[1]
Makris, T.; Denisov, I.; Schlichting, I.; Sligar, S.; de Montellano, P.O. In: Cytochrome P450: structure, mechanism, and biochemistry; Ed., Ortiz de Montellano, P.R. Plenum Publishers, NY, 2005, p. 149.
[2]
Sono, M.; Roach, M.P.; Coulter, E.D.; Dawson, J.H. Heme-containing oxygenases. Chem. Rev., 1996, 96, 2841-2888.
[3]
Zhao, Y.J.; Cheng, Q.Q.; Su, P.; Chen, X.; Wang, X.J.; Gao, W.; Huang, L.Q. Research progress relating to the role of cytochrome P450 in the biosynthesis of terpenoids in medicinal plants. Appl. Microbiol. Biotechnol., 2014, 98, 2371-2383.
[4]
Lamb, D.C.; Lei, L.; Warrilow, A.G.; Lepesheva, G.I.; Mullins, J.G.; Waterman, M.R.; Kelly, S.L. The first virally encoded cytochrome P450. J. Virol., 2009, 83, 8266-8269.
[5]
Hanukoglu, I. Electron transfer proteins of cytochrome P450 systems. Adv. Mol. Cell Biol., 1996, 14, 29-56.
[6]
Rittle, J.; Green, M.T. Cytochrome P450 compound I: Capture, characterization, and CH bond activation kinetics. Science, 2010, 330, 933-937.
[7]
Schwaneberg, U.; Appel, D.; Schmitt, J.; Schmid, R.D. P450 in biotechnology: Zinc driven ω-hydroxylation of p-nitrophenoxy-dodecanoic acid using P450 BM-3 F87A as a catalyst. J. Biotechnol., 2000, 84, 249-257.
[8]
Pazmino, D.T.; Winkler, M.; Glieder, A.; Fraaije, M. Monooxygenases as biocatalysts: Classification, mechanistic aspects and biotechnological applications. J. Biotechnol., 2010, 146, 9-24.
[9]
Mohammad, J.; Maghami, S.; Mohammad, B.G.; Mohkam, M.; Zamani, M.; Ebrahimi, N.; Ghasemi, Y. Molecular cloning, characterization and bioinformatics analysis of CYP152A1 gene from Bacillus subtilis in Escherichia coli. Minerva Biotecnol., 2016, 28, 12-18.
[10]
Whitehouse, C.J.; Bell, S.G.; Wong, L.L. P450 BM3 (CYP102A1): Connecting the dots. Chem. Soc. Rev., 2012, 41, 1218-1260.
[11]
Hollmann, F.; Hofstetter, K.; Schmid, A. Non-enzymatic regeneration of nicotinamide and flavin cofactors for monooxygenase catalysis. Trends Biotechnol., 2006, 24, 163-171.
[12]
Nordblom, G.D.; White, R.E.; Coon, M.J. Studies on hydroperoxide-dependent substrate hydroxylation by purified liver microsomal cytochrome P-450. Arch. Biochem. Biophys., 1976, 175, 524-533.
[13]
Hrycay, E.G.; Gustafsson, J.Å.; Ingelman-Sundberg, M.; Ernster, L. Sodium periodate, sodium chlorite, and organic hydroperoxides as hydroxylating agents in hepatic microsomal steroid hydroxylation reactions catalyzed by cytochrome P-450. FEBS Lett., 1975, 56, 161-165.
[14]
Shoji, O.; Fujishiro, T.; Nagano, S.; Tanaka, S.; Hirose, T.; Shiro, Y.; Watanabe, Y. Understanding substrate misrecognition of hydrogen peroxide dependent cytochrome P450 from Bacillus subtilis. J. Biol. Inorg. Chem., 2010, 15, 1331-1339.
[15]
Budde, M.; Maurer, S.C.; Schmid, R.D.; Urlacher, V.B. Cloning, expression and characterisation of CYP102A2, a self-sufficient P450 monooxygenase from Bacillus subtilis. Appl. Microbiol. Biotechnol., 2004, 66, 180-186.
[16]
Cryle, M.J.; Stok, J.E.; De Voss, J.J. Reactions catalyzed by bacterial cytochromes P450. Aust. J. Chem., 2003, 56, 749-762.
