Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Research Article

Docking Assisted Prediction and Biological Evaluation of Sideritis L. Components with PTP1b Inhibitory Action and Probable Anti-Diabetic Properties

Author(s): Phaedra Eleftheriou*, Ekaterini Therianou, Diamanto Lazari, Stavroula Dirnali and Anna Micha

Volume 19, Issue 5, 2019

Page: [383 - 392] Pages: 10

DOI: 10.2174/1568026619666190219104430

Price: $65

Abstract

Background: The main characteristic of Diabetes type II is the impaired activation of intracellular mechanisms triggered by the action of insulin. PTP1b is a Protein Tyrosine Phosphatase that dephosphorylates insulin receptor causing its desensitization. Since inhibition of PTP1b may prolong insulin receptor activity, PTP1b has become a drug target for the treatment of Diabetes II. Although a number of inhibitors have been synthesized during the last decades, the research still continues for the development of more effective and selective compounds. Moreover, several constituents of plants and edible algae with PTP1b inhibitory action have been found, adding this extra activity at the pallet of properties of the specific natural products.

Objective: Sideritis L. (Lamiaceae) is a herbal plant growing around the Mediterranean sea which is included in the Mediterranean diet for centuries. The present study is the continuation of a previous work where the antioxidant and anti-inflammatory activities of the components of Sideritis L. were evaluated and aimed to investigate the potential of some sideritis’s components to act as PTP1b inhibitors, thus exhibiting the beneficial effect in the treatment of diabetes II.

Methods: Docking analysis was done to predict PTP1b inhibitory action. Human recombinant PTP1b enzyme was used for the evaluation of the PTP1b inhibitory action, while inhibition of the human LAR and human T-cell PTP was tested for the estimation of the selectivity of the compounds.

Conclusion: Docking analysis effectively predicted inhibition and mode of inhibitory action. According to the experimental results, four of the components exhibited PTP1b inhibitory action. The most active ones were acetoside, which acted as a competitive inhibitor, with an IC50 of 4 µM and lavandufolioside, which acted as an uncompetitive inhibitor, with an IC50 of 9.3 µM. All four compounds exhibited increased selectivity against PTP1b.

Keywords: Diabetes mellitus, Protein tyrosine phosphatase inhibitors, PTP1b, Sideritis, Acetoside, Lavandufolioside, Ajugoside, Docking analysis.

« Previous
Graphical Abstract

[1]
Global report on diabetes. ISBN 978 92 4 156525 7 (NLM classification: WK 810). 2016.
[2]
Whiting, D.R. IDF Diabetes Atlas: Global estimates of the prevalence of dia-betes for 2011 and 2030. Diabetes Research and Clinical Practice. Elsevier BV, 94(3), 311-321.
[3]
Stumvoll, M.; Goldstein, B.J.; van Haeften, T.W. Type 2 diabetes: principles of pathogenesis and therapy. Lancet, 2005, 365(9467), 1333-1346.
[http://dx.doi.org/10.1016/S0140-6736(05)61032-X] [PMID: 15823385]
[4]
White, M.F. Insulin signaling in health and disease. Science, 2003, 302(5651), 1710-1711.
[http://dx.doi.org/10.1126/science.1092952] [PMID: 14657487]
[5]
Burks, D.J.; White, M.F. IRS proteins and beta-cell function. Diabetes, 2001, 50(Suppl. 1), S140-S145.
[http://dx.doi.org/10.2337/diabetes.50.2007.S140] [PMID: 11272176]
[6]
Lin, L.; Shen, Q.; Chen, G.R.; Xie, J. Synthesis of triazole-linked beta-C-glycosyl dimers as inhibitors of PTP1B. Bioorg. Med. Chem., 2008, 16(22), 9757-9763.
[http://dx.doi.org/10.1016/j.bmc.2008.09.066] [PMID: 18922697]
[7]
Lin, L.; Shen, Q.; Chen, G.R.; Xie, J. Synthesis of triazole-linked beta-C-glycosyl dimers as inhibitors of PTP1B. Bioorg. Med. Chem., 2008, 16(22), 9757-9763.
[http://dx.doi.org/10.1016/j.bmc.2008.09.066] [PMID: 18922697]
[8]
Lin, L.; Shen, Q.; Chen, G-R.; Xie, J. β-C-glycosiduronic acids and β-C-glycosyl compounds: new PTP1B inhibitors. Bioorg. Med. Chem. Lett., 2008, 18(24), 6348-6351.
