.org/10.1074/jbc.271.8.4038] [PMID: 8626737]
[33]
Pazgier, M.; Hoover, D.M.; Yang, D.; Lu, W.; Lubkowski, J. Human beta-defensins. Cell. Mol. Life Sci., 2006, 63(11), 1294-1313.
[http://dx.doi.org/10.1007/s00018-005-5540-2] [PMID: 16710608]
[34]
Wimley, W.C.; Selsted, M.E.; White, S.H. Interactions between human defensins and lipid bilayers: evidence for formation of multimeric pores. Protein Sci., 1994, 3(9), 1362-1373.
[http://dx.doi.org/10.1002/pro.5560030902] [PMID: 7833799]
[35]
Demirkhanyan, L.H.; Marin, M.; Padilla-Parra, S.; Zhan, C.; Miyauchi, K.; Jean-Baptiste, M.; Novitskiy, G.; Lu, W.; Melikyan, G.B. Multifaceted mechanisms of HIV-1 entry inhibition by human α-defensin. J. Biol. Chem., 2012, 287(34), 28821-28838.
[http://dx.doi.org/10.1074/jbc.M112.375949] [PMID: 22733823]
[36]
Dugan, A.S.; Maginnis, M.S.; Jordan, J.A.; Gasparovic, M.L.; Manley, K.; Page, R.; Williams, G.; Porter, E.; O’Hara, B.A.; Atwood, W.J. Human α-defensins inhibit BK virus infection by aggregating virions and blocking binding to host cells. J. Biol. Chem., 2008, 283(45), 31125-31132.
[http://dx.doi.org/10.1074/jbc.M805902200] [PMID: 18782756]
[37]
Hazrati, E.; Galen, B.; Lu, W.; Wang, W.; Ouyang, Y.; Keller, M.J.; Lehrer, R.I.; Herold, B.C. Human alpha- and beta-defensins block multiple steps in herpes simplex virus infection. J. Immunol., 2006, 177(12), 8658-8666.
[http://dx.doi.org/10.4049/jimmunol.177.12.8658] [PMID: 17142766]
[38]
Dubos, R.J.; Hotchkiss, R.D. The production of bactericidal substances by aerobic sporulating bacilli. J. Exp. Med., 1941, 73(5), 629-640.
[http://dx.doi.org/10.1084/jem.73.5.629] [PMID: 19871101]
[39]
Ortega, M.A.; van der Donk, W.A. New insights into the biosynthetic logic of ribosomally synthesized and post-translationally modified peptide natural products. Cell Chem. Biol., 2016, 23(1), 31-44.
[http://dx.doi.org/10.1016/j.chembiol.2015.11.012] [PMID: 26933734]
[40]
Arnison, P.G.; Bibb, M.J.; Bierbaum, G.; Bowers, A.A.; Bugni, T.S.; Bulaj, G.; Camarero, J.A.; Campopiano, D.J.; Challis, G.L.; Clardy, J.; Cotter, P.D.; Craik, D.J.; Dawson, M.; Dittmann, E.; Donadio, S.; Dorrestein, P.C.; Entian, K.D.; Fischbach, M.A.; Garavelli, J.S.; Göransson, U.; Gruber, C.W.; Haft, D.H.; Hemscheidt, T.K.; Hertweck, C.; Hill, C.; Horswill, A.R.; Jaspars, M.; Kelly, W.L.; Klinman, J.P.; Kuipers, O.P.; Link, A.J.; Liu, W.; Marahiel, M.A.; Mitchell, D.A.; Moll, G.N.; Moore, B.S.; Müller, R.; Nair, S.K.; Nes, I.F.; Norris, G.E.; Olivera, B.M.; Onaka, H.; Patchett, M.L.; Piel, J.; Reaney, M.J.; Rebuffat, S.; Ross, R.P.; Sahl, H.G.; Schmidt, E.W.; Selsted, M.E.; Severinov, K.; Shen, B.; Sivonen, K.; Smith, L.; Stein, T.; Süssmuth, R.D.; Tagg, J.R.; Tang, G.L.; Truman, A.W.; Vederas, J.C.; Walsh, C.T.; Walton, J.D.; Wenzel, S.C.; Willey, J.M.; van der Donk, W.A. Ribosomally synthesized and post-translationally modified peptide natural products: overview and recommendations for a universal nomenclature. Nat. Prod. Rep., 2013, 30(1), 108-160.
