[1]
Janku, F. Phosphoinositide 3-kinase (PI3K) pathway inhibitors in solid tumors: From laboratory to patients. Cancer Treat. Rev., 2017, 59, 93-101.
[2]
Ito, K.; Caramori, G.; Adcock, I.M. Therapeutic potential of phosphatidylinositol 3-kinase inhibitors in inflammatory respiratory disease. J. Pharmacol. Exp. Ther., 2007, 321, 1-8.
[3]
Study results provide rationale for use of PI3K inhibitors in therapeutic settings, News-medical.net. Retrieved on 2010-11-0
[4]
Crabbe, T. Exploring the potential of PI3K inhibitors for inflammation and cancer. Biochem. Soc. Trans., 2007, 35(Pt 2), 253-256.
[5]
Stein, R. Prospects for phosphoinositide 3-kinase inhibition as a cancer treatment”. Endocr. Relat. Cancer. Bioscientifica, 2001, 8(3), 237-348.
[6]
Chantry, D.; Vojtek, A.; Kashishian, A.; Holtzman, D.A.; Wood, C.; Gray, P.W.; Cooper, J.A.; Hoekstra, M.F. p110δ, a novel phosphatidylinositol 3-kinase catalytic subunit that associates with p85 and is expressed predominantly in leukocytes. J. Biol. Chem., 1997, 272(31), 19236-19241.
[7]
Okkenhaug, K.; Vanhaesebroeck, B. PI3K-signalling in B- and T cells: Insights from gene-targeted mice. Biochem. Soc. Trans., 2003, 31, 270-274.
[8]
Okkenhaug, K.; Vanhaesebroeck, B. PI3K in lymphocyte development, differentiation and activation. Nat. Rev. Immunol., 2003, 3, 317-330.
[9]
Rommel, C.; Camps, M.; Ji, H. PI3K delta and PI3K gamma: Partners in crime in inflammation in rheumatoid arthritis and beyond? Nat. Rev. Immunol., 2007, 7, 191-201.
[10]
Thomas, M.; Owen, C. Inhibition of PI-3 kinase for treating respiratory disease: Good idea or bad idea? Curr. Opin. Pharmacol., 2008, 8, 267-274.
[11]
Williams, O.; Hoouseman, B.T.; Kunkel, E.J.; Aizenstein, B.; Hoffman, R.; Knight, Z.A.; Shokat, K.M. Discovery of dual inhibitors of the immune cell PI3Ks p110delta and p110gamma: A prototype for new anti-inflammatory drugs. Chem. Biol., 2010, 17, 123-134.
[12]
Bernal, A.; Pastore, R.D.; Asgary, Z.; Keller, S.A.; Cesarman, E.; Liou, H.C.; Schattner, E.J. Survival of leukemic B cells promoted by engagement of the antigen receptor. Blood, 2001, 98(10), 3050-3057.
[13]
Kurtz, J.E.; Ray-Coquard, I. PI3kinase inhibitors in the clinic: An update. Anticancer Res., 2012, 32(7), 2463-2470.
[14]
"PI3K inhibitors: Targeting multiple tumor progression pathways". 2003. Archived from the original on February 28 2009.
[15]
Neri, L.M.; Borgatti, P.; Tazzari, P.L.; Bortul, R.; Cappellini, A.; Tabellini, G.; Bellacosa, A.; Capitani, S.; Martelli, A.M. The phosphoinositide 3-kinase/AKT1 pathway involvement in drug and all-trans-retinoic acid resistance of leukemia cells. Mol. Cancer Res., 2003, 1(3), 234-246.
[16]
Fruman, D.A.; Rommel, C. PI3Kδ Inhibitors in Cancer: Rationale and serendipity merge in the clinic. Cancer Discov., 2011, 1(7), 562-572.