[http://dx.doi.org/10.1016/j.bmcl.2008.10.091] [PMID: 18993066]
[9]
Dixit, M.; Saeed, U.; Kumar, A.; Siddiqi, M.I.; Tamrakar, A.K.; Srivastava, A.K.; Goel, A. Synthesis, molecular docking and PTP1B inhibitory activity of functionalized 4,5-dihydronaphthofurans and dibenzofurans. Med. Chem., 2008, 4(1), 18-24.
[http://dx.doi.org/10.2174/157340608783331515] [PMID: 18220968]
[10]
Douty, B.; Wayland, B.; Ala, P.J.; Bower, M.J.; Pruitt, J.; Bostrom, L.; Wei, M.; Klabe, R.; Gonneville, L.; Wynn, R.; Burn, T.C.; Liu, P.C.; Combs, A.P.; Yue, E.W. Isothiazolidinone inhibitors of PTP1B containing imidazoles and imidazolines. Bioorg. Med. Chem. Lett., 2008, 18(1), 66-71.
[http://dx.doi.org/10.1016/j.bmcl.2007.11.012] [PMID: 18037290]
[11]
Bhattarai, B.R.; Kafle, B.; Hwang, J-S.; Khadka, D.; Lee, S.M.; Kang, J.S.; Ham, S.W.; Han, I.O.; Park, H.; Cho, H. Thiazolidinedione derivatives as PTP1B inhibitors with antihyperglycemic and antiobesity effects. Bioorg. Med. Chem. Lett., 2009, 19(21), 6161-6165.
[http://dx.doi.org/10.1016/j.bmcl.2009.09.020] [PMID: 19783142]
[12]
Lakshminarayana, N.; Rajendra Prasad, Y.; Gharat, L.; Thomas, A.; Ravikumar, P.; Narayanan, S.; Srinivasan, C.V.; Gopalan, B. Synthesis and evaluation of some novel isochroman carboxylic acid derivatives as potential anti-diabetic agents. Eur. J. Med. Chem., 2009, 44(8), 3147-3157.
[http://dx.doi.org/10.1016/j.ejmech. 2009.03.009] [PMID: 19349096]
[13]
Nathan, D.M.; Buse, J.B.; Davidson, M.B.; Ferrannini, E.; Holman, R.R.; Sherwin, R.; Zinman, B. Medical management of hyperglycemia in type 2 diabetes: a consensus algorithm for the initiation and adjustment of therapy: a consensus statement of the American Diabetes Association and the European Association for the Study of Diabetes. Diabetes Care, 2009, 32(1), 193-203.
[http://dx.doi.org/10.2337/dc08-9025] [PMID: 18945920]
[14]
Lu, L.; Wang, S.; Zhu, M.; Liu, Z.; Guo, M.; Xing, S.; Fu, X. Inhibition protein tyrosine phosphatases by an oxovanadium glutamate complex, Na2[VO(Glu)2(CH3OH)](Glu = glutamate). Biometals, 2010, 23(6), 1139-1147.
[http://dx.doi.org/10.1007/s10534-010-9363-8] [PMID: 20617368]
[15]
Liu, Z.; Chai, Q.; Li, Y-Y.; Shen, Q.; Ma, L-P.; Zhang, L-N.; Wang, X.; Sheng, L.; Li, J.Y.; Li, J.; Shen, J.K. Discovery of novel PTP1B inhibitors with antihyperglycemic activity. Acta Pharmacol. Sin., 2010, 31(8), 1005-1012.
[http://dx.doi.org/10.1038/aps.2010.81] [PMID: 20686525]
[16]
Gupta, S.; Pandey, G.; Rahuja, N.; Srivastava, A.K.; Saxena, A.K. Design, synthesis and docking studies on phenoxy-3-piperazin-1-yl-propan-2-ol derivatives as protein tyrosine phosphatase 1B inhibitors. Bioorg. Med. Chem. Lett., 2010, 20(19), 5732-5734.
[http://dx.doi.org/10.1016/j.bmcl.2010.08.008] [PMID: 20797859]
[17]
Kumar, A.; Sharma, S.; Tripathi, V.D.; Maurya, R.A.; Srivastava, S.P.; Bhatia, G.; Tamrakar, A.K.; Srivastava, A.K. Design and synthesis of 2,4-disubstituted polyhydroquinolines as prospective antihyperglycemic and lipid modulating agents. Bioorg. Med. Chem., 2010, 18(11), 4138-4148.