[http://dx.doi.org/10.1039/C2NP20085F] [PMID: 23165928]
[41]
Zhang, Y.; Chen, M.; Bruner, S.D.; Ding, Y. Heterologous production of microbial ribosomally synthesized and post-translationally modified peptides. Front. Microbiol., 2018, 9, 1801.
[http://dx.doi.org/10.3389/fmicb.2018.01801] [PMID: 30135682]
[42]
Karpiński, T.M.; Adamczak, A. Anticancer activity of bacterial proteins and peptides. Pharmaceutics, 2018, 10(2)E54
[http://dx.doi.org/10.3390/pharmaceutics10020054] [PMID: 29710857]
[43]
Zainodini, N.; Hassanshahi, G.; Hajizadeh, M.; Khanamani Falahati-Pour, S.; Mahmoodi, M.; Mirzaei, M.R. Khanamani, Falahati-Pour, S.; Mahmoodi, M.; Mirzaei, M.R.; Nisin induces cytotoxicity and apoptosis in human asterocytoma cell line (SW1088). Asian Pac. J. Cancer Prev., 2018, 19(8), 2217-2222.
[PMID: 30139228]
[44]
Joo, N.E.; Ritchie, K.; Kamarajan, P.; Miao, D.; Kapila, Y.L. Nisin, an apoptogenic bacteriocin and food preservative, attenuates HNSCC tumorigenesis via CHAC1. Cancer Med., 2012, 1(3), 295-305.
[http://dx.doi.org/10.1002/cam4.35] [PMID: 23342279]
[45]
Iorio, M.; Sasso, O.; Maffioli, S.I.; Bertorelli, R.; Monciardini, P.; Sosio, M.; Bonezzi, F.; Summa, M.; Brunati, C.; Bordoni, R.; Corti, G.; Tarozzo, G.; Piomelli, D.; Reggiani, A.; Donadio, S. A glycosylated, labionin-containing lanthipeptide with marked antinociceptive activity. ACS Chem. Biol., 2014, 9(2), 398-404.
[http://dx.doi.org/10.1021/cb400692w] [PMID: 24191663]
[46]
Gomes, K.M.; Duarte, R.S.; de Freire Bastos, M.D. Lantibiotics produced by Actinobacteria and their potential applications (a review). Microbiology, 2017, 163(2), 109-121.
[http://dx.doi.org/10.1099/mic.0.000397] [PMID: 28270262]
[47]
Broughton, L.J.; Crow, C.; Maraveyas, A.; Madden, L.A. Duramycin-induced calcium release in cancer cells. Anticancer Drugs, 2016, 27(3), 173-182.
[http://dx.doi.org/10.1097/CAD.0000000000000313] [PMID: 26512767]
[48]
Brötz, H.; Bierbaum, G.; Leopold, K.; Reynolds, P.E.; Sahl, H.G. The lantibiotic mersacidin inhibits peptidoglycan synthesis by targeting lipid II. Antimicrob. Agents Chemother., 1998, 42(1), 154-160.
[http://dx.doi.org/10.1128/AAC.42.1.154] [PMID: 9449277]
[49]
Saising, J.; Dube, L.; Ziebandt, A.K.; Voravuthikunchai, S.P.; Nega, M.; Götz, F. Activity of gallidermin on Staphylococcus aureus and Staphylococcus epidermidis biofilms. Antimicrob. Agents Chemother., 2012, 56(11), 5804-5810.
[http://dx.doi.org/10.1128/AAC.01296-12] [PMID: 22926575]
[50]
Mandal, S.M.; Roy, A.; Mahata, D.; Migliolo, L.; Nolasco, D.O.; Franco, O.L. Functional and structural insights on self-assembled nanofiber-based novel antibacterial ointment from antimicrobial peptides, bacitracin and gramicidin S. J. Antibiot. (Tokyo), 2014, 67(11), 771-775.
[http://dx.doi.org/10.1038/ja.2014.70] [PMID: 24894183]
[51]
Rautenbach, M.; Troskie, A.M.; Vosloo, J.A.; Dathe, M.E. Antifungal membranolytic activity of the tyrocidines against filamentous plant fungi. Biochimie, 2016, 130, 122-131.
