[1]
Adams, I.B.; Martin, B.R. Cannabis: Pharmacology and toxicology in animals and humans. Addiction, 1996, 91, 1585-1614.
[2]
Lambert, D.M. Medical use of cannabis through history. J. Pharm. Belg., 2001, 56, 111-118.
[3]
Pacher, P.; Batkai, S.; Kunos, G. The endocannabinoid system as an emerging target of pharmacotherapy. Pharmacol. Rev., 2006, 58, 389-462.
[4]
di Tomaso, E.; Beltramo, M.; Piomelli, D. Brain cannabinoids in chocolate. Nature, 1996, 382, 677-678.
[5]
Lambert, D.M.; Fowler, C.J. The endocannabinoid system: Drug targets, lead compounds, and potential therapeutic applications. J. Med. Chem., 2005, 48, 5059-5087.
[6]
Pineiro, R.; Falasca, M. Lysophosphatidylinositol signalling: New wine from an old bottle. Biochim. Biophys. Acta, 2012, 1821, 694-705.
[7]
Matsuda, L.A.; Lolait, S.J.; Brownstein, M.J.; Young, A.C.; Bonner, T.I. Structure of a cannabinoid receptor and functional expression of the cloned cDNA. Nature, 1990, 346, 561-564.
[8]
Moro, O.; Lameh, J.; Hogger, P.; Sadee, W. Hydrophobic amino acid in the i2 loop plays a key role in receptor-G protein coupling. J. Biol. Chem., 1993, 268, 22273-22276.
[9]
Munro, S.; Thomas, K.L.; Abu-Shaar, M. Molecular characterization of a peripheral receptor for cannabinoids. Nature, 1993, 365, 61-65.
[10]
Howlett, A.C.; Barth, F.; Bonner, T.I.; Cabral, G.; Casellas, P.; Devane, W.A.; Felder, C.C.; Herkenham, M.; Mackie, K.; Martin, B.R.; Mechoulam, R.; Pertwee, R.G. International Union of Pharmacology. XXVII. Classification of cannabinoid receptors. Pharmacol. Rev., 2002, 54, 161-202.
[11]
Bonz, A.; Laser, M.; Kullmer, S.; Kniesch, S.; Babin-Ebell, J.; Popp, V.; Ertl, G.; Wagner, J.A. Cannabinoids acting on CB1 receptors decrease contractile performance in human atrial muscle. J. Cardiovasc. Pharmacol., 2003, 41, 657-664.
[12]
Feng, Z.; Alqarni, M.H.; Yang, P.; Tong, Q.; Chowdhury, A.; Wang, L.; Xie, X.Q. Modeling, molecular dynamics simulation, and mutation validation for structure of cannabinoid receptor 2 based on known crystal structures of GPCRs. J. Chem. Inf. Model., 2014, 54, 2483-2499.
[13]
Brown, S.M.; Wager-Miller, J.; Mackie, K. Cloning and molecular characterization of the rat CB2 cannabinoid receptor. Biochim. Biophys. Acta, 2002, 1576, 255-264.
[14]
Chen, X.P.; Yang, W.; Fan, Y.; Luo, J.S.; Hong, K.; Wang, Z.; Yan, J.F.; Chen, X.; Lu, J.X.; Benovic, J.L.; Zhou, N.M. Structural determinants in the second intracellular loop of the human cannabinoid CB1 receptor mediate selective coupling to G(s) and G(i). Br. J. Pharmacol., 2010, 161, 1817-1834.
[15]
Onaivi, E.S.; Ishiguro, H.; Gong, J.P.; Patel, S.; Perchuk, A.; Meozzi, P.A.; Myers, L.; Mora, Z.; Tagliaferro, P.; Gardner, E.; Brusco, A.; Akinshola, B.E.; Liu, Q.R.; Hope, B.; Iwasaki, S.; Arinami, T.; Teasenfitz, L.; Uhl, G.R. Discovery of the presence and functional expression of cannabinoid CB2 receptors in brain. Ann. N. Y. Acad. Sci., 2006, 1074, 514-536.
[16]
Bab, I.; Zimmer, A. Cannabinoid receptors and the regulation of bone mass. Br. J. Pharmacol., 2008, 153, 182-188.
[17]
Maccarrone, M. CB2 receptors in reproduction. Br. J. Pharmacol., 2008, 153, 189-198.
[18]
Bonhaus, D.W.; Chang, L.K.; Kwan, J.; Martin, G.R. Dual activation and inhibition of adenylyl cyclase by cannabinoid receptor agonists: evidence for agonist-specific trafficking of intracellular responses. J. Pharmacol. Exp. Ther., 1998, 287, 884-888.
[19]
Calandra, B.; Portier, M.; Kerneis, A.; Delpech, M.; Carillon, C.; Le Fur, G.; Ferrara, P.; Shire, D. Dual intracellular signaling pathways mediated by the human cannabinoid CB1 receptor. Eur. J. Pharmacol., 1999, 374, 445-455.
[20]
Pertwee, R.G. The pharmacology of cannabinoid receptors and their ligands: an overview. Int. J. Obes. (Lond), 2006, 30(Suppl. 1), S13-S18.