[http://dx.doi.org/10.1016/j.bmc. 2009.11.061] [PMID: 20471838]
[18]
Lakshminarayana, N.; Prasad, Y.R.; Gharat, L.; Thomas, A.; Narayanan, S.; Raghuram, A.; Srinivasan, C.V.; Gopalan, B. Synthesis and evaluation of some novel dibenzo[b,d]furan carboxylic acids as potential anti-diabetic agents. Eur. J. Med. Chem., 2010, 45(9), 3709-3718.
[http://dx.doi.org/10.1016/j.ejmech.2010.05.020] [PMID: 20627471]
[19]
Bhattarai, B.R.; Kafle, B.; Hwang, J-S.; Ham, S.W.; Lee, K-H.; Park, H.; Han, I-O.; Cho, H. Novel thiazolidinedione derivatives with anti-obesity effects: dual action as PTP1B inhibitors and PPAR-γ activators. Bioorg. Med. Chem. Lett., 2010, 20(22), 6758-6763.
[http://dx.doi.org/10.1016/j.bmcl.2010.08.130] [PMID: 20850970]
[20]
Qian, S.; Li, H.; Chen, Y.; Zhang, W.; Yang, S.; Wu, Y. Synthesis and biological evaluation of oleanolic acid derivatives as inhibitors of protein tyrosine phosphatase 1B. J. Nat. Prod., 2010, 73(11), 1743-1750.
[http://dx.doi.org/10.1021/np100064m] [PMID: 20964318]
[21]
Liu, Z.; Lee, W.; Kim, S-N.; Yoon, G.; Cheon, S.H. Design, synthesis, and evaluation of bromo-retrochalcone derivatives as protein tyrosine phosphatase 1B inhibitors. Bioorg. Med. Chem. Lett., 2011, 21(12), 3755-3758.
[http://dx.doi.org/10.1016/j.bmcl. 2011.04.057] [PMID: 21555221]
[22]
Lu, L.; Yue, J.; Yuan, C.; Zhu, M.; Han, H.; Liu, Z.; Guo, M. Ternary oxovanadium(IV) complexes with amino acid-Schiff base and polypyridyl derivatives: synthesis, characterization, and protein tyrosine phosphatase 1B inhibition. J. Inorg. Biochem., 2011, 105(10), 1323-1328.
[http://dx.doi.org/10.1016/j. jinorgbio.2011. 07.008] [PMID: 21864810]
[23]
Luo, L.; He, X.P.; Shen, Q.; Li, J.Y.; Shi, X.X.; Xie, J.; Li, J.; Chen, G.R. Synthesis of (glycopyranosyl-triazolyl)-purines and their inhibitory activities against protein tyrosine phosphatase 1B (PTP1B). Chem. Biodivers., 2011, 8(11), 2035-2044.
[http://dx.doi.org/10.1002/cbdv.201000242] [PMID: 22083916]
[24]
He, R-J.; Yu, Z-H.; Zhang, R-Y.; Zhang, Z-Y. Protein Tyrosine Phosphatases as Potential Therapeutic Targets. Bioorg. Med. Chem., 2012, 20, 1940-1946.
[http://dx.doi.org/10.1016/j.bmc. 2011.11.004] [PMID: 22133902]
[25]
Nilkanth, A.G.; Bhooshan, K.; Hyeongjin, C. Thiazolidinone Derivatives as Competitive Inhibitors of Protein Tyrosine Phosphatase 1B (PTP1B). Bull. Korean Chem. Soc., 2013, 34(4), 1275-1277.
[http://dx.doi.org/10.5012/bkcs.2013.34.4.1275]
[26]
Lei, C.; Liu, C.C.; Pi, E.H.; Hou, A.J. New Isoprenylated Xanthones from Cudrania tricuspidata. Helv. Chim. Acta, 2014, 97, 1683-1688.
[http://dx.doi.org/10.1002/hlca.201400096]
[27]
Du, Y.; Ling, H.; Zhang, M.; Shen, J.; Li, Q. Discovery of novel, potent, selective and cellular active ADC type PTP1B inhibitors via fragment-docking-oriented de novel design. Bioorg. Med. Chem., 2015, 23(15), 4891-4898.