[http://dx.doi.org/10.1016/j.biochi.2016.06.008] [PMID: 27328781]
[52]
Matsuda, S.; Koyasu, S. Mechanisms of action of cyclosporine. Immunopharmacology, 2000, 47(2-3), 119-125.
[http://dx.doi.org/10.1016/S0162-3109(00)00192-2] [PMID: 10878286]
[53]
Biasutto, L.; Azzolini, M.; Szabò, I.; Zoratti, M. The mitochondrial permeability transition pore in AD 2016: An update. Biochim. Biophys. Acta, 2016, 1863(10), 2515-2530.
[http://dx.doi.org/10.1016/j.bbamcr.2016.02.012] [PMID: 26902508]
[54]
Barbarotta, L.; Hurley, K. Romidepsin for the treatment of peripheral T-cell lymphoma. J. Adv. Pract. Oncol., 2015, 6(1), 22-36.
[PMID: 26413372]
[55]
Saraiva, R.G.; Huitt-Roehl, C.R.; Tripathi, A.; Cheng, Y.Q.; Bosch, J.; Townsend, C.A.; Dimopoulos, G. Chromobacterium spp. mediate their anti-Plasmodium activity through secretion of the histone deacetylase inhibitor romidepsin. Sci. Rep., 2018, 8(1), 6176.
[http://dx.doi.org/10.1038/s41598-018-24296-0] [PMID: 29670144]
[56]
Barbarotta, L.; Hurley, K. Romidepsin for the treatment of peripheral T-cell lymphoma. J. Adv. Pract. Oncol., 2015, 6(1), 22-36.
[PMID: 26413372]
[57]
Jønsson, K.L.; Tolstrup, M.; Vad-Nielsen, J.; Kjær, K.; Laustsen, A.; Andersen, M.N.; Rasmussen, T.A.; Søgaard, O.S.; Østergaard, L.; Denton, P.W.; Jakobsen, M.R. Histone deacetylase inhibitor romidepsin inhibits de novo HIV-1 infections. Antimicrob. Agents Chemother., 2015, 59(7), 3984-3994.
[http://dx.doi.org/10.1128/AAC.00574-15] [PMID: 25896701]
[58]
Ferrari, D.; Pizzirani, C.; Gulinelli, S.; Callegari, G.; Chiozzi, P.; Idzko, M.; Panther, E.; Di Virgilio, F. Modulation of P2X7 receptor functions by polymyxin B: crucial role of the hydrophobic tail of the antibiotic molecule. Br. J. Pharmacol., 2007, 150(4), 445-454.
[http://dx.doi.org/10.1038/sj.bjp.0706994] [PMID: 17211459]
[59]
Cochrane, S.A.; Findlay, B.; Bakhtiary, A.; Acedo, J.Z.; Rodriguez-Lopez, E.M.; Mercier, P.; Vederas, J.C. Antimicrobial lipopeptide tridecaptin A1 selectively binds to Gram-negative lipid II. Proc. Natl. Acad. Sci. USA, 2016, 113(41), 11561-11566.
[http://dx.doi.org/10.1073/pnas.1608623113] [PMID: 27688760]
[60]
Arbeit, R.D.; Maki, D.; Tally, F.P.; Campanaro, E.; Eisenstein, B.I. The safety and efficacy of daptomycin for the treatment of complicated skin and skin-structure infections. Clin. Infect. Dis., 2004, 38(12), 1673-1681.
[http://dx.doi.org/10.1086/420818] [PMID: 15227611]
[61]
Zapata, B.; Alvarez, D.N.; Farah, S.; Garcia-de-la-Maria, C.; Miro, J.M.; Sakoulas, G.; Bayer, A.S.; Mishra, N.N. Garcia-de-la-Mari,a C.; Miro, J.M.; Sakoulas, G.; Bayer, A.S.; Mishra, N.N. Prevention of high-level daptomycin-resistance emergence in vitro in Streptococcus mitis-oralis by using combination antimicrobial strategies. Curr. Microbiol., 2018, 75(8), 1062-1067.
[http://dx.doi.org/10.1007/s00284-018-1491-3] [PMID: 29651552]
[62]
Cai, H.; Zhang, R.; Orwenyo, J.; Giddens, J.; Yang, Q.; LaBranche, C.C.; Montefiori, D.C.; Wang, L.X. Multivalent antigen presentation enhances the immunogenicity of a synthetic three-component HIV-1 V3 glycopeptide vaccine. ACS Cent. Sci., 2018, 4(5), 582-589.
