[1]
Buck, M. Trifluoroethanol and colleagues: Cosolvents come of age. Recent studies with peptides and proteins. Q. Rev. Biophys., 1998, 31(3), 297-355.
[2]
Searle, M.S.; Zerella, R.; Williams, D.H.; Packman, L.C. Native-like beta-hairpin structure in an isolated fragment from ferredoxin: NMR and CD studies of solvent effects on the N-terminal 20 residues. Protein Eng., 1996, 9(7), 559-565.
[3]
Hamada, D.; Goto, Y. The equilibrium intermediate of beta-lactoglobulin with non-native alpha-helical structure. J. Mol. Biol., 1997, 269(4), 479-487.
[4]
Kumar, S.; Modig, K.; Halle, B. Trifluoroethanol-induced beta -- alpha transition in beta-lactoglobulin: hydration and cosolvent binding studied by 2H, 17O, and 19F magnetic relaxation dispersion. Biochemistry, 2003, 42(46), 13708-13716.
[5]
Yang, Y.; Barker, S.; Chen, M.J.; Mayo, K.H. Effect of low molecular weight aliphatic alcohols and related compounds on platelet factor 4 subunit association. J. Biol. Chem., 1993, 268(13), 9223-9229.
[6]
Othon, C.M.; Kwon, O.H.; Lin, M.M.; Zewail, A.H. Solvation in protein (un)folding of melittin tetramer-monomer transition. Proc. Natl. Acad. Sci. USA, 2009, 106(31), 12593-12598.
[7]
Anderson, V.L.; Webb, W.W. A desolvation model for trifluoroethanol-induced aggregation of enhanced green fluorescent protein. Biophys. J., 2012, 102(4), 897-906.
[8]
Fioroni, M.; Diaz, M.D.; Burger, K.; Berger, S. Solvation phenomena of a tetrapeptide in water/trifluoroethanol and water/ethanol mixtures: A diffusion NMR, intermolecular NOE, and molecular dynamics study. J. Am. Chem. Soc., 2002, 124(26), 7737-7744.
[9]
Hong, D.P.; Hoshino, M.; Kuboi, R.; Goto, Y. Clustering of fluorine-substituted alcohols as a factor responsible for their marked effects on proteins and peptides. J. Am. Chem. Soc., 1999, 121(37), 8427-8433.
[10]
Roccatano, D.; Colombo, G.; Fioroni, M.; Mark, A.E. Mechanism by which 2,2,2-trifluoroethanol/water mixtures stabilize secondary-structure formation in peptides: A molecular dynamics study. Proc. Natl. Acad. Sci. USA, 2002, 99(19), 12179-12184.
[11]
Diaz, M.D.; Fioroni, M.; Burger, K.; Berger, S. Evidence of complete hydrophobic coating of bombesin by trifluoroethanol in aqueous solution: An NMR spectroscopic and molecular dynamics study. Chem. Eur. J., 2002, 8(7), 1663-1669.
[12]
Cantisani, M.; Finamore, E.; Mignogna, E.; Falanga, A.; Nicoletti, G.F.; Pedone, C.; Morelli, G.; Leone, M.; Galdiero, M.; Galdiero, S. Structural insights into and activity analysis of the antimicrobial peptide myxinidin. Antimicrob. Agents Chemother., 2014, 58(9), 5280-5290.
[13]
Cantisani, M.; Leone, M.; Mignogna, E.; Kampanaraki, K.; Falanga, A.; Morelli, G.; Galdiero, M.; Galdiero, S. Structure-activity Rrelations of myxinidin, an antibacterial peptide derived from the epidermal mucus of hagfish. Antimicrob. Agents Chemother., 2013, 57(11), 5665-5673.
[14]
Scudiero, O.; Nigro, E.; Cantisani, M.; Colavita, I.; Leone, M.; Mercurio, F.A.; Galdiero, M.; Pessi, A.; Daniele, A.; Salvatore, F.; Galdiero, S. Design and activity of a cyclic mini-beta-defensin analog: A novel antimicrobial tool. Int. J. Nanomedicine, 2015, 10, 6523-6539.
[15]
Buonanno, M.; Coppola, M.; Di Lelio, I.; Molisso, D.; Leone, M.; Pennacchio, F.; Langella, E.; Rao, R.; Monti, S.M. Prosystemin, a prohormone that modulates plant defense barriers, is an intrinsically disordered protein. Protein Sci., 2018, 27(3), 620-632.
[16]
Pirone, L.; Ripoll-Rozada, J.; Leone, M.; Ronca, R.; Lombardo, F.; Fiorentino, G.; Andersen, J.F.; Pereira, P.J.B.; Arca, B.; Pedone, E. Functional analyses yield detailed insight into the mechanism of thrombin inhibition by the antihemostatic salivary protein cE5 from Anopheles gambiae. J. Biol. Chem., 2017, 292(30), 12632-12642.
[17]
Mercurio, F.A.; Di Natale, C.; Pirone, L.; Scognamiglio, P.L.; Marasco, D.; Pedone, E.M.; Saviano, M.; Leone, M. Peptide fragments of Odin-Sam1: conformational analysis and interaction studies with EphA2-Sam. ChemBioChem, 2015, 16(11), 1629-1636.
[18]
Mercurio, F.A.; Scognamiglio, P.L.; Di Natale, C.; Marasco, D.; Pellecchia, M.; Leone, M. CD and NMR conformational studies of a peptide encompassing the Mid Loop interface of Ship2-Sam. Biopolymers, 2014, 101(11), 1088-1098.
[19]
Mercurio, F.A.; Costantini, S.; Di Natale, C.; Pirone, L.; Guariniello, S.; Scognamiglio, P.L.; Marasco, D.; Pedone, E.M.; Leone, M. Structural investigation of a C-terminal EphA2 receptor mutant: Does mutation affect the structure and interaction properties of the Sam domain? BBA-Proteins Proteom., 2017, 1865(9), 1095-1104.
[20]
Akitake, B.; Spelbrink, R.E.J.; Anishkin, A.; Killian, J.A.; de Kruijff, B.; Sukharev, S. 2,2,2-Trifluoroethanol changes the transition kinetics and subunit interactions in the small bacterial mechanosensitive channel MscS. Biophys. J., 2007, 92(8), 2771-2784.
[21]
Walgers, R.; Lee, T.C.; Cammers-Goodwin, A. An indirect chaotropic mechanism for the stabilization of helix conformation of peptides in aqueous trifluoroethanol and hexafluoro-2-propanol. J. Am. Chem. Soc., 1998, 120(20), 5073-5079.
[22]
Vijayalakshmi, L.; Krishna, R.; Sankaranarayanan, R.; Vijayan, M. An asymmetric dimer of beta-lactoglobulin in a low humidity crystal form - Structural changes that accompany partial dehydration and protein action. Proteins, 2008, 71(1), 241-249.