[21]
Zheng, C.; Chen, L.; Chen, X.; He, X.; Yang, J.; Shi, Y.; Zhou, N. The second intracellular loop of the human cannabinoid CB2 receptor governs G protein coupling in coordination with the carboxyl terminal domain. PLoS One, 2013, 8e63262
[22]
Lu, Y.; Anderson, H.D. Cannabinoid signaling in health and disease. Cancer J. Physiol. Pharmacol, 2017, 95, 311-327.
[23]
Pavlopoulos, S.; Thakur, G.A.; Nikas, S.P.; Makriyannis, A. Cannabinoid receptors as therapeutic targets. Curr. Pharm. Des., 2006, 12, 1751-1769.
[24]
Lutz, B.; Marsicano, G.; Maldonado, R.; Hillard, C.J. The endocannabinoid system in guarding against fear, anxiety and stress. Nat. Rev. Neurosci., 2015, 16, 705-718.
[25]
Mbvundula, E.C.; Rainsford, K.D.; Bunning, R.A. Cannabinoids in pain and inflammation. Inflammopharmacology, 2004, 12, 99-114.
[26]
Guindon, J.; Hohmann, A.G. Cannabinoid CB2 receptors: a therapeutic target for the treatment of inflammatory and neuropathic pain. Br. J. Pharmacol., 2008, 153, 319-334.
[27]
Feng, R.; Milcarek, C.A.; Xie, X.Q. Antagonism of cannabinoid receptor 2 pathway suppresses IL-6-induced immunoglobulin IgM secretion. BMC Pharmacol. Toxicol., 2014, 15, 30.
[28]
Manglik, A.; Kruse, A.C. Structural Basis for G Protein-Coupled Receptor Activation. Biochemistry, 2017, 56, 5628-5634.
[29]
Manglik, A.; Kobilka, B.K.; Steyaert, J. Nanobodies to Study G Protein-Coupled Receptor Structure and Function. Annu. Rev. Pharmacol. Toxicol., 2017, 57, 19-37.
[30]
Hua, T.; Vemuri, K.; Pu, M.; Qu, L.; Han, G.W.; Wu, Y.; Zhao, S.; Shui, W.; Li, S.; Korde, A.; Laprairie, R.B.; Stahl, E.L.; Ho, J.H.; Zvonok, N.; Zhou, H.; Kufareva, I.; Wu, B.; Zhao, Q.; Hanson, M.A.; Bohn, L.M.; Makriyannis, A.; Stevens, R.C.; Liu, Z.J. Crystal structure of the human cannabinoid receptor CB1. Cell, 2016, 167(3), 750-762.e714.
[31]
Bertalovitz, A.C.; Ahn, K.H.; Kendall, D.A. Ligand Binding Sensitivity of the Extracellular Loop Two of the Cannabinoid Receptor 1. Drug Dev. Res., 2010, 71, 404-411.
[32]
Fay, J.F.; Dunham, T.D.; Farrens, D.L. Cysteine residues in the human cannabinoid receptor: only C257 and C264 are required for a functional receptor, and steric bulk at C386 impairs antagonist SR141716A binding. Biochemistry, 2005, 44, 8757-8769.
[33]
Shao, Z.; Yin, J.; Chapman, K.; Grzemska, M.; Clark, L.; Wang, J.; Rosenbaum, D.M. High-resolution crystal structure of the human CB1 cannabinoid receptor. Nature, 2016, 540, 602-606.
[34]
Hua, T.; Vemuri, K.; Nikas, S.P.; Laprairie, R.B.; Wu, Y.; Qu, L.; Pu, M.; Korde, A.; Jiang, S.; Ho, J.H.; Han, G.W.; Ding, K.; Li, X.; Liu, H.; Hanson, M.A.; Zhao, S.; Bohn, L.M.; Makriyannis, A.; Stevens, R.C.; Liu, Z.J. Crystal structures of agonist-bound human cannabinoid receptor CB1. Nature, 2017, 547, 468-471.
[35]
Isberg, V.; Mordalski, S.; Munk, C.; Rataj, K.; Harpsoe, K.; Hauser, A.S.; Vroling, B.; Bojarski, A.J.; Vriend, G.; Gloriam, D.E. GPCRdb: an information system for G protein-coupled receptors. Nucleic Acids Res., 2017, 45, 2936.
[36]
Song, Z.H.; Slowey, C.A.; Hurst, D.P.; Reggio, P.H. The difference between the CB(1) and CB(2) cannabinoid receptors at position 5.46 is crucial for the selectivity of WIN55212-2 for CB(2). Mol. Pharmacol., 1999, 56, 834-840.
[37]
Xie, X.Q.; Chen, J.Z.; Billings, E.M. 3D structural model of the G-protein-coupled cannabinoid CB2 receptor. Proteins, 2003, 53, 307-319.
[38]
Tuccinardi, T.; Ferrarini, P.L.; Manera, C.; Ortore, G.; Saccomanni, G.; Martinelli, A. Cannabinoid CB2/CB1 selectivity. Receptor modeling and automated docking analysis. J. Med. Chem., 2006, 49, 984-994.
[39]
Stern, E.; Muccioli, G.G.; Millet, R.; Goossens, J.F.; Farce, A.; Chavatte, P.; Poupaert, J.H.; Lambert, D.M.; Depreux, P.; Henichart, J.P. Novel 4-oxo-1, 4-dihydroquinoline-3-carboxamide derivatives as new CB2 cannabinoid receptors agonists: synthesis, pharmacological properties and molecular modeling. J. Med. Chem., 2006, 49, 70-79.
[40]
Raduner, S.; Majewska, A.; Chen, J.Z.; Xie, X.Q.; Hamon, J.; Faller, B.; Altmann, K.H.; Gertsch, J. Alkylamides from Echinacea are a new class of cannabinomimetics. Cannabinoid type 2 receptor-dependent and -independent immunomodulatory effects. J. Biol. Chem., 2006, 281, 14192-14206.
[41]
Latek, D.; Kolinski, M.; Ghoshdastider, U.; Debinski, A.; Bombolewski, R.; Plazinska, A.; Jozwiak, K.; Filipek, S. Modeling of ligand binding to G protein coupled receptors: cannabinoid CB1, CB2 and adrenergic beta 2 AR. J. Mol. Model., 2011, 17, 2353-2366.
[42]
Yang, P.; Myint, K.Z.; Tong, Q.; Feng, R.; Cao, H.; Almehizia, A.A.; Alqarni, M.H.; Wang, L.; Bartlow, P.; Gao, Y.; Gertsch, J.; Teramachi, J.; Kurihara, N.; Roodman, G.D.; Cheng, T.; Xie, X.Q. Lead discovery, chemistry optimization, and biological evaluation studies of novel biamide derivatives as CB2 receptor inverse agonists and osteoclast inhibitors. J. Med. Chem., 2012, 55, 9973-9987.
[43]
Hu, J.; Feng, Z.; Ma, S.; Zhang, Y.; Tong, Q.; Alqarni, M.H.; Gou, X.; Xie, X.Q. Difference and Influence of Inactive and Active States of Cannabinoid Receptor Subtype CB2: From Conformation to Drug Discovery. J. Chem. Inf. Model., 2016, 56, 1152-1163.
[44]
Laschet, C.; Dupuis, N.; Hanson, J. The G protein-coupled receptors deorphanization landscape. Biochem. Pharmacol., 2018, 153, 62-74.
[45]
Brown, A.J. Novel cannabinoid receptors. Br. J. Pharmacol., 2007, 152, 567-575.
[46]
Mackie, K.; Stella, N. Cannabinoid receptors and endocannabinoids: evidence for new players. AAPS J., 2006, 8, E298-E306.
[47]
Irving, A.; Abdulrazzaq, G.; Chan, S.L.F.; Penman, J.; Harvey, J.; Alexander, S.P.H. Cannabinoid Receptor-Related Orphan G Protein-Coupled Receptors. Adv. Pharmacol., 2017, 80, 223-247.
[48]
Overton, H.A.; Babbs, A.J.; Doel, S.M.; Fyfe, M.C.; Gardner, L.S.; Griffin, G.; Jackson, H.C.; Procter, M.J.; Rasamison, C.M.; Tang-Christensen, M.; Widdowson, P.S.; Williams, G.M.; Reynet, C. Deorphanization of a G protein-coupled receptor for oleoylethanolamide and its use in the discovery of small-molecule hypophagic agents. Cell Metab., 2006, 3, 167-175.
[49]
Sawzdargo, M.; Nguyen, T.; Lee, D.K.; Lynch, K.R.; Cheng, R.; Heng, H.H.; George, S.R.; O’Dowd, B.F. Identification and cloning of three novel human G protein-coupled receptor genes GPR52, PsiGPR53 and GPR55: GPR55 is extensively expressed in human brain. Brain Res. Mol. Brain Res., 1999, 64, 193-198.
[50]
Brown A.J.,, W.A. Identification of modulators of GPR55 activity.
Assignee:GlaxoSmithKline 2001.Patent WO00186305.
[51]
Drmota, E, G.P.; Groblewski, T. Screening assays for cannabinoidligand
type modulators. Assignee: Astra Zeneca 2004.Patent WO2004074844.
[52]
Oka, S.; Nakajima, K.; Yamashita, A.; Kishimoto, S.; Sugiura, T. Identification of GPR55 as a lysophosphatidylinositol receptor. Biochem. Biophys. Res. Commun., 2007, 362, 928-934.
[53]
Anavi-Goffer, S.; Baillie, G.; Irving, A.J.; Gertsch, J.; Greig, I.R.; Pertwee, R.G.; Ross, R.A. Modulation of L-alpha-lysophosphatidylinositol/GPR55 mitogen-activated protein kinase (MAPK) signaling by cannabinoids. J. Biol. Chem., 2012, 287, 91-104.
[54]
Henstridge, C.M.; Balenga, N.A.; Schroder, R.; Kargl, J.K.; Platzer, W.; Martini, L.; Arthur, S.; Penman, J.; Whistler, J.L.; Kostenis, E.; Waldhoer, M.; Irving, A.J. GPR55 ligands promote receptor coupling to multiple signalling pathways. Br. J. Pharmacol., 2010, 160, 604-614.
[55]
Lauckner, J.E.; Jensen, J.B.; Chen, H.Y.; Lu, H.C.; Hille, B.; Mackie, K. GPR55 is a cannabinoid receptor that increases intracellular calcium and inhibits M current. Proc. Natl. Acad. Sci. USA, 2008, 105, 2699-2704.
[56]
Henstridge, C.M.; Balenga, N.A.; Ford, L.A.; Ross, R.A.; Waldhoer, M.; Irving, A.J. The GPR55 ligand L-alpha-lysophosphatidylinositol promotes RhoA-dependent Ca2+ signaling and NFAT activation. FASEB J., 2009, 23, 183-193.
[57]
Kotsikorou, E.; Sharir, H.; Shore, D.M.; Hurst, D.P.; Lynch, D.L.; Madrigal, K.E.; Heynen-Genel, S.; Milan, L.B.; Chung, T.D.; Seltzman, H.H.; Bai, Y.; Caron, M.G.; Barak, L.S.; Croatt, M.P.; Abood, M.E.; Reggio, P.H. Identification of the GPR55 antagonist binding site using a novel set of high-potency GPR55 selective ligands. Biochemistry, 2013, 52, 9456-9469.
[58]
Moreno, E.; Andradas, C.; Medrano, M.; Caffarel, M.M.; Perez-Gomez, E.; Blasco-Benito, S.; Gomez-Canas, M.; Pazos, M.R.; Irving, A.J.; Lluis, C.; Canela, E.I.; Fernandez-Ruiz, J.; Guzman, M.; McCormick, P.J.; Sanchez, C. Targeting CB2-GPR55 receptor heteromers modulates cancer cell signaling. J. Biol. Chem., 2014, 289, 21960-21972.
[59]
Balenga, N.A.; Martinez-Pinilla, E.; Kargl, J.; Schroder, R.; Peinhaupt, M.; Platzer, W.; Balint, Z.; Zamarbide, M.; Dopeso-Reyes, I.G.; Ricobaraza, A.; Perez-Ortiz, J.M.; Kostenis, E.; Waldhoer, M.; Heinemann, A.; Franco, R. Heteromerization of GPR55 and cannabinoid CB2 receptors modulates signalling. Br. J. Pharmacol., 2014, 171, 5387-5406.
[60]
McHugh, D.; Page, J.; Dunn, E.; Bradshaw, H.B. Delta(9) -Tetrahydrocannabinol and N-arachidonyl glycine are full agonists at GPR18 receptors and induce migration in human endometrial HEC-1B cells. Br. J. Pharmacol., 2012, 165, 2414-2424.
[61]
Sheskin, T.; Hanus, L.; Slager, J.; Vogel, Z.; Mechoulam, R. Structural requirements for binding of anandamide-type compounds to the brain cannabinoid receptor. J. Med. Chem., 1997, 40, 659-667.
[62]
Jones, R.M. Discovery of agonists of the glucose dependent insulinotropic
receptor, GPR119, a pancre atic beta-cell oGPCR, for the
treatment of NIDDM. Drugs Future 31 (Suppl A) 2006. Abstract L48
[63]
Hansen, K.B.; Rosenkilde, M.M.; Knop, F.K.; Wellner, N.; Diep, T.A.; Rehfeld, J.F.; Andersen, U.B.; Holst, J.J.; Hansen, H.S. 2-Oleoyl glycerol is a GPR119 agonist and signals GLP-1 release in humans. J. Clin. Endocrinol. Metab., 2011, 96, E1409-E1417.
[64]
Soga, T.; Ohishi, T.; Matsui, T.; Saito, T.; Matsumoto, M.; Takasaki, J.; Matsumoto, S.; Kamohara, M.; Hiyama, H.; Yoshida, S.; Momose, K.; Ueda, Y.; Matsushime, H.; Kobori, M.; Furuichi, K. Lysophosphatidylcholine enhances glucose-dependent insulin secretion via an orphan G-protein-coupled receptor. Biochem. Biophys. Res. Commun., 2005, 326, 744-751.
[65]
Morales, P.; Reggio, P.H. An Update on Non-CB1, Non-CB2 Cannabinoid Related G-Protein-Coupled Receptors. Cannabis Cannabinoid Res., 2017, 2, 265-273.
[66]
Pertwee, R.G.; Howlett, A.C.; Abood, M.E.; Alexander, S.P.; Di Marzo, V.; Elphick, M.R.; Greasley, P.J.; Hansen, H.S.; Kunos, G.; Mackie, K.; Mechoulam, R.; Ross, R.A. International Union of Basic and Clinical Pharmacology. LXXIX. Cannabinoid receptors and their ligands: Beyond CB(1) and CB(2). Pharmacol. Rev., 2010, 62, 588-631.
[67]
Tanaka, S.; Ishii, K.; Kasai, K.; Yoon, S.O.; Saeki, Y. Neural expression of G protein-coupled receptors GPR3, GPR6, and GPR12 up-regulates cyclic AMP levels and promotes neurite outgrowth. J. Biol. Chem., 2007, 282, 10506-10515.
[68]
Laun, A.S.; Song, Z.H. GPR3 and GPR6, novel molecular targets for cannabidiol. Biochem. Biophys. Res. Commun., 2017, 490, 17-21.
[69]
Yin, H.; Chu, A.; Li, W.; Wang, B.; Shelton, F.; Otero, F.; Nguyen, D.G.; Caldwell, J.S.; Chen, Y.A. Lipid G protein-coupled receptor ligand identification using beta-arrestin PathHunter assay. J. Biol. Chem., 2009, 284, 12328-12338.
[70]
Lagerstrom, M.C.; Schioth, H.B. Structural diversity of G protein-coupled receptors and significance for drug discovery. Nat. Rev. Drug Discov., 2008, 7, 339-357.
[71]
Christopoulos, A.; Changeux, J.P.; Catterall, W.A.; Fabbro, D.; Burris, T.P.; Cidlowski, J.A.; Olsen, R.W.; Peters, J.A.; Neubig, R.R.; Pin, J.P.; Sexton, P.M.; Kenakin, T.P.; Ehlert, F.J.; Spedding, M.; Langmead, C.J. International Union of Basic and Clinical Pharmacology. XC. multisite pharmacology: Recommendations for the nomenclature of receptor allosterism and allosteric ligands. Pharmacol. Rev., 2014, 66, 918-947.
[72]
Pertwee, R.G. Endocannabinoids and Their Pharmacological Actions. Handb. Exp. Pharmacol., 2015, 231, 1-37.
[73]
Pertwee, R.G. Targeting the endocannabinoid system with cannabinoid receptor agonists: pharmacological strategies and therapeutic possibilities. Philos. Trans. R. Soc. Lond. B Biol. Sci., 2012, 367, 3353-3363.
[74]
Hutcheson, D.M.; Tzavara, E.T.; Smadja, C.; Valjent, E.; Roques, B.P.; Hanoune, J.; Maldonado, R. Behavioural and biochemical evidence for signs of abstinence in mice chronically treated with delta-9-tetrahydrocannabinol. Br. J. Pharmacol., 1998, 125, 1567-1577.
[75]
Price, M.R.; Baillie, G.L.; Thomas, A.; Stevenson, L.A.; Easson, M.; Goodwin, R.; McLean, A.; McIntosh, L.; Goodwin, G.; Walker, G.; Westwood, P.; Marrs, J.; Thomson, F.; Cowley, P.; Christopoulos, A.; Pertwee, R.G.; Ross, R.A. Allosteric modulation of the cannabinoid CB1 receptor. Mol. Pharmacol., 2005, 68, 1484-1495.
[76]
Morales, P.; Goya, P.; Jagerovic, N.; Hernandez-Folgado, L. Allosteric Modulators of the CB1 Cannabinoid Receptor: A Structural Update Review. Cannabis Cannabinoid Res., 2016, 1, 22-30.
[77]
Horswill, J.G.; Bali, U.; Shaaban, S.; Keily, J.F.; Jeevaratnam, P.; Babbs, A.J.; Reynet, C.; Wong Kai In, P. PSNCBAM-1, a novel allosteric antagonist at cannabinoid CB1 receptors with hypophagic effects in rats. Br. J. Pharmacol., 2007, 152, 805-814.
[78]
Baillie, G.L.; Horswill, J.G.; Anavi-Goffer, S.; Reggio, P.H.; Bolognini, D.; Abood, M.E.; McAllister, S.; Strange, P.G.; Stephens, G.J.; Pertwee, R.G.; Ross, R.A. CB(1) receptor allosteric modulators display both agonist and signaling pathway specificity. Mol. Pharmacol., 2013, 83, 322-338.
[79]
Ahn, K.H.; Mahmoud, M.M.; Samala, S.; Lu, D.; Kendall, D.A. Profiling two indole-2-carboxamides for allosteric modulation of the CB1 receptor. J. Neurochem., 2013, 124, 584-589.
[80]
Mahmoud, M.M.; Ali, H.I.; Ahn, K.H.; Damaraju, A.; Samala, S.; Pulipati, V.K.; Kolluru, S.; Kendall, D.A.; Lu, D. Structure-activity relationship study of indole-2-carboxamides identifies a potent allosteric modulator for the cannabinoid receptor 1 (CB1). J. Med. Chem., 2013, 56, 7965-7975.
[81]
Khurana, L.; Ali, H.I.; Olszewska, T.; Ahn, K.H.; Damaraju, A.; Kendall, D.A.; Lu, D. Optimization of chemical functionalities of indole-2-carboxamides to improve allosteric parameters for the cannabinoid receptor 1 (CB1). J. Med. Chem., 2014, 57, 3040-3052.
[82]
Hind, W.H.; England, T.J.; O’Sullivan, S.E. Cannabidiol protects an in vitro model of the blood-brain barrier from oxygen-glucose deprivation via PPARgamma and 5-HT1A receptors. Br. J. Pharmacol., 2016, 173, 815-825.
[83]
McPartland, J.M.; Duncan, M.; Di Marzo, V.; Pertwee, R.G. Are cannabidiol and Delta(9) -tetrahydrocannabivarin negative modulators of the endocannabinoid system? A systematic review. Br. J. Pharmacol., 2015, 172, 737-753.
[84]
Laprairie, R.B.; Bagher, A.M.; Kelly, M.E.; Denovan-Wright, E.M. Cannabidiol is a negative allosteric modulator of the cannabinoid CB1 receptor. Br. J. Pharmacol., 2015, 172, 4790-4805.