[17]
Dix, D.B.; Thompson, R.C. Codon choice and gene expression: Synonymous codons differ in translational accuracy. Proc. Natl. Acad. Sci., 1989, 86, 6888-6892.
[18]
Chen, D.; Texada, D.E. Low-usage codons and rare codons of Escherichia coli. Gene Ther. Mol. Biol., 2006, 10, 1-12.
[19]
Gustafsson, C.; Govindarajan, S.; Minshull, J. Codon bias and heterologous protein expression. Trends Biotechnol., 2004, 22, 346-353.
[20]
Kane, J.F. Effects of rare codon clusters on high-level expression of heterologous proteins in Escherichia coli. Curr. Opin. Biotechnol., 1995, 6, 494-500.
[21]
Muhlrad, D.; Parker, R. Premature translational termination triggers mRNA decapping. Nature, 1994, 370, 578.
[22]
Buhr, F.; Jha, S.; Thommen, M.; Mittelstaet, J.; Kutz, F.; Schwalbe, H.; Rodnina, M.V.; Komar, A.A. Synonymous codons direct cotranslational folding toward different protein conformations. Mol. Cell, 2016, 61, 341-351.
[23]
Widmann, M.; Clairo, M.; Dippon, J.; Pleiss, J. Analysis of the distribution of functionally relevant rare codons. BMC Genomics, 2008, 9, 207.
[24]
Chartier, M.; Gaudreault, F.; Najmanovich, R. Large-scale analysis of conserved rare codon clusters suggests an involvement in co-translational molecular recognition events. Bioinformatics, 2012, 28, 1438-1445.
[25]
Gustafsson, C.; Minshull, J.; Govindarajan, S.; Ness, J.; Villalobos, A.; Welch, M. Engineering genes for predictable protein expression. Protein Expr. Purif., 2012, 83, 37-46.
[26]
Burgess-Brown, N.A.; Sharma, S.; Sobott, F.; Loenarz, C.; Oppermann, U.; Gileadi, O. Codon optimization can improve expression of human genes in Escherichia coli: A multi-gene study. Protein Expr. Purif., 2008, 59, 94-102.
[27]
Del Tito, B.; Ward, J.M.; Hodgson, J.; Gershater, C.; Edwards, H.; Wysocki, L.A.; Watson, F.A.; Sathe, G.; Kane, J.F. Effects of a minor isoleucyl tRNA on heterologous protein translation in Escherichia coli. J. Bacteriol., 1995, 177, 7086-7091.
[28]
Zdanovsky, A.G.; Zdanovskaia, M.V. Simple and efficient method for heterologous expression of clostridial proteins. Appl. Environ. Microbiol., 2000, 66, 3166-3173.
[29]
Goodluck, U. ATGme: Open-source web application for rare codon identification and custom DNA sequence optimization. BMC Bioinformatics, 2015, 16, 303.
[30]
Theodosiou, A.; Promponas, V.J. LaTcOm: A web server for visualizing rare codon clusters in coding sequences. Bioinformatics, 2012, 28, 591-592.
[31]
Thanaraj, T.; Argos, P. Protein secondary structural types are differentially coded on messenger RNA. Protein Sci., 1996, 5, 1973-1983.
[32]
Guex, N.; Peitsch, M.C. SWISS-MODEL and the Swiss-PdbViewer: An environment for comparative protein modeling. Electrophoresis, 1997, 18, 2714-2723.
[33]
Zhang, Y. I-Tasser server for protein 3D structure prediction. BMC Bioinformatics, 2008, 9, 40.
[34]
Kaplan, W.; Littlejohn, T.G. Swiss-PDB viewer (deep view). Brief. Bioinform., 2001, 2, 195-197.
[35]
DeLano, W.L. Pymol: An open-source molecular graphics tool. CCP4 Newslett. Protein Crystallogr., 2002, 40, 82-92.
[36]
Trott, O.; Olson, A.J. AutoDock vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem., 2010, 31, 455-461.
[37]
Wu, S.; Zhang, Y. LOMETS: A local meta-threading-server for protein structure prediction. Nucleic Acids Res., 2007, 35, 3375-3382.