[17]
Patel, L.; Chandrasekhar, J.; Evarts, J.; Haran, A.C.; Ip, C.; Kaplan, J.A.; Kim, M.; Koditek, D.; Lad, L.; Lepist, E-I.; McGrath, M.E.; Novikov, N.; Perreault, S.; Puri, K.D.; Somoza, J.R.; Steiner, B.H.; Stevens, K.L.; Therrien, J.; Treiberg, J.; Villaseñor, A.G.; Yeung, A.; Phillips, G. 2,4,6-triaminopyrimidine as a novel hinge binder in a series of PI3Kδ selective inhibitors. J. Med. Chem., 2016, 59, 3532-3548.
[18]
Xie, C.; He, Y.; Zhen, M.; Wang, Y.; Xu, Y.; Lou, L. Puquitinib, a novel orally available PI3Kd inhibitor, exhibits potent antitumor efficacy against acute myeloid leukemia. Cancer Sci., 2017, 108(7), 1476-1484.
[19]
Murray, J.M.; Sweeney, Z.K.; Chan, B.K.; Balazs, M.E.; Bradley, G.; Castanedo, C.; Chabot, D.; Chantry, M.; Flagella, D.M.; Goldstein, R.; Kondru, J.; Lesnick, J.; Li, M.C.; Lucas, J.; Nonomiya, J.; Pang, S.; Price, L.; Salphati, B.; Safina, P.P.; Savy, E.M.; Seward, U.M.; Sutherlin, D.P. Potent and highly selective benzimidazole inhibitors of PI3-kinase delta. J. Med. Chem., 2012, 55, 7686-7695.
[20]
Poulsen, A.; Nagaraj, H.; Lee, A.; Blanchard, S.; Soh, C.K.; Chen, D.; Wang, H.; Hart, S.; Goh, K.C.; Dymock, B.; Williams, M. Structure and ligand-based design of mTOR and PI3-kinase inhibitors leading to the clinical candidates VS-5584 (SB2343) and SB2602. J. Chem. Inf. Model., 2014, 54(11), 3238-3250.
[21]
Al-Sha’er, M.A.; Mansi, I.; Khanfar, M.; Abudayyh, A. Discovery of new heat shock protein 90 inhibitors using virtual co-crystallized pharmacophore generation. J. Enzyme Inhib. Med. Chem., 2016, 31, 64-77.
[22]
Al-Sha’er, M.A.; Mansi, I.; Almazari, I.; Hakooz, N. Evaluation of novel Akt1 inhibitors as anticancer agents using virtual co- crystallized pharmacophore generation. J. Mol. Graph. Model., 2015, 62, 213-225.
[23]
Ma, H.; Deacon, S.; Horiuchi, K. The challenge of selecting protein kinase assays for lead discovery optimization. Expert Opin. Drug Discov., 2008, 3, 607-621.
[24]
Levit, A.; Yarnitzky, T.; Wiener, A.; Meidan, R.; Niv, M.Y. Modeling of human prokineticin receptors: Interactions with novel small-molecule binders and potential off-target drugs. PLoS One, 2011, 6e27990
[26]
Kumar, B.V.; Kotla, R.; Buddiga, R.; Roy, J.; Singh, S.S.; Gundla, R.; Ravikumar, M.; Sarma, J.A. Ligand-based and structure-based approaches in identifying ideal pharmacophore against C-Jun N-terminal kinase-3. J. Mol. Model., 2010, 17, 151-163.
[27]
Kurogi, Y.; Guner, O. Pharmacophore modeling and threedimensional database searching for drug design using catalyst. C.M.C., 2001, 8, 1035-1055.
[28]
Abuhamdah, S.; Habash, M.; Taha, M.O. Elaborate ligand-based modeling coupled with QSAR analysis and in silico screening reveal new potent acetylcholinesterase inhibitors. J. Comput. Aided Mol. Des., 2013, 27, 1075-1092.
[29]
Al-Nadaf, A.H.; Taha, M. Discovery of new renin inhibitory leads via sequential pharmacophore modeling, QSAR analysis, in silico screening and in vitro evaluation. J. Mol. Graph. Model., 2011, 29, 843-864.
