[1]
Pauwels E, Stoven V, Yamanishi Y. Predicting drug side-effect profiles: a chemical fragment-based approach. BMC Bioinformatics 2011; 12: 169.
[2]
Sohn S, Kocher JPA, Chute CG, Savova GK. Drug side effect extraction from clinical narratives of psychiatry and psychology patients. Journal of the American Medical Informatics Association 2011; 18(Supplement_1): i144-9.
[3]
Mizutani S, Pauwels E, Stoven V, Goto S, Yamanishi Y. Relating drug-protein interaction network with drug side effects. Bioinformatics 2012; 28(18): i522-8.
[4]
Niu Y, Zhang W. Quantitative prediction of drug side effects based on drug-related features. Interdiscip Sci 2017; 9(3): 434-44.
[5]
Fukuzaki M, Seki M, Kashima H, Sese J, Eds. Side Effect Prediction Using Cooperative Pathways. IEEE International Conference on Bioinformatics and Biomedicine
[6]
Yamanishi Y, Pauwels E, Kotera M. Drug side-effect prediction based on the integration of chemical and biological spaces. J Chem Inf Model 2012; 52(12): 3284-92.
[7]
Zhao X, Chen L, Lu J. A similarity-based method for prediction of drug side effects with heterogeneous information. Math Biosci 2018; 306: 136-44.
[8]
Breiman L. Random forests. Mach Learn 2001; 45(1): 5-32.
[9]
Cho H, Berger B, Peng J. Compact integration of multi-network topology for functional analysis of genes. Cell Syst 2016; 3(6): 540-548.e5.
[10]
Kuhn M, Campillos M, Letunic I, Jensen LJ, Bork P. A side effect resource to capture phenotypic effects of drugs. Mol Syst Biol 2010; 6: 343.
[11]
Weininger D. SMILES, a chemical language and information system. 1. Introduction to methodology and encoding rules. J Chem Inf Comput Sci 1988; 28(1): 31-6.
[13]
Rogers D, Hahn M. Extended-connectivity fingerprints. J Chem Inf Model 2010; 50(5): 742-54.
[14]
Hattori M, Okuno Y, Goto S, Kanehisa M. Development of a chemical structure comparison method for integrated analysis of chemical and genomic information in the metabolic pathways. J Am Chem Soc 2003; 125(39): 11853-65.
[15]
Kanehisa M, Furumichi M, Tanabe M, Sato Y, Morishima K. KEGG: new perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res 2017; 45(D1): D353-61.
[16]
Kanehisa M, Goto S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res 2000; 28(1): 27-30.
[17]
Kuhn M, von Mering C, Campillos M, Jensen LJ, Bork P. STITCH: interaction networks of chemicals and proteins. Nucleic Acids Res 2008; 36(Database issue): D684-8.
[18]
Kuhn M, Szklarczyk D, Pletscher-Frankild S, et al. STITCH 4: integration of protein-chemical interactions with user data. Nucleic Acids Res 2014; 42(Database issue): D401-7.
[19]
Wishart DS, Knox C, Guo AC, et al. DrugBank: a knowledgebase for drugs, drug actions and drug targets. Nucleic Acids Res 2008; 36(Database issue): D901-6.
[20]
Wishart DS, Knox C, Guo AC, et al. DrugBank: a comprehensive resource for in silico drug discovery and exploration. Nucleic Acids Res 2006; 34(Suppl. 1): D668-72.
[21]
Luo Y, Zhao X, Zhou J, et al. A network integration approach for drug-target interaction prediction and computational drug repositioning from heterogeneous information. Nat Commun 2017; 8(1): 573.
[22]
Wang R, Liu G, Wang C, Su L, Sun L. Predicting overlapping protein complexes based on core-attachment and a local modularity structure. BMC Bioinformatics 2018; 19(1): 305.
[23]
Schwartz GW, Petrovic J, Zhou Y, Faryabi RB. Differential Integration of Transcriptome and Proteome Identifies Pan-Cancer Prognostic Biomarkers. Front Genet 2018; 9: 205.
[24]
Tranchevent LC, Nazarov PV, Kaoma T, et al. Predicting clinical outcome of neuroblastoma patients using an integrative network-based approach. Biol Direct 2018; 13(1): 12.
[25]
Peng J, Wang H, Lu J, Hui W, Wang Y, Shang X. Identifying term relations cross different gene ontology categories. BMC Bioinformatics 2017; 18(Suppl. 16): 573.
[26]
Ma CY, Chen YPP, Berger B, Liao CS. Identification of protein complexes by integrating multiple alignment of protein interaction networks. Bioinformatics 2017; 33(11): 1681-8.
[27]
Köhler S, Bauer S, Horn D, Robinson PN. Walking the interactome for prioritization of candidate disease genes. Am J Hum Genet 2008; 82(4): 949-58.