[24]
Saxena, V.K.; Kumar, S.; Jha, B.K.; Kumar, A.; Kumar, D.; Naqvi, S.M.K. Study of conformational properties of solid phase synthesized ovine kisspeptin-14 using Circular Dichroism spectroscopy. Indian J. Exp. Biol., 2015, 53(10), 676-680.
[25]
Schonbrunner, N.; Wey, J.; Engels, J.; Georg, H.; Kiefhaber, T. Native-like beta-structure in a trifluoroethanol-induced partially folded state of the all-beta-sheet protein tendamistat. J. Mol. Biol., 1996, 260(3), 432-445.
[26]
Rajan, R.; Balaram, P. A model for the interaction of trifluoroethanol with peptides and proteins. Int. J. Pept. Protein Res., 1996, 48(4), 328-336.
[27]
Sundaralingam, M.; Sekharudu, Y.C. Water-inserted alpha-helical segments implicate reverse turns as folding intermediates. Science, 1989, 244(4910), 1333-1337.
[28]
Dicapua, F.M.; Swaminathan, S.; Beveridge, D.L. Theoretical evidence for destabilization of an alpha-helix by water insertion - molecular-dynamics of hydrated decaalanine. J. Am. Chem. Soc., 1990, 112(19), 6768-6771.
[29]
Deloof, H.; Nilsson, L.; Rigler, R. Molecular-dynamics simulation of galanin in aqueous and nonaqueous solution. J. Am. Chem. Soc., 1992, 114(11), 4028-4035.
[30]
Baker, E.N.; Hubbard, R.E. Hydrogen bonding in globular proteins. Prog. Biophys. Mol. Biol., 1984, 44(2), 97-179.
[31]
Shiraki, K.; Nishikawa, K.; Goto, Y. Trifluoroethanol-induced stabilization of the alpha-helical structure of beta-lactoglobulin - implication for non-hierarchical protein-folding. J. Mol. Biol., 1995, 245(2), 180-194.
[32]
Cruz, A.; Casals, C.; Perez-Gil, J. Conformational flexibility of pulmonary surfactant proteins SP-B and SP-C, studied in aqueous organic solvents. BBA-Lipid. Lipid Met., 1995, 1255(1), 68-76.
[33]
Liu, Z.P.; Rizo, J.; Gierasch, L.M. Equilibrium folding studies of cellular retinoic acid binding protein, a predominantly beta-sheet protein. Biochemistry, 1994, 33(1), 134-142.
[34]
Buck, M.; Radford, S.E.; Dobson, C.M. A partially folded state of hen egg white lysozyme in trifluoroethanol: structural characterization and implications for protein folding. Biochemistry, 1993, 32(2), 669-678.
[35]
Segawa, S.; Fukuno, T.; Fujiwara, K.; Noda, Y. Local structures in unfolded lysozyme and correlation with secondary structures in the native conformation - helix-forming or helix-breaking propensity of peptide segments. Biopolymers, 1991, 31(5), 497-509.
[36]
Fan, P.; Bracken, C.; Baum, J. Structural characterization of monellin in the alcohol-denatured state by NMR: evidence for beta-sheet to alpha-helix conversion. Biochemistry, 1993, 32(6), 1573-1582.
[37]
Vonstosch, A.G.; Kinzel, V.; Pipkorn, R.; Reed, J. Investigation of the structural components governing the polarity-dependent refolding of a Cd4-binding peptide from Gp120. J. Mol. Biol., 1995, 250(4), 507-513.
[38]
Chen, Y.; Liu, B.; Barkley, M.D. Trifluoroethanol quenches indole fluorescence by excited-state proton-transfer. J. Am. Chem. Soc., 1995, 117(20), 5608-5609.
[39]
Imai, T.; Kovalenko, A.; Hirata, F.; Kidera, A. Molecular thermodynamics of trifluoroethanol-induced helix formation: Analysis of the solvation structure and free energy by the 3D-RISM theory. Interdiscip. Sci., 2009, 1(2), 156-160.
[40]
Millhauser, G.L.; Stenland, C.J.; Hanson, P.; Bolin, K.A. vandeVen, F.J.M. Estimating the relative populations of 3(10)-helix and alpha-helix in Ala-rich peptides: A hydrogen exchange and high field NMR study. J. Mol. Biol., 1997, 267(4), 963-974.
[41]
Luo, P.; Baldwin, R.L. Mechanism of helix induction by trifluoroethanol: a framework for extrapolating the helix-forming properties of peptides from trifluoroethanol/water mixtures back to water. Biochemistry, 1997, 36(27), 8413-8421.
[42]
Kentsis, A.; Sosnick, T.R. Trifluoroethanol promotes helix formation by destabilizing backbone exposure: Desolvation rather than native hydrogen bonding defines the kinetic pathway of dimeric coiled coil folding. Biochemistry, 1998, 37(41), 14613-14622.
[43]
Xiong, K.; Asher, S.A. Circular dichroism and UV resonance raman study of the impact of alcohols on the Gibbs free energy landscape of an alpha-helical peptide. Biochemistry, 2010, 49(15), 3336-3342.
[44]
Vymetal, J.; Bednarova, L.; Vondrasek, J. Effect of TFE on the Helical Content of AK17 and HAL-1 Peptides: Theoretical Insights into the Mechanism of Helix Stabilization. J. Phys. Chem. B, 2016, 120(6), 1048-1059.
[45]
Carver, J.A.; Collins, J.G. Nmr identification of a partial helical conformation for bombesin in solution. Eur. J. Biochem., 1990, 187(3), 645-650.
[46]
Anastasi, A.; Erspamer, V.; Bucci, M. Isolation and amino acid sequences of alytesin and bombesin, two analogous active tetradecapeptides from the skin of European discoglossid frogs. Arch. Biochem. Biophys., 1972, 148(2), 443-446.
[47]
Diaz, M.D.; Berger, S. Preferential solvation of a tetrapeptide by trifluoroethanol as studied by intermolecular NOE. Magn. Reson. Chem., 2001, 39(7), 369-373.
[48]
Culik, R.M.; Abaskharon, R.M.; Pazos, I.M.; Gai, F. Experimental validation of the role of trifluoroethanol as a nanocrowder. J. Phys. Chem. B, 2014, 118(39), 11455-11461.
[49]
Gast, K.; Zirwer, D.; Muller-Frohne, M.; Damaschun, G. Trifluoroethanol-induced conformational transitions of proteins: insights gained from the differences between alpha-lactalbumin and ribonuclease A. Protein Sci., 1999, 8(3), 625-634.
[50]
Gast, K.; Siemer, A.; Zirwer, D.; Damaschun, G. Fluoroalcohol-induced structural changes of proteins: some aspects of cosolvent-protein interactions. Eur. Biophys. J., 2001, 30(4), 273-283.
[51]
Scharge, T.; Cezard, C.; Zielke, P.; Schutz, A.; Emmeluth, C.; Suhm, M.A. A peptide co-solvent under scrutiny: Self-aggregation of 2,2,2-trifluoroethanol. Phys. Chem. Chem. Phys., 2007, 9(32), 4472-4490.