[30]
Al-Sha’er, M.A.; VanPatten, S.; Al-Abed, Y.; Taha, M.O. Elaborate ligand-based modeling reveal new migration inhibitory factor inhibitors. J. Mol. Graph. Model., 2013, 42, 104-114.
[31]
Al-Sha’er, M.A.; Khanfar, M.A.; Taha, M.O. Discovery of novel Urokinase Plasminogen Activator (UPA) inhibitors using ligand-based modeling and virtual screening followed by in vitro analysis. J. Mol. Model., 2014, 20, 2080-2095.
[32]
Habash, M.A.; Abdelazeem, A.H.; Taha, M.O. Elaborate ligand-based modeling reveals new human neutrophil elastase inhibitors. Med. Chem. Res., 2014, 23, 3876-3896.
[33]
Khanfar, M.A.; AbuKhader, M.M.; Alqtaishat, S.; Taha, M.O. Pharmacophore modeling, homology modeling, and in silico screening reveal mammalian target of Rapamycin inhibitory activities for Sotalol, Glyburide, Metipranolol, Sulfamethizole, Glipizide, and Pioglitazone. J. Mol. Graph. Model., 2013, 42, 39-49.
[34]
Taha, M.O.; Qandil, A.M.; Al-Haraznah, T.; Abu-Khalaf, R.; Zalloum, H.; Al-Bakri, A.G. Discovery of new antifungal leads via pharmacophore modeling and QSAR analysis of fungal N-Myristoyl transferase inhibitors followed by in silico screening. Chem. Biol. Drug Des., 2011, 78, 391-407.
[35]
Taha, M.O.; Habash, M.; Hatmal, M.M.; Abdelazeem, A.H.; Qandil, A. Ligand-based modeling followed by in vitro bioassay yielded new potent Glucokinase activators. J. Mol. Graph. Model., 2015, 56, 91-102.
[36]
Langer, T.; Hoffmann, R.D. Pharmacophore modelling: Applications in drug discovery. Expert Opin. Drug Discov., 2006, 1, 261-267.
[37]
Al-Sha’er, M.A.; Taha, M.O. Application of docking-based comparative intermolecular contacts analysis for validating Hsp90α docking studies and subsequent in silico screening for inhibitors. J. Mol. Model., 2012, 18, 4843-4863.
[38]
Taha, M.O.; Habash, M.; Al-Hadidi, Z.; Al-Bakri, A.; Younis, K.; Sisan, S. Docking-based comparative intermolecular contacts analysis as new 3D QSAR concept for validating docking studies and in silico screening: NMT and GP inhibitors as case studies. J. Chem. Inf. Model., 2011, 51, 647-669.
[39]
Taha, M.O.; Habash, M.; Khanfar, M. The use of docking-based comparative intermolecular contacts analysis to identify optimal docking conditions within glucokinase and to discover of new GK activator. J. Comput. Aided Mol. Des., 2014, 28, 509-547.
[40]
Abuhammad, A.; Taha, M. Innovative computer-aided methods for the discovery of new kinase ligands. Future Med. Chem., 2016, 8, 509-526.
[41]
Jaradat, N.J.; Khanfar, M.A.; Habash, M.; Taha, M.O. Combining docking-based comparative intermolecular contacts analysis and k-nearest neighbor correlation for the discovery of new check point kinase 1 inhibitors. J. Comput. Aided Mol. Des., 2015, 29, 561-581.
[42]
Merz, K.; Ringe, D.; Reynolds, C. Drug Design; Cambridge University Press: Cambridge [U.K.] , 2010.
[43]
Discovery Studio 4.5 User Manual 2015.
[44]
Lin, H.; Schulz, M.J.; Xie, R.; Zeng, J.; Luengo, J.I.; Squire, M.D.; Tedesco, R.; Qu, J.; Erhard, K.; Mack, J.F.; Raha, K.; Plant, R.; Rominger, C.M.; Ariazi, J.L.; Sherk, C.S.; Schaber, M.D.; McSurdy-Freed, J. Spengler, M.D.; Davis, C.B.; Hardwicke, M.A.; Rivero, R.A. Rational design, synthesis, and SAR of a novel thiazolopyrimidinone series of selective PI3K-beta inhibitors. Med. Chem. Lett., 2012, 3, 524-529.