[38]
Guex, N.; Peitsch, M. Swiss-PdbViewer: A fast and easy-to-use PDB viewer for Macintosh and PC; Protein Data Bank Quat. Newslett, 1996, p. 77.
[39]
Lee, D.S.; Yamada, A.; Sugimoto, H.; Matsunaga, I.; Ogura, H.; Ichihara, K.; Adachi, S.; Park, S.Y.; Shiro, Y. Substrate recognition and molecular mechanism of fatty acid hydroxylation by cytochrome P450 from Bacillus subtilis crystallographic, spectroscopic, and mutational studies. J. Biol. Chem., 2003, 278, 9761-9767.
[40]
Vriend, G. WHAT IF: A molecular modeling and drug design program. J. Mol. Graph., 1990, 8, 52-56.
[41]
Tina, K.; Bhadra, R.; Srinivasan, N. Nucleic Acids Res. 35. Web Server issue), 2007, W473-W476
[42]
Morris, G.M.; Huey, R.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. AutoDock4 and autodocktools4: Automated docking with selective receptor flexibility. J. Comput. Chem., 2009, 30, 2785-2791.
[43]
OLBoyle. N.M.; Banck, M.; James, C.A.; Morley, C.; Vandermeersch, T.; Hutchison, G.R. Open babel: An open chemical toolbox. J. Cheminform., 2011, 3, 33.
[44]
Dong, H.; Nilsson, L.; Kurland, C.G. Co-variation of tRNA abundance and codon usage in Escherichia coli at different growth rates. J. Mol. Biol., 1996, 260, 649-663.
[45]
Varenne, S.; Baty, D.; Verheij, H.; Shire, D.; Lazdunski, C. The maximum rate of gene expression is dependent in the downstream context of unfavourable codons. Biochimie, 1989, 71, 1221-1229.
[46]
Clarke IV, T.F.; Clark, P.L. Rare codons cluster. PLoS One, 2008, 3e3412
[47]
Wallace, A.C.; Laskowski, R.A.; Thornton, J.M. LIGPLOT: A Program to generate schematic diagrams of protein-ligand interactions. Protein Eng., 1995, 8, 127-134.
[48]
Zanger, U.M.; Schwab, M. Cytochrome P450 enzymes in drug metabolism: Regulation of gene expression, enzyme activities, and impact of genetic variation. Pharmacol. Ther., 2013, 138, 103-141.
[49]
Sørensen, M.A.; Kurland, C.; Pedersen, S. Codon usage determines translation rate in Escherichia coli. J. Mol. Biol., 1989, 207, 365-377.
[50]
Varenne, S.; Buc, J.; Lloubes, R.; Lazdunski, C. Translation is a non-uniform process: Effect of tRNA availability on the rate of elongation of nascent polypeptide chains. J. Mol. Biol., 1984, 180, 549-576.
[51]
Zalucki, Y.M.; Jennings, M.P. Experimental confirmation of a key role for non-optimal codons in protein export. Biochem. Biophys. Res. Commun., 2007, 355, 143-148.
[52]
Seidelt, B.; Innis, C.A.; Wilson, D.N.; Gartmann, M.; Armache, J-P.; Villa, E.; Trabuco, L.G.; Becker, T.; Mielke, T.; Schulten, K. Structural insight into nascent polypeptide chain-mediated translational stalling. Science, 2009, 326, 1412-1415.
[53]
Lu, J.; Deutsch, C. Electrostatics in the ribosomal tunnel modulate chain elongation rates. J. Mol. Biol., 2008, 384, 73-86.
[54]
Makrides, S.C. Strategies for achieving high-level expression of genes in Escherichia coli. Microbiol. Rev., 1996, 60, 512-538.
[55]
Shahbazi, M.; Haghkhah, M.; Rahbar, M.R.; Nezafat, N.; Ghasemi, Y. In Silico sub-unit hexavalent peptide vaccine against a Staphylococcus aureus biofilm-related infection. Int. J. Peptide Res. Therapeutics, 2015, 1-17.
[56]
Zamani, M.; Nezafat, N.; Negahdaripour, M.; Dabbagh, F.; Ghasemi, Y. In silico evaluation of different signal peptides for the secretory production of human growth hormone in E. coli. Int. J. Peptide Res. Therapeut., 2015, pp. 1-8.