[28]
Chen L, Liu T, Zhao X. Inferring anatomical therapeutic chemical
(ATC) class of drugs using shortest path and random walk with restart
algorithms. BBA - Molecular Basis of Disease 2018; 1864(6,Part B): 2228-40.
[29]
Chen L, Zhang Y-H, Zhang Z, Huang T, Cai Y-D. Inferring novel tumor suppressor genes with a protein-protein interac-tion network and network diffusion algorithms. Mol Ther Methods Clin Dev 2018; 10: 57-67.
[30]
Fernandez-Delgado M, Cernadas E, Barro S, Amorim D. Do we Need Hundreds of Classifiers to Solve Real World Classi-fication Problems? J Mach Learn Res 2014; 15: 3133-81.
[31]
Chen L, Chu C, Huang T, Kong X, Cai YD. Prediction and analysis of cell-penetrating peptides using pseudo-amino acid composition and random forest models. Amino Acids 2015; 47(7): 1485-93.
[32]
Kandaswamy KK, Chou K-C, Martinetz T, et al. AFP-Pred: A random forest approach for predicting antifreeze proteins from sequence-derived properties. J Theor Biol 2011; 270(1): 56-62.
[33]
Casanova R, Saldana S, Chew EY, Danis RP, Greven CM, Ambrosius WT. Application of random forests methods to diabetic retinopathy classification analyses. PLoS One 2014; 9(6)e98587
[34]
Pugalenthi G, Kandaswamy KK, Chou K-C, Vivekanandan S, Kolatkar P. RSARF: prediction of residue solvent accessibility from protein sequence using random forest method. Protein Pept Lett 2012; 19(1): 50-6.
[35]
Sprague B, Shi Q, Kim MT, et al. Design, synthesis and experimental validation of novel potential chemopreventive agents using random forest and support vector machine binary classifiers. J Comput Aided Mol Des 2014; 28(6): 631-46.
[36]
Ijaz A. SUMOhunt: Combining Spatial Staging between Lysine and SUMO with Random Forests to Predict SUMOylation. ISRN Bioinform 2013.2013671269
[37]
Witten IH, Frank E, Eds. Data Mining:Practical Machine Learning Tools and Techniques. San Francisco: Morgan, Kaufmann 2005.
[38]
Kohavi R. Ed.A study of cross-validation and bootstrap for accuracy estimation and model selection.International joint Conference on artificial intelligence. In: Lawrence Erlbaum Associates Ltd;. 1995.
[39]
Chen L, Li J, Zhang Y-H, et al. Identification of gene expression signatures across different types of neural stem cells with the Monte-Carlo feature selection method. J Cell Biochem 2018; 119(4): 3394-403.
[40]
Chen L, Pan X, Hu X, et al. Gene expression differences among different MSI statuses in colorectal cancer. Int J Cancer 2018; 143(7): 1731-40.
[41]
Cai Y-D, Zhang S, Zhang Y-H, et al. Identification of the Gene Expression Rules That Define the Subtypes in Glioma. J Clin Med 2018; 7(10): 350.
[42]
Matthews BW. Comparison of the predicted and observed secondary structure of T4 phage lysozyme. Biochim Biophys Acta 1975; 405(2): 442-51.
[43]
Chen L, Chu C, Zhang Y-H, Zheng M-Y, Zhu L, Kong X, et al. Identification of Drug-Drug Interactions Using Chemical Interactions. Curr Bioinform 2017; 12(6): 526-34.
[44]
Chen L, Wang S, Zhang Y-H, Li J, Xing Z-H, Yang J, et al. Identify key sequence features to improve CRISPR sgRNA ef-ficacy IEEE Access 2017; 5: 26582-90.
[45]
Chen L, Wang S, Zhang Y-H, et al. Prediction of nitrated tyrosine residues in protein sequences by extreme learning machine and feature selection methods. Comb Chem High Throughput Screen 2018; 21(6): 393-402.
[46]
Sasaki Y. The truth of the f-measure Teach Tutor mater 2007; 1-5.
[47]
Powers D. Evaluation: From precision, recall and f-measure to roc., informedness, markedness & correlation. J Mach Learn Technol 2011; 2(1): 37-63.
[48]
Egan J. Signal Detection Theory and ROC Analysis. New York: Academic Press 1975.
[49]
Cover T, Hart P. Nearest neighbor pattern classification. IEEE Trans Inf Theory 1967; 13(1): 21-7.
[50]
Corinna Cortes VV. Support-vector networks. Mach Learn 1995; 20(3): 273-97.
[51]
Ting KM, Witten IH. Eds.Stacking bagged and dagged models. Fourteenth international Conference on Machine Learning. San Francisco, CA. . 1997.