[45]
Barlaam, B.; Cosulich, S.; Degorce, S.; Fitzek, M.; Green, S.; Hancox, U. Lambert-van, der Brempt, C.; Lohmann, J-J.; Maudet, M.; Morgentin, R.; Pasquet, M-J.; Péru, A.; Plé, P.; Saleh, T.; Vautier, M.; Walker, M.; Ward, L.; Warin, N. Discovery of (R) 8-(1-(3,5-Difluorophenylamino) ethyl)-N, N-dimethyl-2-morpholino-4-oxo-4H-chromene-6-carboxamide (AZD8186): A potent and selective inhibitor of PI3Kβ and PI3Kδ for the treatment of PTEN-deficient cancers. J. Med. Chem., 2015, 8, 943-962.
[46]
Bui, M.; Hao, X.; Shin, Y.; Cardozo, M.; He, X.; Henne, K.; Suchomel, J.; McCarter, J.; McGee, L.R.; San, M.T.; Medina, J.C.; Mohn, D.; Tran, T.; Wannberg, S.; Wong, J.; Wong, S.; Zalameda, L.; Metz, D.; Cushing, T.D. Synthesis and SAR study of potent and selective PI3Kdelta inhibitors. Bioorg. Med. Chem. Lett., 2015, 25(5), 1104-1109.
[47]
CERIUS2, QSAR Users’ Manual, version 4.10Accelrys ; Inc.: San Diego, CA, 2005, p. 43-88, 221-235, 237-250.
[48]
Bento, A.P.; Gaulton, A.; Hersey, A.; Bellis, L.J.; Chambers, J.; Davies, M.; Krüger, F.A.; Light, Y.; Mak, L.; McGlinchey, S.; Nowotka, M.; Papadatos, G.; Santos, R.; Overington, J.P. The ChEMBL bioactivity database: An update. Nucleic Acids Res., 2014, 42, 1083-1090.
[49]
CERIUS2 4.10 LigandFit User Manual; Accelrys Inc.: San Diego, CA, 2000.
[50]
Sutter, J.; Güner, O.; Hoffmann, R.; Li, H.; Waldman, M. In: Pharmacophore Perception, Development, and Use in Drug Design; Güner, O.F., Ed.; International University Line: La Jolla, CA, 2000; pp. 501-511.
[51]
Poptodorov, T.; Luu, T.; Langer, R.H. In Methods and Principles in Medicinal Chemistry. Pharmacophores and Pharmacophores Searches; Hoffmann, R.D., Ed.; Wiley-VCH: Weinheim, Germany 2, 2006, pp. 17-47.
[52]
Triballeau, N.; Acher, F.; Brabet, I.; Pin, J.P.; Bertrand, H.O. Virtual screening workflow development guided by the “Receiver Operating Characteristic” curve approach. Application to high-throughput docking on metabotropic glutamate receptor subtype 4. J. Med. Chem., 2005, 48, 2534-2547.
[53]
Kirchmair, J.M.P.; Distinto, S.; Wolber, G.; Langer, T. Evaluation of the performance of 3D virtual screening protocols: RMSD comparisons, enrichment assessments, and decoy selection -What can we learn from earlier mistakes? J. Comput. Aided Mol., 2008, 22, 213-228.
[54]
Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Del. Rev., 2001, 46, 3-26.
[55]
Rao, S.N.; Head, M.S.; Kulkarni, A.; LaLonde, J.M. Validation studies of the site-directed docking program LibDock. J. Chem. Inf. Model., 2007, 47(6), 2159-2171.
[56]
Diller, D.J.; Merz, K.M. High throughput docking for library design and library prioritization. Proteins, 2001, 1(43), 113-124.