[52]
Jalili, S.; Akhavan, M. Molecular dynamics simulation study of association in trifluoroethanol/water mixtures. J. Comput. Chem., 2010, 31(2), 286-294.
[53]
Gerig, J.T. Toward a molecular dynamics force field for simulations of 40% trifluoroethanol-water. J. Phys. Chem. B, 2014, 118(6), 1471-1480.
[54]
Zhou, H.X.; Rivas, G.; Minton, A.P. Macromolecular crowding and confinement: biochemical, biophysical, and potential physiological consequences. Annu. Rev. Biophys., 2008, 37, 375-397.
[55]
Wang, T.; Lau, W.L.; DeGrado, W.F.; Gai, F. T-jump infrared study of the folding mechanism of coiled-coil GCN4-p1. Biophys. J., 2005, 89(6), 4180-4187.
[56]
Reiersen, H.; Rees, A.R. Trifluoroethanol may form a solvent matrix for assisted hydrophobic interactions between peptide side chains. Protein Eng., 2000, 13(11), 739-743.
[57]
Munoz, V.; Serrano, L. Elucidating the folding problem of helical peptides using empirical parameters. Nat. Struct. Biol., 1994, 1(6), 399-409.
[58]
Najbar, L.V.; Craik, D.J.; Wade, J.D.; Salvatore, D.; McLeish, M.J. Conformational analysis of LYS(11-36), a peptide derived from the beta-sheet region of T4 lysozyme, in TFE and SDS. Biochemistry, 1997, 36(38), 11525-11533.
[59]
Wang, Y.J.; Henz, M.E.; Gallagher, N.L.F.; Chai, S.Y.; Gibbs, A.C.; Yan, L.Z.; Stiles, M.E.; Wishart, D.S.; Vederas, J.C. Solution structure of carnobacteriocin B2 and implications for structure-activity relationships among type IIa bacteriocins from lactic acid bacteria. Biochemistry, 1999, 38(47), 15438-15447.
[60]
Starzyk, A.; Barber-Armstrong, W.; Sridharan, M.; Decatur, S.M. Spectroscopic evidence for backbone desolvation of helical peptides by 2,2,2-trifluoroethanol: An isotope-edited FTIR study. Biochemistry, 2005, 44(1), 369-376.
[61]
Monincova, L.; Budesinsky, M.; Slaninova, J.; Hovorka, O.; Cvacka, J.; Voburka, Z.; Fucik, V.; Borovickova, L.; Bednarova, L.; Straka, J.; Cerovsky, V. Novel antimicrobial peptides from the venom of the eusocial bee Halictus sexcinctus (Hymenoptera: Halictidae) and their analogs. Amino Acids, 2010, 39(3), 763-775.
[62]
Sonnichsen, F.D.; Vaneyk, J.E.; Hodges, R.S.; Sykes, B.D. Effect of trifluoroethanol on protein secondary structure - an NMR and CD study using a synthetic actin peptide. Biochemistry, 1992, 31(37), 8790-8798.
[63]
Lehrman, S.R.; Tuls, J.L.; Lund, M. Peptide alpha-helicity in aqueous trifluoroethanol: correlations with predicted alpha-helicity and the secondary structure of the corresponding regions of bovine growth hormone. Biochemistry, 1990, 29(23), 5590-5596.
[64]
Mercurio, F.A.; Marasco, D.; Di Natale, C.; Pirone, L.; Costantini, S.; Pedone, E.M.; Leone, M. Targeting EphA2-Sam and its interactome: design and evaluation of helical peptides enriched in charged residues. ChemBioChem, 2016, 17(22), 2179-2188.
[65]
Zhou, P.; Zhao, H.; Chen, C.; Bai, J.; Wang, D. The stability of alpha-helix of the helical antimicrobial peptide in polar/apolar solvent. Int. J. Biosci. Biochem. Bioinform., 2015, 5(4), 249-255.
[66]
Maroun, R.G.; Krebs, D.; El Antri, S.; Deroussent, A.; Lescot, E.; Troalen, F.; Porumb, H.; Goldberg, M.E.; Fermandjian, S. Self-association and domains of interactions of an amphipathic helix peptide inhibitor of HIV-1 integrase assessed by analytical ultracentrifugation and NMR experiments in trifluoroethanol/H2O mixtures. J. Biol. Chem., 1999, 274(48), 34174-34185.
[67]
Choy, N.; Raussens, V.; Narayanaswami, V. Inter-molecular coiled-coil formation in human apolipoprotein E C-terminal domain. J. Mol. Biol., 2003, 334(3), 527-539.
[68]
Goetz, M.; Carlotti, C.; Bontems, F.; Dufourc, E.J. Evidence for an alpha-helix - pi-bulge helicity modulation for the neu/erbB-2 membrane-spanning segment. A 1H NMR and circular dichroism study. Biochemistry, 2001, 40(21), 6534-6540.
[69]
Roa, J.; Aguilar, E.; Dieguez, C.; Pinilla, L.; Tena-Sempere, M. New frontiers in kisspeptin/GPR54 physiology as fundamental gatekeepers of reproductive function. Front. Neuroendocrinol., 2008, 29(1), 48-69.
[70]
Cornish, V.W.; Kaplan, M.I.; Veenstra, D.L.; Kollman, P.A.; Schultz, P.G. Stabilizing and destabilizing effects of placing beta-branched amino-acids in protein alpha-helices. Biochemistry, 1994, 33(40), 12022-12031.
[71]
Lewandowska, A.; Oldziej, S.; Liwo, A.; Scheraga, H.A. Beta-hairpin-forming peptides; models of early stages of protein folding. Biophys. Chem., 2010, 151(1-2), 1-9.
[72]
Santiveri, C.M.; Pantoja-Uceda, D.; Rico, M.; Jimenez, M.A. Beta-hairpin formation in aqueous solution and in the presence of trifluoroethanol: A H-1 and C-13 nuclear magnetic resonance conformational study of designed peptides. Biopolymers, 2005, 79(3), 150-162.
[73]
Mirtic, A.; Grdadolnik, J. The structure of poly-L-lysine in different solvents. Biophys. Chem., 2013, 175, 47-53.
[74]
Arunkumar, A.I.; Kumar, T.K.S.; Yu, C. Specificity of helix-induction by 2,2,2-trifluoroethanol in polypeptides. Int. J. Biol. Macromol., 1997, 21(3), 223-230.
[75]
Drozdov, A.N.; Grossfield, A.; Pappu, R.V. Role of solvent in determining conformational preferences of alanine dipeptide in water. J. Am. Chem. Soc., 2004, 126(8), 2574-2581.
[76]
Tiffany, M.L.; Krimm, S. New chain conformations of poly(glutamic acid) and polylysine. Biopolymers, 1968, 6(9), 1379-1382.
[77]
Ataei, F.; Hosseinkhani, S. Impact of trifluoroethanol-induced structural changes on luciferase cleavage sites. J. Photochem. Photobiol. B, 2015, 144, 1-7.