[85]
Petrucci, V.; Chicca, A.; Glasmacher, S.; Paloczi, J.; Cao, Z.; Pacher, P.; Gertsch, J. Pepcan-12 (RVD-hemopressin) is a CB2 receptor positive allosteric modulator constitutively secreted by adrenals and in liver upon tissue damage. Sci. Rep., 2017, 7, 9560.
[86]
Soethoudt, M.; Grether, U.; Fingerle, J.; Grim, T.W.; Fezza, F.; de Petrocellis, L.; Ullmer, C.; Rothenhausler, B.; Perret, C.; van Gils, N.; Finlay, D.; MacDonald, C.; Chicca, A.; Gens, M.D.; Stuart, J.; de Vries, H.; Mastrangelo, N.; Xia, L.; Alachouzos, G.; Baggelaar, M.P.; Martella, A.; Mock, E.D.; Deng, H.; Heitman, L.H.; Connor, M. Cannabinoid CB2 receptor ligand profiling reveals biased signalling and off-target activity. Nat. Commun., 2017, 8, 13958.
[87]
Landomiel, F.; Gallay, N.; Jegot, G.; Tranchant, T.; Durand, G.; Bourquard, T.; Crepieux, P.; Poupon, A.; Reiter, E. Biased signalling in follicle stimulating hormone action. Mol. Cell. Endocrinol., 2014, 382, 452-459.
[88]
Kenakin, T. Agonist-receptor efficacy. II. Agonist trafficking of receptor signals. Trends Pharmacol. Sci., 1995, 16, 232-238.
[89]
Violin, J.D.; Lefkowitz, R.J. Beta-arrestin-biased ligands at seven-transmembrane receptors. Trends Pharmacol. Sci., 2007, 28, 416-422.
[90]
Glass, M.; Northup, J.K. Agonist selective regulation of G proteins by cannabinoid CB(1) and CB(2) receptors. Mol. Pharmacol., 1999, 56, 1362-1369.
[91]
Bosier, B.; Hermans, E.; Lambert, D. Differential modulation of AP-1- and CRE-driven transcription by cannabinoid agonists emphasizes functional selectivity at the CB1 receptor. Br. J. Pharmacol., 2008, 155, 24-33.
[92]
Bosier, B.; Tilleux, S.; Najimi, M.; Lambert, D.M.; Hermans, E. Agonist selective modulation of tyrosine hydroxylase expression by cannabinoid ligands in a murine neuroblastoma cell line. J. Neurochem., 2007, 102, 1996-2007.
[93]
Maneuf, Y.P.; Brotchie, J.M. Paradoxical action of the cannabinoid WIN 55, 212-2 in stimulated and basal cyclic AMP accumulation in rat globus pallidus slices. Br. J. Pharmacol., 1997, 120, 1397-1398.
[94]
Franks, L.N.; Ford, B.M.; Madadi, N.R.; Penthala, N.R.; Crooks, P.A.; Prather, P.L. Characterization of the intrinsic activity for a novel class of cannabinoid receptor ligands: Indole quinuclidine analogs. Eur. J. Pharmacol., 2014, 737, 140-148.
[95]
Ford, B.M.; Franks, L.N.; Tai, S.; Fantegrossi, W.E.; Stahl, E.L.; Berquist, M.D.; Cabanlong, C.V.; Wilson, C.D.; Penthala, N.R.; Crooks, P.A.; Prather, P.L. Characterization of structurally novel G protein biased CB1 agonists: Implications for drug development. Pharmacol. Res., 2017, 125, 161-177.
[96]
Ahn, K.H.; Mahmoud, M.M.; Kendall, D.A. Allosteric modulator ORG27569 induces CB1 cannabinoid receptor high affinity agonist binding state, receptor internalization, and Gi protein-independent ERK1/2 kinase activation. J. Biol. Chem., 2012, 287, 12070-12082.
[97]
Ahn, K.H.; Mahmoud, M.M.; Shim, J.Y.; Kendall, D.A. Distinct roles of beta-arrestin 1 and beta-arrestin 2 in ORG27569-induced biased signaling and internalization of the cannabinoid receptor 1 (CB1). J. Biol. Chem., 2013, 288, 9790-9800.
[98]
Raehal, K.M.; Bohn, L.M. beta-arrestins: regulatory role and therapeutic potential in opioid and cannabinoid receptor-mediated analgesia. Handb. Exp. Pharmacol., 2014, 219, 427-443.
[99]
Atwood, B.K.; Wager-Miller, J.; Haskins, C.; Straiker, A.; Mackie, K. Functional selectivity in CB(2) cannabinoid receptor signaling and regulation: implications for the therapeutic potential of CB(2) ligands. Mol. Pharmacol., 2012, 81, 250-263.
[100]
Dhopeshwarkar, A.; Mackie, K. Functional Selectivity of CB2 Cannabinoid Receptor Ligands at a Canonical and Noncanonical Pathway. J. Pharmacol. Exp. Ther., 2016, 358, 342-351.
[101]
Pertwee, R.G. Ligands that target cannabinoid receptors in the brain: from THC to anandamide and beyond. Addict. Biol., 2008, 13, 147-159.
[102]
Laprairie, R.B.; Bagher, A.M.; Kelly, M.E.; Denovan-Wright, E.M. Biased Type 1 Cannabinoid Receptor Signaling Influences Neuronal Viability in a Cell Culture Model of Huntington Disease. Mol. Pharmacol., 2016, 89, 364-375.
[103]
Peters, M.F.; Scott, C.W. Evaluating cellular impedance assays for detection of GPCR pleiotropic signaling and functional selectivity. J. Biomol. Screen., 2009, 14, 246-255.
[104]
Breivogel, C.S.; Puri, V.; Lambert, J.M.; Hill, D.K.; Huffman, J.W.; Razdan, R.K. The influence of beta-arrestin2 on cannabinoid CB1 receptor coupling to G-proteins and subcellular localization and relative levels of beta-arrestin1 and 2 in mouse brain. J. Recept. Signal Transduct. Res., 2013, 33, 367-379.
[105]
Chen, X.; Zheng, C.; Qian, J.; Sutton, S.W.; Wang, Z.; Lv, J.; Liu, C.; Zhou, N. Involvement of beta-arrestin-2 and clathrin in agonist-mediated internalization of the human cannabinoid CB2 receptor. Curr. Mol. Pharmacol., 2014, 7, 67-80.
[106]
Howlett, A.C.; Abood, M.E. CB1 and CB2 Receptor Pharmacology. Adv. Pharmacol., 2017, 80, 169-206.
[107]
Scotter, E.L.; Abood, M.E.; Glass, M. The endocannabinoid system as a target for the treatment of neurodegenerative disease. Br. J. Pharmacol., 2010, 160, 480-498.
[108]
Irannejad, R.; Tomshine, J.C.; Tomshine, J.R.; Chevalier, M.; Mahoney, J.P.; Steyaert, J.; Rasmussen, S.G.; Sunahara, R.K.; El-Samad, H.; Huang, B.; von Zastrow, M. Conformational biosensors reveal GPCR signalling from endosomes. Nature, 2013, 495, 534-538.
[109]
Tsvetanova, N.G.; von Zastrow, M. Spatial encoding of cyclic AMP signaling specificity by GPCR endocytosis. Nat. Chem. Biol., 2014, 10, 1061-1065.
[110]
Godbole, A.; Lyga, S.; Lohse, M.J.; Calebiro, D. Internalized TSH receptors en route to the TGN induce local Gs-protein signaling and gene transcription. Nat. Commun., 2017, 8, 443.
[111]
Irannejad, R.; Pessino, V.; Mika, D.; Huang, B.; Wedegaertner, P.B.; Conti, M.; von Zastrow, M. Functional selectivity of GPCR-directed drug action through location bias. Nat. Chem. Biol., 2017, 13, 799-806.
[112]
Boivin, B.; Vaniotis, G.; Allen, B.G.; Hebert, T.E. G protein-coupled receptors in and on the cell nucleus: a new signaling paradigm? J. Recept. Signal Transduct. Res., 2008, 28, 15-28.
[113]
Revankar, C.M.; Cimino, D.F.; Sklar, L.A.; Arterburn, J.B.; Prossnitz, E.R. A transmembrane intracellular estrogen receptor mediates rapid cell signaling. Science, 2005, 307, 1625-1630.
[114]
Suofu, Y.; Li, W.; Jean-Alphonse, F.G.; Jia, J.Y.; Khattar, N.K.; Li, J.T.; Baranov, S.V.; Leronni, D.; Mihalik, A.C.; He, Y.Q.; Cecon, E.; Wehbi, V.L.; Kim, J.; Heath, B.E.; Baranova, O.V.; Wang, X.M.; Gable, M.J.; Kretz, E.S.; Di Benedetto, G.; Lezon, T.R.; Ferrando, L.M.; Larkin, T.M.; Sullivan, M.; Yablonska, S.; Wang, J.J.; Minnigh, M.B.; Guillaumet, G.; Suzenet, F.; Richardson, R.M.; Poloyac, S.M.; Stolz, D.B.; Jockers, R.; Witt-Enderby, P.A.; Carlisle, D.L.; Vilardaga, J.P.; Friedlander, R.M. Dual role of mitochondria in producing melatonin and driving GPCR signaling to block cytochrome c release. Proc. Natl. Acad. Sci. USA, 2017, 114, E7997-E8006.
[115]
Marsicano, G.; Lutz, B. Neuromodulatory functions of the endocannabinoid system. J. Endocrinol. Invest., 2006, 29, 27-46.
[116]
Bartova, A.; Birmingham, M.K. Effect of delta9-tetrahydrocannabinol on mitochondrial NADH-oxidase activity. J. Biol. Chem., 1976, 251, 5002-5006.
[117]
Tedesco, L.; Valerio, A.; Dossena, M.; Cardile, A.; Ragni, M.; Pagano, C.; Pagotto, U.; Carruba, M.O.; Vettor, R.; Nisoli, E. Cannabinoid receptor stimulation impairs mitochondrial biogenesis in mouse white adipose tissue, muscle, and liver: the role of eNOS, p38 MAPK, and AMPK pathways. Diabetes, 2010, 59, 2826-2836.
[118]
Aquila, S.; Guido, C.; Santoro, A.; Perrotta, I.; Laezza, C.; Bifulco, M.; Sebastiano, A. Human sperm anatomy: Ultrastructural localization of the cannabinoid1 receptor and a potential role of anandamide in sperm survival and acrosome reaction. Anat. Rec. (Hoboken), 2010, 293, 298-309.
