Abstract
Background: Personalized medicines are becoming more popular as they enable the use of patient’s genomics and hence help in better drug design with fewer side effects. In fact, several doses can be combined into one dosage form which suits the patient’s demography. 3 Dimensional (3D) printing technology for personalized medicine is a modern day treatment method based on genomics of patient.
Methods: 3D printing technology uses digitally controlled devices for formulating API and excipients in a layer by layer pattern for developing a suitable personalized drug delivery system as per the need of patient. It includes various techniques like inkjet printing, fused deposition modelling which can further be classified into continuous inkjet system and drop on demand. In order to formulate such dosage forms, scientists have used various polymers to enhance their acceptance as well as therapeutic efficacy. Polymers like polyvinyl alcohol, poly (lactic acid) (PLA), poly (caprolactone) (PCL) etc can be used during manufacturing.
Results: Varying number of dosage forms can be produced using 3D printing technology including immediate release tablets, pulsatile release tablets, and transdermal dosage forms etc. The 3D printing technology can be explored successfully to develop personalized medicines which could play a vital role in the treatment of lifethreatening diseases. Particularly, for patients taking multiple medicines, 3D printing method could be explored to design a single dosage in which various drugs can be incorporated. Further 3D printing based personalized drug delivery system could also be investigated in chemotherapy of cancer patients with the added advantage of the reduction in adverse effects.
Conclusion: In this article, we have reviewed 3D printing technology and its uses in personalized medicine. Further, we also discussed the different techniques and materials used in drug delivery based on 3D printing along with various applications of the technology.
Keywords: 3D printing, personalized medicine, polymers, dosage forms, patient's genomics, personalized drug delivery system.