[78]
Myers, J.K.; Pace, C.N.; Scholtz, J.M. Trifluoroethanol effects on helix propensity and electrostatic interactions in the helical peptide from ribonuclease T1. Protein Sci., 1998, 7(2), 383-388.
[79]
Rohl, C.A.; Chakrabartty, A.; Baldwin, R.L. Helix propagation and N-cap propensities of the amino acids measured in alanine-based peptides in 40 volume percent trifluoroethanol. Protein Sci., 1996, 5(12), 2623-2637.
[80]
Daoust, H.; St-Cyr, D. Effect of the cation size and of the solvent composition on the conformation of Poly(L-glutamic acid) alkaline metal salts. Polym. J., 1982, 14(11), 831-838.
[81]
Thennarasu, S.; Nagaraj, R. Effects of salt and denaturant on structure of the amino terminal alpha-helical segment of an antibacterial peptide dermaseptin and its binding to model membranes. Indian J. Biochem. Biophys., 2001, 38(3), 142-148.
[82]
Buck, M.; Boyd, J.; Redfield, C.; MacKenzie, D.A.; Jeenes, D.J.; Archer, D.B.; Dobson, C.M. Structural determinants of protein dynamics: analysis of 15N NMR relaxation measurements for main-chain and side-chain nuclei of hen egg white lysozyme. Biochemistry, 1995, 34(12), 4041-4055.
[83]
Povey, J.F.; Smales, C.M.; Hassard, S.J.; Howard, M.J. Comparison of the effects of 2,2,2-trifluoroethanol on peptide and protein structure and function. J. Struct. Biol., 2007, 157(2), 329-338.
[84]
Buck, M.; Schwalbe, H.; Dobson, C.M. Characterization of conformational preferences in a partly folded protein by heteronuclear NMR spectroscopy assignment and secondary structureanalysis of hen egg-white lysozyme in trifluoroethanol. Biochemistry, 1995, 34(40), 13219-13232.
[85]
Williams, M.A.; Thornton, J.M.; Goodfellow, J.M. Modelling protein unfolding: Hen egg-white lysozyme. Protein Eng., 1997, 10(8), 895-903.
[86]
Eyles, S.J.; Radford, S.E.; Robinson, C.V.; Dobson, C.M. Kinetic consequences of the removal of a disulfide bridge on the folding of hen lysozyme. Biochemistry, 1994, 33(44), 13038-13048.
[87]
Radford, S.E.; Dobson, C.M.; Evans, P.A. The folding of hen lysozyme involves partially structured intermediates and multiple pathways. Nature, 1992, 358(6384), 302-307.
[88]
Liu, F.T.; Patterson, R.J.; Wang, J.L. Intracellular functions of galectins. BBA-Gen. Subjects, 2002, 1572(2-3), 263-273.
[89]
Mandal, P.; Molla, A.R.; Mandal, D.K. Denaturation of bovine spleen galectin-1 in guanidine hydrochloride and fluoroalcohols: Structural characterization and implications for protein folding. J. Biochem., 2013, 154(6), 531-540.
[90]
Wright, P.E.; Dyson, H.J. Intrinsically unstructured proteins: Re-assessing the protein structure-function paradigm. J. Mol. Biol., 1999, 293(2), 321-331.
[91]
Iakoucheva, L.M.; Brown, C.J.; Lawson, J.D.; Obradovic, Z.; Dunker, A.K. Intrinsic disorder in cell-signaling and cancer-associated proteins. J. Mol. Biol., 2002, 323(3), 573-584.
[92]
Liu, J.G.; Perumal, N.B.; Oldfield, C.J.; Su, E.W.; Uversky, V.N.; Dunker, A.K. Intrinsic disorder in transcription factors. Biochemistry, 2006, 45(22), 6873-6888.
[93]
Galea, C.A.; Wang, Y.; Sivakolundu, S.G.; Kriwacki, R.W. Regulation of cell division by intrinsically unstructured proteins: Intrinsic flexibility, modularity, and signaling conduits. Biochemistry, 2008, 47(29), 7598-7609.
[94]
Uversky, V.N.; Oldfield, C.J.; Dunker, A.K. Intrinsically disordered proteins in human diseases: Introducing the D-2 concept. Annu. Rev. Biophys., 2008, 37, 215-246.
[95]
Uversky, V.N. Intrinsically disordered proteins from A to Z. Int. J. Biochem. Cell Biol., 2011, 43(8), 1090-1103.
[96]
Singh, G.P.; Dash, D. Intrinsic disorder in yeast transcriptional regulatory network. Proteins, 2007, 68(3), 602-605.
[97]
Habchi, J.; Tompa, P.; Longhi, S.; Uversky, V.N. Introducing protein intrinsic disorder. Chem. Rev., 2014, 114(13), 6561-6588.
[98]
Hamdi, K.; Salladini, E.; O’Brien, D.P.; Brier, S.; Chenal, A.; Yacoubi, I.; Longhi, S. Structural disorder and induced folding within two cereal, ABA stress and ripening (ASR) proteins. Sci. Rep., 2017, 7(1), 15544.
[99]
Sun, X.L.; Rikkerink, E.H.A.; Jones, W.T.; Uversky, V.N. Multifarious roles of intrinsic disorder in proteins illustrate its broad impact on plant biology. Plant Cell, 2013, 25(1), 38-55.
[100]
Fontana, A.; de Laureto, P.P.; Spolaore, B.; Frare, E.; Picotti, P.; Zambonin, M. Probing protein structure by limited proteolysis. Acta Biochim. Pol., 2004, 51(2), 299-321.
[101]
Tompa, P. Intrinsically unstructured proteins. Trends Biochem. Sci., 2002, 27(10), 527-533.
[102]
Receveur-Brechot, V.; Bourhis, J.M.; Uversky, V.N.; Canard, B.; Longhi, S. Assessing protein disorder and induced folding. Proteins, 2006, 62(1), 24-45.
[103]
Kaczka, P.; Winiewska, M.; Zhukov, I.; Rempola, B.; Bolewska, K.; Lozinski, T.; Ejchart, A.; Poznanska, A.; Wierzchowski, K.L.; Poznanski, J. The TFE-induced transient native-like structure of the intrinsically disordered domain of Escherichia coli RNA polymerase. Eur. Biophys. J., 2014, 43(12), 581-594.
[104]
Duvignaud, J.B.; Savard, C.; Fromentin, R.; Majeau, N.; Leclerc, D.; Gagne, S.M. Structure and dynamics of the N-terminal half of hepatitis C virus core protein: An intrinsically unstructured protein. Biochem. Biophys. Res. Commun., 2009, 378(1), 27-31.
[105]
Majeau, N.; Gagne, V.; Boivin, A.; Bolduc, M.; Majeau, J.A.; Ouellet, D.; Leclerc, D. The N-terminal half of the core protein of hepatitis C virus is sufficient for nucleocapsid formation. J. Gen. Virol., 2004, 85(Pt. 4), 971-981.
[106]
Chen, C.M.; You, L.R.; Hwang, L.H.; Lee, Y.H.W. Direct interaction of hepatitis C virus core protein with the cellular lymphotoxin-beta receptor modulates the signal pathway of the lymphotoxin-beta receptor. J. Virol., 1997, 71(12), 9417-9426.
[107]
Mamiya, N.; Worman, H.J. Hepatitis C virus core protein binds to a DEAD box RNA helicase. J. Biol. Chem., 1999, 274(22), 15751-15756.
[108]
Wang, F.; Yoshida, I.; Takamatsu, M.; Ishido, S.; Fujita, T.; Oka, K.; Hotta, H. Complex formation between hepatitis C virus core protein and p21Waf1/Cip1/Sdi1. Biochem. Biophys. Res. Commun., 2000, 273(2), 479-484.
[109]
Duvignaud, J.B.; Leclerc, D.; Gagne, S.M. Structure and dynamics changes induced by 2,2,2-trifluoro-ethanol (TFE) on the N-terminal half of hepatitis C virus core protein. Biochem. Cell Biol., 2010, 88(2), 315-323.
[110]
Muller, I.; Sarramegna, V.; Milon, A.; Talmont, F.J. The N-terminal end truncated mu-opioid receptor: from expression to circular dichroism analysis. Appl. Biochem. Biotechnol., 2010, 160(7), 2175-2186.
[111]
Moncoq, K.; Broutin, I.; Craescu, C.T.; Vachette, P.; Ducruix, A.; Durand, D. SAXS study of the PIR domain from the Grb14 molecular adaptor: a natively unfolded protein with a transient structure primer? Biophys. J., 2004, 87(6), 4056-4064.
[112]
Boulant, S.; Vanbelle, C.; Ebel, C.; Penin, F.; Lavergne, J.P. Hepatitis C virus core protein is a dimeric alpha-helical protein exhibiting membrane protein features. J. Virol., 2005, 79(17), 11353-11365.
[113]
Rodriguez-Casado, A.; Molina, M.; Carmona, P. Core protein-nucleic acid interactions in hepatitis C virus as revealed by Raman and circular dichroism spectroscopy. Appl. Spectrosc., 2007, 61(11), 1219-1224.
[114]
Tantos, A.; Szrnka, K.; Szabo, B.; Bokor, M.; Kamasa, P.; Matus, P.; Bekesi, A.; Tompa, K.; Han, K.H.; Tompa, P. Structural disorder and local order of hNopp140. BBA-Proteins Proteom., 2013, 1834(1), 342-350.
[115]
Luo, P.Z.; Baldwin, R.L. Mechanism of helix induction by trifluoroethanol: A framework for extrapolating the helix-forming properties of peptides from trifluoroethanol/water mixtures back to water. Biochemistry, 1997, 36(27), 8413-8421.
[116]
Chiti, F.; Dobson, C.M. Protein misfolding, functional amyloid, and human disease. Annu. Rev. Biochem., 2006, 75, 333-366.
[117]
Nelson, R.; Sawaya, M.R.; Balbirnie, M.; Madsen, A.O.; Riekel, C.; Grothe, R.; Eisenberg, D. Structure of the cross-beta spine of amyloid-like fibrils. Nature, 2005, 435(7043), 773-778.
[118]
Bhak, G.; Choe, Y.J.; Paik, S.R. Mechanism of amyloidogenesis: nucleation-dependent fibrillation versus double-concerted fibrillation. BMB Rep., 2009, 42(9), 541-551.
[119]
Abedini, A.; Raleigh, D.P. A role for helical intermediates in amyloid formation by natively unfolded polypeptides? Phys. Biol., 2009, 6(1), 015005.
[120]
Selkoe, D.J. Folding proteins in fatal ways. Nature, 2003, 426(6968), 900-904.
[121]
Abedini, A.; Raleigh, D.P. A critical assessment of the role of helical intermediates in amyloid formation by natively unfolded proteins and polypeptides. Protein Eng. Des. Sel., 2009, 22(8), 453-459.
[122]
Tycko, R. Progress towards a molecular-level structural understanding of amyloid fibrils. Curr. Opin. Struct. Biol., 2004, 14(1), 96-103.
[123]
Petkova, A.T.; Ishii, Y.; Balbach, J.J.; Antzutkin, O.N.; Leapman, R.D.; Delaglio, F.; Tycko, R. A structural model for Alzheimer’s beta-amyloid fibrils based on experimental constraints from solid state NMR. Proc. Natl. Acad. Sci. USA, 2002, 99(26), 16742-16747.
[124]
Santambrogio, C.; Ricagno, S.; Sobott, F.; Colombo, M.; Bolognesi, M.; Grandori, R. Characterization of beta 2-microglobulin conformational intermediates associated to different fibrillation conditions. J. Mass Spectrom., 2011, 46(8), 734-741.
[125]
Morris, A.M.; Watzky, M.A.; Finke, R.G. Protein aggregation kinetics, mechanism, and curve-fitting: A review of the literature. BBA-Proteins Proteom., 2009, 1794(3), 375-397.
[126]
Ban, T.; Yamaguchi, K.; Goto, Y. Direct observation of amyloid fibril growth, propagation, and adaptation. Acc. Chem. Res., 2006, 39(9), 663-670.
[127]
Xi, W.H.; Wei, G.H. Amyloid-beta peptide aggregation and the influence of carbon nanoparticles. Chin. Phys. B, 2016, 25(1), 18704-018704.
[128]
Dammers, C.; Gremer, L.; Reiss, K.; Klein, A.N.; Neudecker, P.; Hartmann, R.; Sun, N.; Demuth, H.U.; Schwarten, M.; Willbold, D. Structural analysis and aggregation propensity of pyroglutamate A beta(3-40) in aqueous trifluoroethanol. PLoS One, 2015, 10(11), e0143647.
[129]
O’Brien, R.J.; Wong, P.C. Amyloid precursor protein processing and Alzheimer’s disease. Annu. Rev. Neurosci., 2011, 34, 185-204.
[130]
Sticht, H.; Bayer, P.; Willbold, D.; Dames, S.; Hilbich, C.; Beyreuther, K.; Frank, R.W.; Rosch, P. Structure of amyloid A4-(1-40)-peptide of Alzheimer’s disease. Eur. J. Biochem., 1995, 233(1), 293-298.
[131]
Sun, N.; Hartmann, R.; Lecher, J.; Stoldt, M.; Funke, S.A.; Gremer, L.; Ludwig, H.H.; Demuth, H.U.; Kleinschmidt, M.; Willbold, D. Structural analysis of the pyroglutamate-modified isoform of the Alzheimer’s disease-related amyloid-beta using NMR spectroscopy. J. Pept. Sci., 2012, 18(11), 691-695.
[132]
Anderson, V.L.; Ramlall, T.F.; Rospigliosi, C.C.; Webb, W.W.; Eliezer, D. Identification of a helical intermediate in trifluoroethanol-induced alpha-synuclein aggregation. Proc. Natl. Acad. Sci. USA, 2010, 107(44), 18850-18855.
[133]
Spillantini, M.G. Parkinson’s disease, dementia with Lewy bodies and multiple system atrophy are alpha-synucleinopathies. Parkinsonism Relat. Disord., 1999, 5(4), 157-162.
[134]
Eliezer, D.; Kutluay, E.; Bussell, R.; Browne, G. Conformational properties of alpha-synuclein in its free and lipid-associated states. J. Mol. Biol., 2001, 307(4), 1061-1073.
[135]
Khan, M.S.; Tabrez, S.; Bhat, S.A.; Rabbani, N.; Al-Senaidy, A.M.; Bano, B. Effect of trifluoroethanol on alpha-crystallin: folding, aggregation, amyloid, and cytotoxicity analysis. J. Mol. Recognit., 2016, 29(1), 33-40.
[136]
Ehrnsperger, M.; Graber, S.; Gaestel, M.; Buchner, J. Binding of non-native protein to Hsp25 during heat shock creates a reservoir of folding intermediates for reactivation. EMBO J., 1997, 16(2), 221-229.
[137]
Lee, G.J.; Roseman, A.M.; Saibil, H.R.; Vierling, E. A small heat shock protein stably binds heat-denatured model substrates and can maintain a substrate in a folding-competent state. EMBO J., 1997, 16(3), 659-671.
[138]
Kumar, M.S.; Reddy, P.Y.; Kumar, P.A.; Surolia, I.; Reddy, G.B. Effect of dicarbonyl-induced browning on alpha-crystallin chaperone-like activity: physiological significance and caveats of in vitro aggregation assays. Biochem. J., 2004, 379(Pt 2), 273-282.
[139]
Ehrnsperger, M.; Hergersberg, C.; Wienhues, U.; Nichtl, A.; Buchner, J. Stabilization of proteins and peptides in diagnostic immunological assays by the molecular chaperone Hsp25. Anal. Biochem., 1998, 259(2), 218-225.
[140]
Hollmann, A.; Martinez, M.; Maturana, P.; Semorile, L.C.; Maffia, P.C. Antimicrobial peptides: interaction with model and biological membranes and synergism with chemical antibiotics. Front Chem., 2018, 6, 204.
[141]
da Costa, J.P.; Cova, M.; Ferreira, R.; Vitorino, R. Antimicrobial peptides: An alternative for innovative medicines? Appl. Microbiol. Biotechnol., 2015, 99(5), 2023-2040.
[142]
Brogden, K.A. Antimicrobial peptides: Pore formers or metabolic inhibitors in bacteria? Nat. Rev. Microbiol., 2005, 3(3), 238-250.
[143]
Wimley, W.C. Describing the mechanism of antimicrobial peptide action with the interfacial activity model. ACS Chem. Biol., 2010, 5(10), 905-917.
[144]
Haney, E.F.; Vogel, H.J. NMR of antimicrobial peptides. Annu. Rep. NMR Spectrosc., 2009, 65, 1-51.
[145]
Tack, B.F.; Sawai, M.V.; Kearney, W.R.; Robertson, A.D.; Sherman, M.A.; Wang, W.; Hong, T.; Lee, M.B.; Wu, H.; Waring, A.J.; Lehrer, R.I. SMAP-29 has two LPS-binding sites and a central hinge. Eur. J. Biochem., 2002, 269(4), 1181-1189.
[146]
Sawai, M.V.; Waring, A.J.; Kearney, W.R.; McCray, P.B.; Forsyth, W.R.; Lehrer, R.I.; Tack, B.F. Impact of single-residue mutations on the structure and function of ovispirin/novispirin antimicrobial peptides. Protein Eng., 2002, 15(3), 225-232.
[147]
Chen, C.P.; Brock, R.; Luh, F.; Chou, P.J.; Larrick, J.W.; Huang, R.F.; Huang, T.H. The solution structure of the active domain of Cap18 - a lipopolysaccharide-binding protein from rabbit leukocytes. FEBS Lett., 1995, 370(1-2), 46-52.
[148]
Uteng, M.; Hauge, H.H.; Markwick, P.R.; Fimland, G.; Mantzilas, D.; Nissen-Meyer, J.; Muhle-Goll, C. Three-dimensional structure in lipid micelles of the pediocin-like antimicrobial peptide sakacin P and a sakacin P variant that is structurally stabilized by an inserted C-terminal disulfide bridge. Biochemistry, 2003, 42(39), 11417-11426.
[149]
Landon, C.; Meudal, H.; Boulanger, N.; Bulet, P.; Vovelle, F. Solution structures of stomoxyn and spinigerin, two insect antimicrobial peptides with an alpha-helical conformation. Biopolymers, 2006, 81(2), 92-103.
[150]
Xiao, Y.; Dai, H.; Bommineni, Y.R.; Soulages, J.L.; Gong, Y.X.; Prakash, O.; Zhang, G. Structure-activity relationships of fowlicidin-1, a cathelicidin antimicrobial peptide in chicken. FEBS J., 2006, 273(12), 2581-2593.
[151]
Bommineni, Y.R.; Dai, H.E.; Gong, Y.X.; Soulages, J.L.; Fernando, S.C.; DeSilva, U.; Prakash, O.; Zhang, G.L. Fowlicidin-3 is an alpha-helical cationic host defense peptide with potent antibacterial and lipopolysaccharide-neutralizing activities. FEBS J., 2007, 274(2), 418-428.
[152]
Rogne, P.; Fimland, G.; Nissen-Meyer, J.; Kristiansen, P.E. Threedimensional
structure of the two peptides that constitute the twopeptide
bacteriocin lactococcin G. BBA-Proteins Proteom, 2008, 1784 (3), 543-554.
[153]
Verly, R.M.; de Moraes, C.M.; Resende, J.M.; Aisenbrey, C.; Bernquerer, M.P.; Pilo-Veloso, D.; Valente, A.P.; Almeida, F.C.L.; Bechinger, B. Structure and membrane interactions of the antibiotic peptide dermadistinctin K by multidimensional solution and oriented N-15 and P-31 solid-state NMR spectroscopy. Biophys. J., 2009, 96(6), 2194-2203.
[154]
Subasinghage, A.R.; Conlon, J.M.; Hewage, C.M. Conformational analysis of the broad-spectrum antibacterial peptide, ranatuerin-2CSa: Identification of a full length helix-turn-helix motif. BBA-Proteins Proteom., 2008, 1784(6), 924-929.
[155]
Rogne, P.; Haugen, C.; Fimland, G.; Nissen-Meyer, J.; Kristiansen, P.E. Three-dimensional structure of the two-peptide bacteriocin plantaricin JK. Peptides, 2009, 30(9), 1613-1621.
[156]
Gao, B.; Xu, J.; Rodriguez, M.D.; Lanz-Mendoza, H.; Hernandez-Rivas, R.; Du, W.H.; Zhu, S.Y. Characterization of two linear cationic antimalarial peptides in the scorpion Mesobuthus eupeus. Biochimie, 2010, 92(4), 350-359.