[http://dx.doi.org/10.1021/acscentsci.8b00060] [PMID: 29806004]
[63]
Woo, C.M.; Lund, P.J.; Huang, A.C.; Davis, M.M.; Bertozzi, C.R.; Pitteri, S.J. Mapping and quantification of over 2000 O-linked glycopeptides in activated human T cells with isotope-targeted glycoproteomics (IsoTaG). Mol. Cell. Proteomics, 2018, 17(4), 764-775.
[http://dx.doi.org/10.1074/mcp.RA117.000261] [PMID: 29351928]
[64]
Saraswat, M.; Mäkitie, A.; Tohmola, T.; Dickinson, A.; Saraswat, S.; Joenväärä, S.; Renkonen, S. Tongue cancer patients can be distinguished from healthy controls by specific N-glycopeptides found in serum. Proteomics Clin. Appl., 2018, 12(6)e1800061
[http://dx.doi.org/10.1002/prca.201800061] [PMID: 29992770]
[65]
Leonard, S.N.; Rybak, M.J. Telavancin: an antimicrobial with a multifunctional mechanism of action for the treatment of serious gram-positive infections. Pharmacotherapy, 2008, 28(4), 458-468.
[http://dx.doi.org/10.1592/phco.28.4.458] [PMID: 18363530]
[66]
Cercenado, E. Antimicrobial spectrum of dalbavancin. Mechanism of action and in vitro activity against Gram-positive microorganisms. Enferm. Infecc. Microbiol. Clin., 2017, 35(Suppl. 1), 9-14.
[http://dx.doi.org/10.1016/S0213-005X(17)30029-0] [PMID: 28129822]
[67]
Wang, J. Telavancin (Vibativ). A vancomycin derivative, no more effective but more toxic. Prescrire Int., 2015, 24(165), 257-259.
[PMID: 26688891]
[68]
Smith, P.A.; Koehler, M.F.T.; Girgis, H.S.; Yan, D.; Chen, Y.; Chen, Y.; Crawford, J.J.; Durk, M.R.; Higuchi, R.I.; Kang, J.; Murray, J.; Paraselli, P.; Park, S.; Phung, W.; Quinn, J.G.; Roberts, T.C.; Rougé, L.; Schwarz, J.B.; Skippington, E.; Wai, J.; Xu, M.; Yu, Z.; Zhang, H.; Tan, M.W.; Heise, C.E. Optimized arylomycins are a new class of Gram-negative antibiotics. Nature, 2018, 561(7722), 189-194.
[http://dx.doi.org/10.1038/s41586-018-0483-6] [PMID: 30209367]
[69]
Zhanel, G.G.; Schweizer, F.; Karlowsky, J.A. Oritavancin: mechanism of action. Clin. Infect. Dis., 2012, 54(Suppl. 3), S214-S219.
[http://dx.doi.org/10.1093/cid/cir920] [PMID: 22431851]
[70]
Wang, Q.; Xu, Y.; Dong, M.; Hang, B.; Sun, Y.; Wang, L.; Wang, Y.; Hu, J.; Zhang, W. HJH-1, a broad-dpectrum antimicrobial activity and low cytotoxicity antimicrobial peptide. Molecules, 2018, 23(8), 2026.
[http://dx.doi.org/https://doi.org/10.3390/molecules23082026]
[71]
Liu, J.; Xiao, S.; Li, J.; Yuan, B.; Yang, K.; Ma, Y. Molecular details on the intermediate states of melittin action on a cell membrane. Biochim. Biophys. Acta Biomembr., 2018, 1860(11), 2234-2241.
[http://dx.doi.org/10.1016/j.bbamem.2018.09.007] [PMID: 30409519]
[72]
Ma, W.; Zhang, D.; Li, G.; Liu, J.; He, G.; Zhang, P.; Yang, L.; Zhu, H.; Xu, N.; Liang, S. Antibacterial mechanism of daptomycin antibiotic against Staphylococcus aureus based on a quantitative bacterial proteome analysis. J. Proteomics, 2017, 150, 242-251.