[http://dx.doi.org/10.1016/j.bmc. 2015.05.032] [PMID: 26100442]
[28]
Liu, P.; Du, Y.; Song, L.; Shen, J.; Li, Q. Novel, potent, selective and cellular active ABC type PTP1B inhibitors containing (methanesulfonyl-phenyl-amino)-acetic acid methyl ester phosphotyrosine mimetic. Bioorg. Med. Chem., 2015, 23(21), 7079-7088.
[http://dx.doi.org/10.1016/j.bmc.2015.09.024] [PMID: 26481657]
[29]
Zhang, L.; Jiang, C.S.; Gao, L-X.; Gong, J-X.; Wang, Z-H.; Li, J-Y.; Li, J.; Li, X-W.; Guo, Y-W. Design, synthesis and in vitro activity of phidianidine B derivatives as novel PTP1B inhibitors with specific selectivity. Bioorg. Med. Chem. Lett., 2016, 26(3), 778-781.
[http://dx.doi.org/10.1016/j.bmcl.2015.12.097] [PMID: 26774579]
[30]
Liu, P.; Du, Y.; Song, L.; Shen, J.; Li, Q. Discovery of novel, high potent, ABC type PTP1B inhibitors with TCPTP selectivity and cellular activity. Eur. J. Med. Chem., 2016, 118, 27-33.
[http://dx.doi.org/10.1016/j.ejmech.2016.04.014] [PMID: 27123900]
[31]
Xu, J.Q.; Shen, Q.; Li, J.; Hu, L.H. Dammaranes from Gynostemma pentaphyllum and synthesis of their derivatives as inhibitors of protein tyrosine phosphatase 1B. Bioorg. Med. Chem., 2010, 18(11), 3934-3939.
[http://dx.doi.org/10.1016/j.bmc.2010.04.073] [PMID: 20472439]
[32]
Zhang, X.S.; Bi, X.L. Wan-Xiao; Cao, J.Q.; Xia, X.C.; Diao, Y.P.; Zhao, Y.Q. Protein tyrosine phosphatase 1B inhibitory effect by dammarane-type triterpenes from hydrolyzate of total Gynostemma pentaphyllum saponins. Bioorg. Med. Chem. Lett., 2013, 23(1), 297-300.
[http://dx.doi.org/10.1016/j.bmcl.2012.10.097] [PMID: 23177789]
[33]
Hung, T.M.; Hoang, D.M.; Kim, J.C.; Jang, H.S.; Ahn, J.S.; Min, B.S. Protein tyrosine phosphatase 1B inhibitory by dammaranes from Vietnamese Giao-Co-Lam tea. J. Ethnopharmacol., 2009, 124(2), 240-245.
[http://dx.doi.org/10.1016/j.jep.2009.04.027] [PMID: 19397985]
[34]
Muthusamy, V.S.; Saravanababu, C.; Ramanathan, M.; Bharathi Raja, R.; Sudhagar, S.; Anand, S.; Lakshmi, B.S. Inhibition of protein tyrosine phosphatase 1B and regulation of insulin signalling markers by caffeoyl derivatives of chicory (Cichorium intybus) salad leaves. Br. J. Nutr., 2010, 104(6), 813-823.
[http://dx.doi.org/ 10.1017/S0007114510001480] [PMID: 20444318]
[35]
Sasaki, T.; Li, W.; Higai, K.; Koike, K. Canthinone alkaloids are novel protein tyrosine phosphatase 1B inhibitors. Bioorg. Med. Chem. Lett., 2015, 25(9), 1979-1981.
[http://dx.doi.org/ 10.1016/j.bmcl.2015.03.014] [PMID: 25819098]
[36]
Zhou, Y.; Zhang, W.; Liu, X.; Yu, H.; Lu, X.; Jiao, B. Inhibitors of Protein Tyrosine Phosphatase 1B from Marine Natural Products. Chem. Biodivers., 2017, 14(7), 14.
[http://dx.doi.org/ 10.1002/cbdv.201600462] [PMID: 28261970]
[37]
Baumgartner, R.R.; Steinmann, D.; Heiss, E.H.; Atanasov, A.G.; Ganzera, M.; Stuppner, H.; Dirsch, V.M. Bioactivity-guided isolation of 1,2,3,4,6-Penta-O-galloyl-D-glucopyranose from Paeonia lactiflora roots as a PTP1B inhibitor. J. Nat. Prod., 2010, 73(9), 1578-1581.