[157]
Fregeau Gallagher, N.L.; Sailer, M.; Niemczura, W.P.; Nakashima, T.T.; Stiles, M.E.; Vederas, J.C. Three-dimensional structure of leucocin A in trifluoroethanol and dodecylphosphocholine micelles: Spatial location of residues critical for biological activity in type IIa bacteriocins from lactic acid bacteria. Biochemistry, 1997, 36(49), 15062-15072.
[158]
Ovchinnikov, K.V.; Kristiansen, P.E.; Uzelac, G.; Topisirovic, L.; Kojic, M.; Nissen-Meyer, J.; Nes, I.F.; Diep, D.B. Defining the structure and receptor binding domain of the leaderless bacteriocin LsbB. J. Biol. Chem., 2014, 289(34), 23838-23845.
[159]
Godreuil, S.; Leban, N.; Padilla, A.; Hamel, R.; Luplertlop, N.; Chauffour, A.; Vittecoq, M.; Hoh, F.; Thomas, F.; Sougakoff, W.; Lionne, C.; Yssel, H.; Misse, D. Aedesin: structure and antimicrobial activity against multidrug resistant bacterial strains. PLoS One, 2014, 9(8), e105441.
[160]
Lopez-Abarrategui, C.; McBeth, C.; Mandal, S.M.; Sun, Z.Y.J.; Heffron, G.; Alba-Menendez, A.; Migliolo, L.; Reyes-Acosta, O.; Garcia-Villarino, M.; Nolasco, D.O.; Falcao, R.; Cherobim, M.D.; Dias, S.C.; Brandt, W.; Wessjohann, L.; Starnbach, M.; Franco, O.L.; Otero-Gonzalez, A.J. Cm-p5: An antifungal hydrophilic peptide derived from the coastal mollusk Cenchritis muricatus (Gastropoda: Littorinidae). FASEB J., 2015, 29(8), 3315-3325.
[161]
Arbulu, S.; Lohans, C.T.; van Belkum, M.J.; Cintas, L.M.; Herranz, C.; Vederas, J.C.; Hernandez, P.E. Solution structure of enterocin HF, an antilisterial bacteriocin produced by enterococcus faecium M3K31. J. Agric. Food Chem., 2015, 63(49), 10689-10695.
[162]
Acedo, J.Z.; van Belkum, M.J.; Lohans, C.T.; Towle, K.M.; Miskolzie, M.; Vederas, J.C. Nuclear magnetic resonance solution structures of lacticin Q and aureocin A53 reveal a structural motif conserved among leaderless bacteriocins with broad-spectrum activity. Biochemistry, 2016, 55(4), 733-742.
[163]
Ovchinnikov, K.V.; Kristiansen, P.E.; Straume, D.; Jensen, M.S.; Aleksandrzak-Piekarczyk, T.; Nes, I.F.; Diep, D.B. The leaderless bacteriocin enterocin K1 is highly potent against enterococcus faecium: A study on structure, target spectrum and receptor. Front. Microbiol., 2017, 8, 774.
[164]
Gomes, K.A.G.G.; dos Santos, D.M.; Santos, V.M.; Pilo-Veloso, D.; Mundim, H.M.; Rodrigues, L.V.; Liao, L.M.; Verly, R.M.; de Lima, M.E.; Resende, J.M. NMR structures in different membrane environments of three ocellatin peptides isolated from Leptodactylus labyrinthicus. Peptides, 2018, 103, 72-83.
[165]
Silva, O.N.; Alves, E.S.F.; de la Fuente-Nunez, C.; Ribeiro, S.M.; Mandal, S.M.; Gaspar, D.; Veiga, A.S.; Castanho, M.A.R.B.; Andrade, C.A.S.; Nascimento, J.M.; Fensterseifer, I.C.M.; Porto, W.F.; Correa, J.R.; Hancock, R.E.W.; Korpole, S.; Oliveira, A.L.; Liao, L.M.; Franco, O.L. Structural studies of a lipid-binding peptide from tunicate hemocytes with anti-biofilm activity. Sci. Rep., 2016, 6, 27128.
[166]
Scorciapino, M.A.; Rinaldi, A.C. Antimicrobial peptidomimetics: reinterpreting nature to deliver innovative therapeutics. Front. Immunol., 2012, 3, 171.
[167]
Gaglione, R.; Dell’Olmo, E.; Bosso, A.; Chino, M.; Pane, K.; Ascione, F.; Itri, F.; Caserta, S.; Amoresano, A.; Lombardi, A.; Haagsman, H.P.; Piccoli, R.; Pizzo, E.; Veldhuizen, E.J.A.; Notomista, E.; Arciello, A. Novel human bioactive peptides identified in Apolipoprotein B: Evaluation of their therapeutic potential. Biochem. Pharmacol., 2017, 130, 34-50.
[168]
Cui, P.F.; Dong, Y.; Li, Z.J.; Zhang, Y.B.; Zhang, S.C. Identification and functional characterization of an uncharacterized antimicrobial peptide from a ciliate Paramecium caudatum. Dev. Comp. Immunol., 2016, 60, 53-65.
[169]
Pizzo, E.; Pane, K.; Bosso, A.; Landi, N.; Ragucci, S.; Russo, R.; Gaghone, R.; Torres, M.D.T.; de la Fuente-Nunez, C.; Arciello, A.; Di Donato, A.; Notomista, E.; Di Maro, A. Novel bioactive peptides from PD-L1/2, a type 1 ribosome inactivating protein from Phytolacca dioica L. Evaluation of their antimicrobial properties and anti-biofilm activities. BBA-Biomembranes, 2018, 1860(7), 1425-1435.
[170]
Liu, B.; Huang, H.; Yang, Z.; Liu, B.; Gou, S.; Zhong, C.; Han, X.; Zhang, Y.; Ni, J.; Wang, R. Design of novel antimicrobial peptide dimer analogues with enhanced antimicrobial activity in vitro and in vivo by intermolecular triazole bridge strategy. Peptides, 2017, 88, 115-125.
[171]
Salas, R.L.; Garcia, J.K.D.L.; Miranda, A.C.R.; Rivera, W.L.; Nellas, R.B.; Sabido, P.M.G. Effects of truncation of the peptide chain on the secondary structure and bioactivities of palmitoylated anoplin. Peptides, 2018, 104, 7-14.
[172]
Huang, Y.B.; He, L.Y.; Li, G.R.; Zhai, N.C.; Jiang, H.Y.; Chen, Y.X. Role of helicity of alpha-helical antimicrobial peptides to improve specificity. Protein Cell, 2014, 5(8), 631-642.
[173]
Harris, F.; Dennison, S.R.; Phoenix, D.A. Anionic antimicrobial peptides from eukaryotic organisms. Curr. Protein Pept. Sci., 2009, 10(6), 585-606.