[http://dx.doi.org/10.1016/j.jprot.2016.09.014] [PMID: 27693894]
[73]
Guo, Y.; Xun, M.; Han, J. A bovine myeloid antimicrobial peptide (BMAP-28) and its analogs kill pan-drug-resistant Acinetobacter baumannii by interacting with outer membrane protein A (OmpA). Medicine (Baltimore), 2018, 97(42)e12832
[http://dx.doi.org/10.1097/MD.0000000000012832] [PMID: 30334982]
[74]
Pandit, G.; Ilyas, H.; Ghosh, S.; Bidkar, A.P.; Mohid, S.A.; Bhunia, A.; Satpati, P.; Chatterjee, S. Bhunia. A.; Satpati, P.; Chatterje,e S. Insights into the mechanism of antimicrobial activity of seven-residue peptides. J. Med. Chem., 2018, 61(17), 7614-7629.
[http://dx.doi.org/10.1021/acs.jmedchem.8b00353] [PMID: 30070835]
[75]
Omardien, S.; Drijfhout, J.W.; Vaz, F.M.; Wenzel, M.; Hamoen, L.W.; Zaat, S.A.J.; Brul, S. Bactericidal activity of amphipathic cationic antimicrobial peptides involves altering the membrane fluidity when interacting with the phospholipid bilayer. Biochim. Biophys. Acta Biomembr., 2018, 1860(11), 2404-2415.
[http://dx.doi.org/10.1016/j.bbamem.2018.06.004] [PMID: 29902419]
[76]
Nan, Y.H.; Park, K.H.; Park, Y.; Jeon, Y.J.; Kim, Y.; Park, I.S.; Hahm, K.S.; Shin, S.Y. Investigating the effects of positive charge and hydrophobicity on the cell selectivity, mechanism of action and anti-inflammatory activity of a Trp-rich antimicrobial peptide indolicidin. FEMS Microbiol. Lett., 2009, 292(1), 134-140.
[http://dx.doi.org/10.1111/j.1574-6968.2008.01484.x] [PMID: 19191872]
[77]
Kim, S. Gun, Lee, D. Role of calcium in reactive oxygen species-induced apoptosis in Candida albicans: An antifungal mechanism of antimicrobial peptide, PMAP-23. Free Radic. Res., 2018, 53(1), 1-211.
[http://dx.doi.org/https://doi.org/10.1080/10715762.2018.1511052] [PMID: 30403895]
[78]
Hsieh, I.N.; Hartshorn, K.L. The role of antimicrobial peptides in influenza virus infection and their potential as antiviral and immunomodulatory therapy. Pharmaceuticals (Basel), 2016, 9(3)E53
[http://dx.doi.org/10.3390/ph9030053] [PMID: 27608030]
[79]
Joo, H.S.; Fu, C.I.; Otto, M. Bacterial strategies of resistance to antimicrobial peptides. Philos. Trans. R. Soc. Lond. B Biol. Sci., 2016, 371(1695)20150292
[http://dx.doi.org/10.1098/rstb.2015.0292] [PMID: 27160595]
[80]
Davidson, A.L.; Dassa, E.; Orelle, C.; Chen, J. Structure, function, and evolution of bacterial ATP-binding cassette systems. Microbiol. Mol. Biol. Rev., 2008, 72(2), 317-364.
[http://dx.doi.org/10.1128/MMBR.00031-07] [PMID: 18535149]
[81]
Nawrocki, K.L.; Crispell, E.K.; McBride, S.M. Antimicrobial peptide resistance mechanisms of Gram-positive bacteria. Antibiotics (Basel), 2014, 3(4), 461-492.
[http://dx.doi.org/10.3390/antibiotics3040461] [PMID: 25419466]
[82]
Tan, G.Y.; Deng, K.; Liu, X.; Tao, H.; Chang, Y.; Chen, J.; Chen, K.; Sheng, Z.; Deng, Z.; Liu, T. Heterologous biosynthesis of spinosad: An omics-guided large polyketide synthase gene cluster reconstitution in Streptomyces. ACS Synth. Biol., 2017, 6(6), 995-1005.