[http://dx.doi.org/10.1021/np100258e] [PMID: 20806783]
[38]
Nguyen, P.H.; Dao, T.T.; Kim, J.; Phong, T.; Ndinteh, D.T.; Mbafor, J.T.; Oh, W.K. New 5-deoxyflavonoids and their inhibitory effects on protein tyrosine phosphatase 1B (PTP1B) activity. Bioorg. Med. Chem., 2011, 19(11), 3378-3383.
[http://dx.doi.org/ 10.1016/j.bmc.2011.04.037] [PMID: 21571537]
[39]
Cui, L.; Lee, H.S.; Ndinteh, D.T.; Mbafor, J.T.; Kim, Y.H.; Le, T.V.; Nguyen, P.H.; Oh, W.K. New prenylated flavanones from Erythrina abyssinica with protein tyrosine phosphatase 1B (PTP1B) inhibitory activity. Planta Med., 2010, 76(7), 713-718.
[http://dx.doi.org/10.1055/s-0029-1240682] [PMID: 19960412]
[40]
Li, S.; Li, W.; Wang, Y.; Asada, Y.; Koike, K. Prenylflavonoids from Glycyrrhiza uralensis and their protein tyrosine phosphatase-1B inhibitory activities. Bioorg. Med. Chem. Lett., 2010, 20(18), 5398-5401.
[http://dx.doi.org/10.1016/j.bmcl.2010.07.110] [PMID: 20724155]
[41]
Na, M.; Thuong, P.T.; Hwang, I.H.; Bae, K.; Kim, B.Y.; Osada, H.; Ahn, J.S. Protein tyrosine phosphatase 1B inhibitory activity of 24-norursane triterpenes isolated from Weigela subsessilis. Phytother. Res., 2010, 24(11), 1716-1719.
[http://dx.doi.org/10.1002/ptr.3203] [PMID: 20564495]
[42]
Thuong, P.T.; Lee, C.H.; Dao, T.T.; Nguyen, P.H.; Kim, W.G.; Lee, S.J.; Oh, W.K. Triterpenoids from the leaves of Diospyros kaki (persimmon) and their inhibitory effects on protein tyrosine phosphatase 1B. J. Nat. Prod., 2008, 71(10), 1775-1778.
[http://dx.doi.org/10.1021/np800298w] [PMID: 18798681]
[43]
Yoon, G.; Lee, W.; Kim, S.N.; Cheon, S.H. Inhibitory effect of chalcones and their derivatives from Glycyrrhiza inflata on protein tyrosine phosphatase 1B. Bioorg. Med. Chem. Lett., 2009, 19(17), 5155-5157.
[http://dx.doi.org/10.1016/j.bmcl.2009.07.054] [PMID: 19632832]
[44]
Nguyen, P.H.; Le, T.V.; Thuong, P.T.; Dao, T.T.; Ndinteh, D.T.; Mbafor, J.T.; Kang, K.W.; Oh, W.K. Cytotoxic and PTP1B inhibitory activities from Erythrina abyssinica. Bioorg. Med. Chem. Lett., 2009, 19(23), 6745-6749.
[http://dx.doi.org/10.1016/j.bmcl.2009.09.108] [PMID: 19836230]
[45]
Pitschmann, A.; Zehl, M.; Heiss, E.; Purevsuren, S.; Urban, E.; Dirsch, V.M.; Glasl, S. Quantitation of phenylpropanoids and iridoids in insulin-sensitising extracts of Leonurus sibiricus L. (Lamiaceae). Phytochem. Anal., 2016, 27(1), 23-31.
[http://dx.doi.org/ 10.1002/pca.2583] [PMID: 26333151]
[46]
Lee, I.K.; Kim, C.J.; Song, K.S.; Kim, H.M.; Yoo, I.D.; Koshino, H.; Esumi, Y.; Uramoto, M. Two benzylated dihydroflavonols from Cudrania tricuspidata. J. Nat. Prod., 1995, 58, 1614-1617.
[http://dx.doi.org/10.1021/np50124a024]
[47]
Lee, I.K.; Kim, C.J.; Song, K.S.; Kim, H.M.; Koshino, H.; Uramoto, M.; Yoo, I.D. Cytotoxic benzyl dihydroflavonols from Cudrania tricuspidata. Phytochemistry, 1996, 41(1), 213-216.
[http://dx.doi.org/10.1016/0031-9422(95)00609-5] [PMID: 8588866]
[48]
Nomura, T.; Fukai, T.; Katayanagi, M.; Kuwanon, A.A.B. C and oxydihydromorusin, four new flavones from the root bark of the cultivated mulberry tree (Morus alba L.). Chem. Pharm. Bull. (Tokyo), 1997, 25, 529-532.