[174]
Dashper, S.G.; Liu, S.W.; Reynolds, E.C. Antimicrobial peptides and their potential as oral therapeutic agents. Int. J. Pept. Res. Ther., 2007, 13(4), 505-516.
[175]
Malkoski, M.; Dashper, S.G.; O’Brien-Simpson, N.M.; Talbo, G.H.; Macris, M.; Cross, K.J.; Reynolds, E.C. Kappacin, a novel antibacterial peptide from bovine milk. Antimicrob. Agents Chemother., 2001, 45(8), 2309-2315.
[176]
Dashper, S.G.; O’Brien-Simpson, N.M.; Cross, K.J.; Paolini, R.A.; Hoffmann, B.; Catmull, D.V.; Malkoski, M.; Reynolds, E.C. Divalent metal cations increase the activity of the antimicrobial Peptide kappacin. Antimicrob. Agents Chemother., 2005, 49(6), 2322-2328.
[177]
Plowman, J.E.; Creamer, L.K.; Liddell, M.J.; Cross, J.J. Solution conformation of a peptide corresponding to bovine kappa-casein B residues 130-153 by circular dichroism spectroscopy and 1H-nuclear magnetic resonance spectroscopy. J. Dairy Res., 1997, 64(3), 377-397.
[178]
Boucher, L.E.; Lopez, D.D.C.; Miller, A.S.; Stamm, S.M.; Bosch, J. Targeting protein-protein-interactions for antimalarial drug discovery. Biophys. J., 2015, 108(2), 148.
[179]
Amartely, H.; Iosub-Amir, A.; Friedler, A. Identifying protein-protein interaction sites using peptide arrays. J. Vis. Exp., 2014, (93), 52097.
[180]
Reymond, M.T.; Merutka, G.; Dyson, H.J.; Wright, P.E. Folding propensities of peptide fragments of myoglobin. Protein Sci., 1997, 6(3), 706-716.
[181]
Mercurio, F.A.; Di Natale, C.; Pirone, L.; Iannitti, R.; Marasco, D.; Pedone, E.M.; Palumbo, R.; Leone, M. The Sam-Sam interaction between Ship2 and the EphA2 receptor: Design and analysis of peptide inhibitors. Sci. Rep., 2017, 7(1), 17474.
[182]
Kim, C.A.; Bowie, J.U. SAM domains: Uniform structure, diversity of function. Trends Biochemy. Sci., 2003, 28(12), 625-628.
[183]
Yang, N.Y.; Fernandez, C.; Richter, M.; Xiao, Z.; Valencia, F.; Tice, D.A.; Pasquale, E.B. Crosstalk of the EphA2 receptor with a serine/threonine phosphatase suppresses the Akt-mTORC1 pathway in cancer cells. Cell. Signal., 2011, 23(1), 201-212.
[184]
Miao, H.; Li, D.Q.; Mukherjee, A.; Guo, H.; Petty, A.; Cutter, J.; Basilion, J.P.; Sedor, J.; Wu, J.; Danielpour, D.; Sloan, A.E.; Cohen, M.L.; Wang, B. EphA2 mediates ligand-dependent inhibition and ligand-independent promotion of cell migration and invasion via a reciprocal regulatory loop with Akt. Cancer Cell, 2009, 16(1), 9-20.
[185]
Zhuang, G.L.; Hunter, S.; Hwang, Y.; Chen, J. Regulation of EphA2 receptor endocytosis by SHIP2 lipid phosphatase via phosphatidylinositol 3-kinase-dependent Rac1 activation. J. Biol. Chem., 2007, 282(4), 2683-2694.
[186]
Leone, M.; Cellitti, J.; Pellecchia, M. NMR studies of a heterotypic Sam-Sam domain association: the interaction between the lipid phosphatase Ship2 and the EphA2 receptor. Biochemistry, 2008, 47(48), 12721-12728.
[187]
Singh, D.R.; Ahmed, F.; Paul, M.D.; Gedam, M.; Pasquale, E.B.; Hristova, K. The SAM domain inhibits EphA2 interactions in the plasma membrane. BBA-Mol. Cell Res., 2017, 1864(1), 31-38.
[188]
Shi, X.; Hapiak, V.; Zheng, J.; Muller-Greven, J.; Bowman, D.; Lingerak, R.; Buck, M.; Wang, B.C.; Smith, A.W. A role of the SAM domain in EphA2 receptor activation. Sci. Rep., 2017, 7, 45084.
[189]
Lee, H.J.; Hota, P.K.; Chugha, P.; Guo, H.; Miao, H.; Zhang, L.Q.; Kim, S.J.; Stetzik, L.; Wang, B.C.; Buck, M. NMR structure of a heterodimeric SAM:SAM complex: Characterization and manipulation of EphA2 binding reveal new cellular functions of SHIP2. Structure, 2012, 20(1), 41-55.
[190]
Mercurio, F.A.; Marasco, D.; Pirone, L.; Pedone, E.M.; Pellecchia, M.; Leone, M. Solution structure of the first Sam domain of Odin and binding studies with the EphA2 receptor. Biochemistry, 2012, 51(10), 2136-2145.
[191]
Kim, J.; Lee, H.; Kim, Y.; Yoo, S.; Park, E.; Park, S. The SAM domains of Anks family proteins are critically involved in modulating the degradation of EphA receptors. Mol. Cell. Biol., 2010, 30(7), 1582-1592.
[192]
Wang, Y.; Shang, Y.; Li, J.C.; Chen, W.D.; Li, G.; Wan, J.; Liu, W.; Zhang, M.J. Specific Eph receptor-cytoplasmic effector signaling mediated by SAM-SAM domain interactions. eLife, 2018, 7, e35677.
[193]
Neira, J.L. Structural dissection of the C-terminal sterile alpha motif (SAM) of human p73. Arch. Biochem. Biophys., 2014, 558, 133-142.
[194]
Chi, S.W.; Ayed, A.; Arrowsmith, C.H. Solution structure of a conserved C-terminal domain of p73 with structural homology to the SAM domain. EMBO J., 1999, 18(16), 4438-4445.
[195]
Mercurio, F.A.; Pirone, L.; Di Natale, C.; Marasco, D.; Pedone, E.M.; Leone, M. Sam domain-based stapled peptides: Structural analysis and interaction studies with the Sam domains from the EphA2 receptor and the lipid phosphatase Ship2. Bioorg. Chem., 2018, 80, 602-610.
[196]
Mercurio, F.A.; Leone, M. The Sam domain of EphA2 receptor and its relevance to cancer: A novel challenge for drug discovery? Curr. Med. Chem., 2016, 23(42), 4718-4734.
[197]
Rothemund, S.; Weisshoff, H.; Beyermann, M.; Krause, E.; Bienert, M.; Mugge, C.; Sykes, B.D.; Sonnichsen, F.D. Temperature coefficients of amide proton NMR resonance frequencies in trifluoroethanol: A monitor of intramolecular hydrogen bonds in helical peptides. J. Biomol. NMR, 1996, 8(1), 93-97.