[57]
Yuan, J.; Mehta, P.P.; Yin, M.J.; Sun, S.; Zou, A.; Chen, J.; Rafidi, K.; Feng, Z.; Nickel, J.; Engebretsen, J.; Hallin, J.; Blasina, A.; Zhang, E.; Nguyen, L.; Sun, M.; Vogt, P.K.; McHarg, A.; Cheng, H.; Christensen, J.G.; Kan, J.L.; Bagrodia, S. PF-04691502, a potent and selective oral inhibitor of PI3K and mTOR kinases with antitumor activity. Mol. Cancer Ther., 2011, 10(11), 2189-2199.
[58]
Du, X.; Li, Y.; Xia, Y.; Ai, S.; Liang, J.; Sang, P.; Ji, X.; Liu, S. Insights into protein–ligand interactions: Mechanisms, models, and methods. Int. J. Mol. Sci., 2016, 17, 144-177.
[59]
Mortier, J.; Rakers, C.; Bermudez, M.; Murgueitio, M.; Riniker, S.; Wolber, G. The impact of molecular dynamics on drug design: Applications for the characterization of ligand-macromolecule complexes. Drug Discov. Today, 2015, 20, 686-702.
[60]
Sanders, M.; McGuire, R.; Roumen, L.; de Esch, I.; de Vlieg, J.; Klomp, J.; de Graaf, C. From the protein’s perspective: The benefits and challenges of protein structure-based pharmacophore modeling. Med. Chem. Commun, 2012, 3, 28-38.
[61]
Jacoby, E. Computational chemogenomics. Wiley Interdiscip. Rev. Comput. Mol. Sci., 2011, 1, 57-67.
[62]
Ermondi, G.; Caron, G. Recognition forces in ligand-protein complexes: Blending information from different sources. Biochem. Pharmacol., 2006, 72, 1633-1645.
[63]
Hatmal, M.M.; Taha, M.O. Simulated annealing molecular dynamics and ligand-receptor contacts analysis for pharmacophore modeling. Future Med. Chem., 2017, 9, 1141-1159.
[64]
Hatmal, M.M.; Jaber, S.; Taha, M.O. Combining molecular dynamics simulation and ligand-receptor contacts analysis as a new approach for pharmacophore modeling: Beta-secretase 1 and check point kinase 1 as case studies. J. Comput. Aided Mol. Des., 2016, 30, 1149-1163.
[65]
Ortuso, F.; Langer, T.; Alcaro, S. GBPM: GRID-based pharmacophore model: Concept and application studies to protein-protein recognition. Bioinformatics, 2006, 22, 1449-1455.
[66]
Alcaro, S.; Artese, A.; Ceccherini-Silberstein, F.; Chiarella, V.; Dimonte, S.; Ortuso, F.; Perno, C. Computational analysis of Human Immunodeficiency Virus (HIV) type-1 reverse transcriptase crystallographic models based on significant conserved residues found in Highly Active Antiretroviral Therapy (HAART)-treated patients (Supplementary Material). Curr. Med. Chem., 2010, 17, 290-308.
[67]
Taha, M.O.; Habash, M.; Khanfar, M. The use of docking-based comparative intermolecular contacts analysis to identify optimal docking conditions within glucokinase and to discover of new GK activator. J. Comput. Aided Mol. Des., 2014, 28, 509-547.
[68]
Habash, M.; Abuhamdah, S.; Younis, K.; Taha, M.O. Docking-based comparative intermolecular contacts analysis and in silico screening reveal new potent acetylcholinesterase inhibitors. Med. Chem. Res., 2017, 26, 2768-2784.
[69]
Taha, M.O.; Al-Sha’er, M.A.; Khanfar, M.A.; Al-Nadaf, A.H. Discovery of nanomolar phosphoinositide 3 kinase gamma (PI3K-γ) inhibitors using ligand-based modeling and virtual screening followed by in vitro analysis. Eur. J. Med. Chem., 2014, 84, 454-465.
[70]
Hatmal, M.M.; Taha, M.O. Combining Stochastic deformation/relaxation and intermolecular contacts analysis for extracting pharmacophores from ligand-receptor complexes. J. Chem. Inf. Model., 2018, 58(4), 879-893.
[71]
Gohlke, H.; Klebe, G. DrugScore meets CoMFA: Adaptation of fields for molecular comparison (AFMoC) or how to tailor knowledge-based pair-potentials to a particular protein. J. Med. Chem., 2002, 45(19), 4153-4170.
[72]
Sippl, W. Receptor-based 3D QSAR analysis of estrogen receptor ligands-merging the accuracy of receptor-based alignments with the computational efficiency of ligand-based methods. J. Comp. Aided Mol. Des., 2000, 14(6), 559-572.
[73]
Dong, X-L.; Hilliard, S.G.; Zheng, W. Structure-based quantitative structure-activity relationship modeling of estrogen receptor <beta> -ligands. Future Med. Chem., 2011, 3(8), 933-945.
[74]
Ortiz, A.R.; Pastor, M.; Palomer, A.; Cruciani, G.; Gago, F.; Wade, R.C. Reliability of comparative molecular field analysis models: Effects of data scaling and variable selection using a set of human synovial fluid phospholipase A2 inhibitors. J. Med. Chem., 1997, 40(7), 1136-1148.
[75]
Santos-Filho, O.A.; Hopfinger, A.J.; Cherkasov, A.; De Alencastro, R.B. The receptordependent QSAR paradigm: An overview of the current state of the art. Med. Chem., 2009, 5(4), 359-366.
[76]
Meslamani, J.; Li, J.; Sutter, J.; Stevens, A.; Bertrand, H-O.; Rognan, D. Protein-ligand-based pharmacophores: Generation and utility assessment in computational ligand profiling. J. Chem. Inf. Model., 2012, 52(4), 943-955.
[77]
Bemis, G.W.; Murcko, M.A. The properties of known drugs. 1. Molecular frameworks. J. Med. Chem., 1996, 39, 2887-2893.
[78]
Gerlach, C.; Smolinski, M.; Steuber, H.; Sotriffer, C.A.; Heine, A.; Hangauer, D.G.; Klebe, G. Thermodynamic inhibition profile of a cyclopentyl and a cyclohexyl derivative towards thrombin: The same but for different reasons. Angew Chem. Int., 2007, 46, 8511-8514.
[79]
Davis, A.M.; St-Gallay, S.A.; Kleywegt, G.J. Limitations and lessons in the use of X-ray structural information in drug design. Drug Discov. Today, 2008, 13, 831-841.
[80]
Lai, B.; Nagy, G.; Garate, J.A.; Oostenbrink, C. Entropic and enthalpic contributions to stereospecific ligand binding from enhanced sampling methods. J. Chem. Inf. Model., 2014, 54, 151-158.
[81]
Rühmann, E.; Betz, M.; Heine, A.; Klebe, G. Fragment binding can be either more enthalpy-driven or entropy-driven: Crystal structures and residual hydration patterns suggest why. J. Med. Chem., 2014, 58, 6960-6971.
[82]
Al-Sha’er, M.A.; VanPatten, S.; Al-Abed, Y.; Taha, M.O. Elaborate ligand-based modeling reveal new migration inhibitory factor inhibitors. J. Mol. Graphics. Modell., 2013, 42, 104-114.
[83]
Hann, M.; Hudson, B.; Lewell, X.; Lifely, R.; Miller, L.; Ramsden, N. Strategic pooling of compounds for high-throughput screening. J. Chem. Inf. Comput. Sci., 1999, 39, 897-902.
[84]
Walters, W.P.; Murcko, M.A. Prediction of ‘drug-likeness’. Adv. Drug Deliv. Rev., 2002, 54, 255-271.
[85]
Shoichet, B.K. Interpreting steep dose-response curves in early inhibitor discovery. J. Med. Chem., 2006, 49, 7274-7277.
[86]
Walters, W.P.; Namchuk, M. Designing screens: How to make your hits a hit. Nat. Rev. Drug Discov., 2003, 2, 259-266.