[http://dx.doi.org/10.1248/cpb.25.529]
[49]
Lee, B.W.; Gal, S.W.; Park, K.M.; Park, K.H. Cytotoxic xanthones from Cudrania tricuspidata. J. Nat. Prod., 2005, 68(3), 456-458.
[http://dx.doi.org/10.1021/np030481a] [PMID: 15787460]
[50]
Lee, B.W.; Lee, J.H.; Lee, S.T.; Lee, H.S.; Lee, W.S.; Jeong, T.S.; Park, K.H. Antioxidant and cytotoxic activities of xanthones from Cudrania tricuspidata. Bioorg. Med. Chem. Lett., 2005, 15(24), 5548-5552.
[http://dx.doi.org/10.1016/j.bmcl.2005.08.099] [PMID: 16203143]
[51]
Na, M.; Yang, S.; He, L.; Oh, H.; Kim, B.S.; Oh, W.K.; Kim, B.Y.; Ahn, J.S. Inhibition of protein tyrosine phosphatase 1B by ursane-type triterpenes isolated from Symplocos paniculata. Planta Med., 2006, 72(3), 261-263.
[http://dx.doi.org/10.1055/s-2005-873194] [PMID: 16534732]
[52]
Na, M.; Jang, J.; Njamen, D.; Mbafor, J.T.; Fomum, Z.T.; Kim, B.Y.; Oh, W.K.; Ahn, J.S. Protein tyrosine phosphatase-1B inhibitory activity of isoprenylated flavonoids isolated from Erythrina mildbraedii. J. Nat. Prod., 2006, 69(11), 1572-1576.
[http://dx.doi.org/10.1021/np0601861] [PMID: 17125223]
[53]
Na, M.; Cui, L.; Min, B.S.; Bae, K.; Yoo, J.K.; Kim, B.Y.; Oh, W.K.; Ahn, J.S. Protein tyrosine phosphatase 1B inhibitory activity of triterpenes isolated from Astilbe koreana. Bioorg. Med. Chem. Lett., 2006, 16(12), 3273-3276.
[http://dx.doi.org/10.1016/j.bmcl.2006.03.036] [PMID: 16580200]
[54]
Na, M.; Cui, L.; Min, B.S.; Bae, K.; Yoo, J.K.; Kim, B.Y.; Oh, W.K.; Ahn, J.S. Protein tyrosine phosphatase 1B inhibitory activity of triterpenes isolated from Astilbe koreana. Bioorg. Med. Chem. Lett., 2006, 16(12), 3273-3276.
[http://dx.doi.org/10.1016/j.bmcl.2006.03.036] [PMID: 16580200]
[55]
Cui, L.; Ndinteh, D.T.; Na, M.; Thuong, P.T.; Silike-Muruumu, J.; Njamen, D.; Mbafor, J.T.; Fomum, Z.T.; Ahn, J.S.; Oh, W.K. Isoprenylated flavonoids from the stem bark of Erythrina abyssinica. J. Nat. Prod., 2007, 70(6), 1039-1042.
[http://dx.doi.org/10.1021/np060477+] [PMID: 17489632]
[56]
Hwang, J.H.; Hong, S.S.; Han, X.H.; Hwang, J.S.; Lee, D.; Lee, H.; Yun, Y.P.; Kim, Y.; Ro, J.S.; Hwang, B.Y. Prenylated xanthones from the root bark of Cudrania tricuspidata. J. Nat. Prod., 2007, 70(7), 1207-1209.
[http://dx.doi.org/10.1021/np070059k] [PMID: 17608532]
[57]
Liang, B.; Li, H.R.; Xu, L.Z.; Yang, S.L. Xanthones from the roots of Cudrania fruticosa Wight. J. Asian Nat. Prod. Res., 2007, 9(3-5), 393-397.
[http://dx.doi.org/10.1080/10286020600782355] [PMID: 17613626]
[58]
Na, M.; Hoang, D.M.; Njamen, D.; Mbafor, J.T.; Fomum, Z.T.; Thuong, P.T.; Ahn, J.S.; Oh, W.K. Inhibitory effect of 2-arylbenzofurans from Erythrina addisoniae on protein tyrosine phosphatase-1B. Bioorg. Med. Chem. Lett., 2007, 17(14), 3868-3871.