[http://dx.doi.org/10.1021/acssynbio.6b00330] [PMID: 28264562]
[83]
Bordoloi, N.K.; Bhagowati, P.; Chaudhuri, M.K.; Mukherjee, A.K. Proteomics and metabolomics analyses to elucidate the desulfurization pathway of Chelatococcus sp. PLoS One, 2016, 11(4)e0153547
[http://dx.doi.org/10.1371/journal.pone.0153547] [PMID: 27100386]
[84]
Chen, X.; Gao, C.; Guo, L.; Hu, G.; Luo, Q.; Liu, J.; Nielsen, J.; Chen, J.; Liu, L. DCEO biotechnology: Tools to fesign, construct, evaluate, and optimize the metabolic pathway for biosynthesis of chemicals. Chem. Rev., 2018, 118(1), 4-72.
[http://dx.doi.org/10.1021/acs.chemrev.6b00804] [PMID: 28443658]
[85]
Lee, S.Y.; Kim, H.U. Systems strategies for developing industrial microbial strains. Nat. Biotechnol., 2015, 33(10), 1061-1072.
[http://dx.doi.org/10.1038/nbt.3365] [PMID: 26448090]
[86]
Subhash, D.; Mandal, C.; Mandal, D.M. Current status and future prospects of new drug delivery system. Pharm. Times, 2010, 42, 13-16.
[87]
Blin, K.; Wolf, T.; Chevrette, M.G.; Lu, X.; Schwalen, C.J.; Kautsar, S.A.; Suarez Duran, H.G.; de Los Santos, E.L.C.; Kim, H.U.; Nave, M.; Dickschat, J.S.; Mitchell, D.A.; Shelest, E.; Breitling, R.; Takano, E.; Lee, S.Y.; Weber, T.; Medema, M.H. antiSMASH 4.0-improvements in chemistry prediction and gene cluster boundary identification. Nucleic Acids Res., 2017, 45(W1), W36-W41.
[http://dx.doi.org/10.1093/nar/gkx319] [PMID: 28460038]
[88]
Röttig, M.; Medema, M.H.; Blin, K.; Weber, T.; Rausch, C.; Kohlbacher, O. NRPSpredictor2--a web server for predicting NRPS adenylation domain specificity. Nucleic Acids Res., 2011, 39(Web Server issue), W362-367.
[http://dx.doi.org/http://10.1093/nar/gkr323] [PMID: 21558170]
[89]
Wu, C.; Choi, Y.H.; van Wezel, G.P. Metabolic profiling as a tool for prioritizing antimicrobial compounds. J. Ind. Microbiol. Biotechnol., 2016, 43(2-3), 299-312.
[http://dx.doi.org/10.1007/s10295-015-1666-x] [PMID: 26335567]
[90]
Kim, M.; Yi, J.S.; Lakshmanan, M.; Lee, D.Y.; Kim, B.G. Transcriptomics-based strain optimization tool for designing secondary metabolite overproducing strains of Streptomyces coelicolor. Biotechnol. Bioeng., 2016, 113(3), 651-660.
[http://dx.doi.org/10.1002/bit.25830] [PMID: 26369755]
[91]
Li, J.; Qu, X.; He, X.; Duan, L.; Wu, G.; Bi, D.; Deng, Z.; Liu, W.; Ou, H.Y. ThioFinder: a web-based tool for the identification of thiopeptide gene clusters in DNA sequences. PLoS One, 2012, 7(9)e45878
[http://dx.doi.org/10.1371/journal.pone.0045878] [PMID: 23029291]
[92]
Marçais, G.; Delcher, A.L.; Phillippy, A.M.; Coston, R.; Salzberg, S.L.; Zimin, A. MUMmer4: A fast and versatile genome alignment system. PLOS Comput. Biol., 2018, 14(1)e1005944
[http://dx.doi.org/10.1371/journal.pcbi.1005944] [PMID: 29373581]
[93]
Hu, Q.N.; Deng, Z.; Hu, H.; Cao, D.S.; Liang, Y.Z. RxnFinder: biochemical reaction search engines using molecular structures, molecular fragments and reaction similarity. Bioinformatics, 2011, 27(17), 2465-2467.
[http://dx.doi.org/10.1093/bioinformatics/btr413] [PMID: 21752802]
[94]
Ding, S.; Liao, X.; Tu, W.; Wu, L.; Tian, Y.; Sun, Q.; Chen, J.; Hu, Q.N. EcoSynther: A customized platform to explore the biosynthetic potential in E. coli. ACS Chem. Biol., 2017, 12(11), 2823-2829.
[http://dx.doi.org/10.1021/acschembio.7b00605] [PMID: 28952720]
[95]
Yuan, L.; Tian, Y.; Ding, S.; Liu, Y.; Chen, F.; Zhang, T.; Tu, W.; Chen, J.; Hu, Q.N. PrecursorFinder: A customized biosynthetic precursor explorer. Bioinformatics, 2018. Epub ahead of print
[http://dx.doi.org/10.1093/bioinformatics/bty838] [PMID: 30304379]
[96]
Myronovskyi, M.; Luzhetskyy, A. Native and engineered promoters in natural product discovery. Nat. Prod. Rep., 2016, 33(8), 1006-1019.
[http://dx.doi.org/10.1039/C6NP00002A] [PMID: 27438486]
[97]
Zhang, B.; Tian, W.; Wang, S.; Yan, X.; Jia, X.; Pierens, G.K.; Chen, W.; Ma, H.; Deng, Z.; Qu, X. Activation of natural products biosynthetic pathways via a protein modification level regulation. ACS Chem. Biol., 2017, 12(7), 1732-1736.
[http://dx.doi.org/10.1021/acschembio.7b00225] [PMID: 28562006]
[98]
Mao, X.M.; Luo, S.; Zhou, R.C.; Wang, F.; Yu, P.; Sun, N.; Chen, X.X.; Tang, Y.; Li, Y.Q. Transcriptional regulation of the daptomycin gene cluster in Streptomyces roseosporus by an autoregulator, AtrA. J. Biol. Chem., 2015, 290(12), 7992-8001.
[http://dx.doi.org/10.1074/jbc.M114.608273] [PMID: 25648897]
[99]
Komatsu, M.; Uchiyama, T.; Omura, S.; Cane, D.E.; Ikeda, H. Genome-minimized Streptomyces host for the heterologous expression of secondary metabolism. Proc. Natl. Acad. Sci. USA, 2010, 107(6), 2646-2651.
[http://dx.doi.org/10.1073/pnas.0914833107] [PMID: 20133795]
[100]
Cobb, R.E.; Wang, Y.; Zhao, H. High-efficiency multiplex genome editing of Streptomyces species using an engineered CRISPR/Cas system. ACS Synth. Biol., 2015, 4(6), 723-728.
[http://dx.doi.org/10.1021/sb500351f] [PMID: 25458909]
[101]
Xu, J.Y.; Xu, Y.; Chu, X.; Tan, M.; Ye, B.C. Protein acylation affects the artificial biosynthetic pathway for pinosylvin production in engineered E. coli. ACS Chem. Biol., 2018, 13(5), 1200-1208.
[http://dx.doi.org/10.1021/acschembio.7b01068] [PMID: 29690763]
[102]
Biswaro, L.S.; da Costa Sousa, M.G.; Rezende, T.M.B.; Dias, S.C.; Franco, O.L. da Costa, Sousa, M.; Rezende, T.; Dias, S.; Franco, O. Antimicrobial peptides and nanotechnology, recent advances and challenges. Front. Microbiol., 2018, 9, 855.
[http://dx.doi.org/10.3389/fmicb.2018.00855] [PMID: 29867793]
[103]
Silva, D.A.; Yu, S.; Ulge, U.Y.; Spangler, J.B.; Jude, K.M.; Labão-Almeida, C.; Ali, L.R.; Quijano-Rubio, A.; Ruterbusch, M.; Leung, I.; Biary, T.; Crowley, S.J.; Marcos, E.; Walkey, C.D.; Weitzner, B.D.; Pardo-Avila, F.; Castellanos, J.; Carter, L.; Stewart, L.; Riddell, S.R.; Pepper, M.; Bernardes, G.J.L.; Dougan, M.; Garcia, K.C.; Baker, D. De novo design of potent and selective mimics of IL-2 and IL-15. Nature, 2019, 565(7738), 186-191.
[http://dx.doi.org/10.1038/s41586-018-0830-7] [PMID: 30626941]
[104]
Schneider, G.; Funatsu, K.; Okuno, Y.; Winkler, D. De novo drug design - ye olde scoring problem revisited. Mol. Inform., 2017, 36(1-2)1681031
[http://dx.doi.org/10.1002/minf.201681031] [PMID: 28124833]

© 2024 Bentham Science Publishers | Privacy Policy