[57]
Mortazavi, M.; Hosseinkhani, S. Surface charge modification increases firefly luciferase rigidity without alteration in bioluminescence spectra. Enzyme Microb. Technol., 2017, 96, 47-59.
[58]
Mortazavi, M.; Nezafat, N.; Negahdaripour, M.; Gholami, A.; Torkzadeh-Mahani, M.; Lotfi, S.; Ghasemi, Y. In silico evaluation of rare codons and their positions in the structure of cytosine deaminase and substrate docking studies. Trends Pharmacol. Sci., 2016, 2, 117-130.
[59]
Bina, S.; Shenavar, F.; Khodadad, M.; Haghshenas, M.; Mortazavi, M.; Fattahi, M.; Erfani, N.; Hosseini, S. Impact of RGD peptide tethering to IL24/mda-7 (melanoma differentiation associated gene-7) on apoptosis induction in hepatocellular carcinoma cells. Asian Pac. J. Cancer Prev., 2014, 16, 6073-6080.
[60]
Mortazavi, M.; Hosseinkhani, S. Design of thermostable luciferases through arginine saturation in solvent-exposed loops. Protein Engr. Des. Select., 2011, gzr051.
[61]
Kargar, F.; Mortazavi, M.; Savardashtaki, A.; Hosseinkhani, S.; Mahani, M.T.; Ghasemi, Y. Genomic and protein structure analysis of the luciferase from the Iranian bioluminescent beetle, Luciola sp. Int. J. Biol. Macromol., 2019, 124, 689-698.
[62]
Yousefi, F.; Ataei, F.; Mortazavi, M.; Hosseinkhani, S. Bifunctional role of leucine 300 of firefly luciferase in structural rigidity. Int. J. Biol. Macromol., 2017, 101, 67-74.
[63]
Fattahi, M.; Malekpour, A.; Mortazavi, M.; Safarpour, A.; Naseri, N. The characteristics of rare codon clusters in the genome and proteins of hepatitis C virus; a bioinformatics look. Middle East J. Dig. Dis., 2014, 6, 214.
[64]
Mortazavi, M.; Zarenezhad, M.; Gholamzadeh, S.; Alavian, S.M.; Ghorbani, M.; Dehghani, R.; Malekpour, A.; Meshkibaf, M.; Fakhrzad, A. Bioinformatics identification of rare codon clusters (RCCs) in HBV genome and evaluation of RCCs in HBV proteins structure of hepatitis B virus. Hepatitis Monthly, 2016, 16(10)e39909
[65]
Mortazavi, M.; Zarenezhad, M.; Alavian, S.M.; Gholamzadeh, S.; Malekpour, A.; Ghorbani, M. TorkzadehMahani, M.; Lotfi, S.; Fakhrzad, A. Bioinformatic analysis of codon usage and phylogenetic relationships in different genotypes of the hepatitis C virus. Hepatitis Monthly, 2016, 16(10)e39196
[66]
Rodrigues, J.; Araújo, R.; Prather, K.L.; Kluskens, L.; Rodrigues, L. Heterologous production of caffeic acid from tyrosine in Escherichia coli. Enzyme Microb. Technol., 2015, 71, 36-44.
[67]
Stahlhut, S.G.; Siedler, S.; Malla, S.; Harrison, S.J.; Maury, J.; Neves, A.R.; Forster, J. Assembly of a novel biosynthetic pathway for production of the plant flavonoid fisetin in Escherichia coli. Metab. Eng., 2015, 31, 84-93.
[68]
Guengerich, F.P. Cytochrome P450; Springer, 1995, p. 473-535.
[69]
Ogura, H.; Nishida, C.R.; Hoch, U.R.; Perera, R.; Dawson, J.H.; Ortiz de Montellano, P.R. EpoK, a cytochrome P450 involved in biosynthesis of the anticancer agents epothilones A and B. Substrate-mediated rescue of a P450 enzyme. Biochemistry, 2004, 43, 14712-14721.
[70]
Denisov, I.G.; Makris, T.M.; Sligar, S.G.; Schlichting, I. Structure and chemistry of cytochrome P450. Chem. Rev., 2005, 105, 2253-2278.