[http://dx.doi.org/10.1016/j.bmcl.2007.05.005] [PMID: 17517504]
[59]
Na, M.; Kim, K.A.; Oh, H.; Kim, B.Y.; Oh, W.K.; Ahn, J.S. Protein tyrosine phosphatase 1B inhibitory activity of amentoflavone and its cellular effect on tyrosine phosphorylation of insulin receptors. Biol. Pharm. Bull., 2007, 30(2), 379-381.
[http://dx.doi.org/ 10.1248/bpb.30.379] [PMID: 17268085]
[60]
Jang, J.; Na, M.; Thuong, P.T.; Njamen, D.; Mbafor, J.T.; Fomum, Z.T.; Woo, E-R.; Oh, W.K. Prenylated flavonoids with PTP1B inhibitory activity from the root bark of Erythrina mildbraedii. Chem. Pharm. Bull. (Tokyo), 2008, 56(1), 85-88.
[http://dx.doi.org/ 10.1248/cpb.56.85] [PMID: 18175982]
[61]
Ryu, Y.B.; Curtis-Long, M.J.; Lee, J.W.; Kim, J.H.; Kim, J.Y.; Kang, K.Y.; Lee, W.S.; Park, K.H. Characteristic of neuraminidase inhibitory xanthones from Cudrania tricuspidata. Bioorg. Med. Chem., 2009, 17(7), 2744-2750.
[http://dx.doi.org/10.1016/j.bmc.2009.02.042] [PMID: 19285413]
[62]
Qin, J.; Su, H.; Zhang, Y.; Gao, J.; Zhu, L.; Wu, X.; Pan, H.; Li, X. Highly brominated metabolites from marine red alga Laurencia similis inhibit protein tyrosine phosphatase 1B. Bioorg. Med. Chem. Lett., 2010, 20(23), 7152-7154.
[http://dx.doi.org/ 10.1016/j.bmcl.2010.08.144] [PMID: 20961755]
[63]
Steinmann, D.; Baumgartner, R.R.; Heiss, E.H.; Bartenstein, S.; Atanasov, A.G.; Dirsch, V.M.; Ganzera, M.; Stuppner, H. Bioguided isolation of (9Z)-octadec-9-enoic acid from Phellodendron amurense Rupr. and identification of fatty acids as PTP1B inhibitors. Planta Med., 2012, 78(3), 219-224.
[http://dx.doi.org/10.1055/s-0031-1280377] [PMID: 22124950]
[64]
Chen, Y-P.; Yang, C-G.; Wei, P-Y.; Li, L.; Luo, D-Q.; Zheng, Z-H.; Lu, X.H. Penostatin derivatives, a novel kind of protein phosphatase 1b inhibitors isolated from solid cultures of the entomogenous fungus Isaria tenuipes. Molecules, 2014, 19(2), 1663-1671.
[http://dx.doi.org/10.3390/molecules19021663] [PMID: 24481115]
[65]
Quang, T.H.; Ngan, N.T.; Yoon, C-S.; Cho, K-H.; Kang, D-G.; Lee, H-S.; Kim, Y.C.; Oh, H. Protein Tyrosine Phosphatase 1B Inhibitors from the Roots of Cudrania tricuspidata. Molecules, 2015, 20(6), 11173-11183.
[http://dx.doi.org/10.3390/molecules2006-11173] [PMID: 26091075]
[66]
Wang, Y.; Yuk, H.J.; Kim, J.Y.; Kim, D.W.; Song, Y.H.; Tan, X.F.; Curtis-Long, M.J.; Park, K.H. Novel chromenedione derivatives displaying inhibition of protein tyrosine phosphatase 1B (PTP1B) from Flemingia philippinensis. Bioorg. Med. Chem. Lett., 2016, 26(2), 318-321.
[http://dx.doi.org/10.1016/j.bmcl.2015. 12.021] [PMID: 26704263]
[67]
Tadić, V.M.; Jeremic, I.; Dobric, S.; Isakovic, A.; Markovic, I.; Trajkovic, V.; Bojovic, D.; Arsic, I. Anti-inflammatory, gastroprotective, and cytotoxic effects of Sideritis scardica extracts. Planta Med., 2012, 78(5), 415-427.
[http://dx.doi.org/10.1055/s-0031-1298172] [PMID: 22274814]
[68]
Villar, A.; Recio, M.C.; Ríos, J.L.; Zafra-Polo, M.C. Antimicrobial activity of essential oils from Sideritis species. Pharmazie, 1986, 41(4), 298-299.