[119]
Benard, G.; Massa, F.; Puente, N.; Lourenco, J.; Bellocchio, L.; Soria-Gomez, E.; Matias, I.; Delamarre, A.; Metna-Laurent, M.; Cannich, A.; Hebert-Chatelain, E.; Mulle, C.; Ortega-Gutierrez, S.; Martin-Fontecha, M.; Klugmann, M.; Guggenhuber, S.; Lutz, B.; Gertsch, J.; Chaouloff, F.; Lopez-Rodriguez, M.L.; Grandes, P.; Rossignol, R.; Marsicano, G. Mitochondrial CB(1) receptors regulate neuronal energy metabolism. Nat. Neurosci., 2012, 15, 558-564.
[120]
Hebert-Chatelain, E.; Desprez, T.; Serrat, R.; Bellocchio, L.; Soria-Gomez, E.; Busquets-Garcia, A.; Pagano Zottola, A.C.; Delamarre, A.; Cannich, A.; Vincent, P.; Varilh, M.; Robin, L.M.; Terral, G.; Garcia-Fernandez, M.D.; Colavita, M.; Mazier, W.; Drago, F.; Puente, N.; Reguero, L.; Elezgarai, I.; Dupuy, J.W.; Cota, D.; Lopez-Rodriguez, M.L.; Barreda-Gomez, G.; Massa, F.; Grandes, P.; Benard, G.; Marsicano, G. A cannabinoid link between mitochondria and memory. Nature, 2016, 539, 555-559.
[121]
Bosier, B.; Bellocchio, L.; Metna-Laurent, M.; Soria-Gomez, E.; Matias, I.; Hebert-Chatelain, E.; Cannich, A.; Maitre, M.; Leste-Lasserre, T.; Cardinal, P.; Mendizabal-Zubiaga, J.; Canduela, M.J.; Reguero, L.; Hermans, E.; Grandes, P.; Cota, D.; Marsicano, G. Astroglial CB1 cannabinoid receptors regulate leptin signaling in mouse brain astrocytes. Mol. Metab., 2013, 2, 393-404.
[122]
Gutierrez-Rodriguez, A.; Bonilla-Del Rio, I.; Puente, N.; Gomez-Urquijo, S.M.; Fontaine, C.J.; Egana-Huguet, J.; Elezgarai, I.; Ruehle, S. Localization of the cannabinoid type-1 receptor in subcellular astrocyte compartments of mutant mouse hippocampus. Glia, 2018, 66(7), 1417-1431.
[123]
Brailoiu, G.C.; Deliu, E.; Marcu, J.; Hoffman, N.E.; Console-Bram, L.; Zhao, P.; Madesh, M.; Abood, M.E.; Brailoiu, E. Differential activation of intracellular versus plasmalemmal CB2 cannabinoid receptors. Biochemistry, 2014, 53, 4990-4999.
[124]
Hebert-Chatelain, E.; Reguero, L.; Puente, N.; Lutz, B.; Chaouloff, F.; Rossignol, R.; Piazza, P.V.; Benard, G.; Grandes, P.; Marsicano, G. Cannabinoid control of brain bioenergetics: Exploring the subcellular localization of the CB1 receptor. Mol. Metab., 2014, 3, 495-504.
[125]
den Boon, F.S.; Chameau, P.; Schaafsma-Zhao, Q.; van Aken, W.; Bari, M.; Oddi, S.; Kruse, C.G.; Maccarrone, M.; Wadman, W.J.; Werkman, T.R. Excitability of prefrontal cortical pyramidal neurons is modulated by activation of intracellular type-2 cannabinoid receptors. Proc. Natl. Acad. Sci. USA, 2012, 109, 3534-3539.
[126]
Currie, S.; Rainbow, R.D.; Ewart, M.A.; Kitson, S.; Pliego, E.H.; Kane, K.A.; McCarron, J.G. IP(3)R-mediated Ca(2+) release is modulated by anandamide in isolated cardiac nuclei. J. Mol. Cell. Cardiol., 2008, 45, 804-811.
[127]
Krishna Kumar, K.; Shalev-Benami, M.; Robertson, M.J.; Hu, H.; Banister, S.D.; Hollingsworth, S.A.; Latorraca, N.R.; Kato, H.E.; Hilger, D.; Maeda, S.; Weis, W.I.; Farrens, D.L.; Dror, R.O.; Malhotra, S.V.; Kobilka, B.K.; Skiniotis, G. Structure of a signaling cannabinoid receptor 1-g protein complex. Cell, 2019, 176, 448-458.
[128]
Li, X.T.; Hua, T.; Vemuri, K.; Ho, J.H.; Wu, Y.R.; Wu, L.J.; Popov, P.; Benchama, O.; Zvonok, N.; Locke, K.; Qu, L.; Han, G.W.; Iyer, M.R.; Cinar, R.; Coffey, N.J.; Wang, J.J.; Wu, M.; Katritch, V.; Zhao, S.W.; Kunos, G.; Bohn, L.M.; Makriyannis, A.; Stevens, R.C.; Liu, Z.J. Crystal structure of the human cannabinoid receptor cb2. Cell, 2019, 176, 459-467.