[PMID: 3523549]
[69]
González-Burgos, E.; Carretero, M.E.; Gómez-Serranillos, M.P. Sideritis spp.: uses, chemical composition and pharmacological activities--a review. J. Ethnopharmacol., 2011, 135(2), 209-225.
[http://dx.doi.org/10.1016/j.jep.2011.03.014] [PMID: 21420484]
[70]
Charami, M.T.; Lazari, D.; Karioti, A.; Skaltsa, H.; Hadjipavlou-Litina, D.; Souleles, C. Antioxidant and antiinflammatory activities of Sideritis perfoliata subsp. perfoliata (Lamiaceae). Phytother. Res., 2008, 22(4), 450-454.
[http://dx.doi.org/10.1002/ptr.2333] [PMID: 18386254]
[71]
Bikadi, Z.; Hazai, E. Application of the PM6 semi-empirical method to modeling proteins enhances docking accuracy of AutoDock. J. Cheminform., 2009, 1, 15.
[http://dx.doi.org/ 10.1186/1758-2946-1-15] [PMID: 20150996]
[72]
Morris, G.M.; Goodsell, D.S. Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. J. Comput. Chem., 1998, 19, 1639-1662.
[http://dx.doi.org/ 10.1002/(SICI)1096-987X(19981115)19:14<1639:AID-JCC10>3.0.CO;2-B]
[73]
Solis, F.J.; Wets, R.J.B. Minimization by Random Search Techniques. Math. Oper. Res., 1981, 6, 19-30.
[http://dx.doi.org/ 10.1287/moor.6.1.19]
[74]
Eleftheriou, P. The protein tyrosine phosphatase 1b as a drug target for the treatment of diabetes type II. Developing effective and selective PTP1b inhibitors. ChemXpress, 2013, 2, 71-84.
[75]
Eleftheriou, P.; Petrou, A.; Geronikaki, A.; Liaras, K.; Dirnali, S.; Anna, M. Prediction of enzyme inhibition and mode of inhibitory action based on calculation of distances between hydrogen bond donor/acceptor groups of the molecule and docking analysis: An application on the discovery of novel effective PTP1B inhibitors. SAR QSAR Environ. Res., 2015, 26(7-9), 557-576.
[http://dx.doi.org/10.1080/1062936X.2015.1074939] [PMID: 26294069]
[76]
Sun, J.P.; Fedorov, A.A.; Lee, S.Y.; Guo, X.L.; Shen, K.; Lawrence, D.S.; Almo, S.C.; Zhang, Z.Y. Crystal structure of PTP1B complexed with a potent and selective bidentate inhibitor. J. Biol. Chem., 2003, 278(14), 12406-12414.
[http://dx.doi.org/ 10.1074/jbc.M212491200] [PMID: 12547827]
[77]
Wiesmann, C.; Barr, K.J.; Kung, J.; Zhu, J.; Erlanson, D.A.; Shen, W.; Fahr, B.J.; Zhong, M.; Taylor, L.; Randal, M.; McDowell, R.S.; Hansen, S.K. Allosteric inhibition of protein tyrosine phosphatase 1B. Nat. Struct. Mol. Biol., 2004, 11(8), 730-737.
[http://dx.doi.org/10.1038/nsmb803] [PMID: 15258570]
[78]
Waldrop, G.L.; Waldrop, A. A qualitative approach to enzyme inhibition. Biochem. Mol. Biol. Educ., 2009, 37(1), 11-15.
[http://dx.doi.org/10.1002/bmb.20243] [PMID: 21567682]
[79]
Geronikaki, A.; Eleftheriou, Ph.; Rudof, A.; Dirnali, S.; Balalaie, S. Novel 5,10b-dihydropyrano [3,4-c]chromene derivatives with LAR or/and PTP1B inhibitory action. Differences in preference against LAR or PTP1B and in mode of inhibitory action according to structure modifications in “Selected Chapters of Heterocycle Chemistry”, ICSPF, Moscow. , 2014.
[80]
Ahmad, F.; Considine, R.V.; Goldstein, B.J. Increased abundance of the receptor-type protein-tyrosine phosphatase LAR accounts for the elevated insulin receptor dephosphorylating activity in adipose tissue of obese human subjects. J. Clin. Invest., 1995, 95(6), 2806-2812.
[http://dx.doi.org/10.1172/JCI117985] [PMID: 7769120]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy