Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Review Article

Phosphorus-Containing Groups Assisted Transition Metal Catalyzed C-H Activation Reactions

Author(s): Chun-Ni Zhou, Zi-Ang Zheng, George Chang, Yuan-Chao Xiao, Yang-Huan Shen, Gen Li, Yu-Min Zhang, Wang-Ming Peng, Liang Wang* and Biao Xiao*

Volume 23, Issue 2, 2019

Page: [103 - 135] Pages: 33

DOI: 10.2174/1385272823666190213113059

Price: $65

Abstract

Over the last few decades, transition metal-catalyzed direct C-H activation with the assistance of a coordinating directing group has emerged as an atom- and stepeconomical synthetic tools to transform C–H bonds into carbon-carbon or carbonheteroatom bonds. Although the strategies involving regioselective C–H cleavage assisted by various directing groups have been extensively reviewed in the literature, we now attempt to give an overview of the recent advances on phosphorus-containing functional group assisted C-H activation reactions catalyzed by transition-metal catalysts including mechanistic study and synthetic applications. The discussion is directed towards C-H olefination, C-H activation/cyclization, C-H arylation, C-H amination, C-H hydroxylation and acetoxylation as well as miscellaneous C-H activation.

Keywords: Phosphorus, directing groups, transition metals, C-H activation, C-H bond cleavage, heterocycles.

Next »
Graphical Abstract

[1]
(a)Quin, L.D. A Guide to Organophosphorus Chemistry; John Wiley & Sons: New York, 2000.
(b)Ojima, I. Catalytic Asymmetric Synthesis, 2nd ed; Wiley-VCH: New York, 2000.
(c)Börner, A. Phosphorus Ligands in Asymmetric Catalysis: Synthesis and Applications; Wiley-VCH: Weinheim, 2008.
(d)Henyecz, R.; Milen, M.; Kánai, K.; Keglevich, G. Organophosphorus Chemistry:Novel Developments; Walter de Gruyter GmbH & Co KG, 2018.
(e)Guo, H.; Fan, Y.C.; Sun, Z.; Wu, Y.; Kwon, O. Phosphine organocatalysis. Chem. Rev., 2018, 118, 10049-10293.
[2]
(a)Fest, C.; Schmidt, K.J. The Chemistry of Organophosphorus Pesticides; Spring-Verlag: Berlin Heidelberg New York, 1982.
(b)Bansal, R.K. Phosphorus Heterocycles II; Springer: Berlin, 2010.
(c)Nyulászi, L. Aromaticity of phosphorus heterocycles. Chem. Rev., 2001, 101, 1229-1246.
[3]
(a)Corbridge, D.E.C. Phosphorus: Chemistry, Biochemistry and Technology; 6th ed.; CRC Press: Taylor & Francis Group, 2013.
(b)Queffélec, C.; Petit, M.; Janvier, P.; Knight, D.A.; Bujoli, B. Surface modification using phosphonic acids and esters. Chem. Rev., 2012, 112, 3777-3807.
[4]
(a)Peruzzini, M.; Gonsalvi, L. Phosphorus Compounds: Advanced Tools in Catalysis and Material Sciences; Springer: Berlin, 2011.
(b)Matano, Y.; Imahoriab, H. Design and synthesis of phosphole-based π systems for novel organic materials. Org. Biomol. Chem., 2009, 7, 1258-1271.
(c)Baumgartner, T. Insights on the design and electron-acceptor properties of conjugated organophosphorus materials. Acc. Chem. Res., 2014, 47, 1613-1622.
[5]
(a)Dyker, G. Handbook of C−H Transformation; Wiley-VCH: Weinheim, 2005.
(b)Song, G.; Wang, F.; Li, X.C.C. C−O and C−N bond formation via rhodium(III)-catalyzed oxidative C−H activation. Chem. Soc. Rev., 2012, 41, 3651-3678.
(c)De Sarkar, S.; Liu, W.; Kozhushkov, S.I.; Ackermann, L. Weakly coordinating directing groups for ruthenium(II)-catalyzed C−H activation. Adv. Synth. Catal., 2014, 356, 1461-1479.
(d)Segawa, Y.; Maekawa, T.; Itami, K. Synthesis of extended π-systems through C−H activation. Angew. Chem. Int. Ed., 2015, 54, 66-81.
(e)Yu, J.G.; Wang, Z.H.; Liu, Q.; Chen, X.Q.; Jiang, X.Y.; Jiao, F.P. Current research and development of carbon-hydrogen (C-H) activations in catalyzing organic syntheses. Curr. Org. Synth., 2015, 12, 385-390.
(f)Gensch, T.; Hopkinson, M.N.; Glorius, F.; Wencel-Delord, J. Mild metal-catalyzed C−H activation: examples and concepts. Chem. Soc. Rev., 2016, 45, 2900-2936.
(g)He, J.; Wasa, M.; Chan, K.S.L.; Shao, Q.; Yu, J.Q. Palladium-catalyzed alkyl C-H bond activation. Chem. Rev., 2017, 117, 8754-8786.
[6]
(a)Colby, D.A.; Bergman, R.G.; Ellman, J.A. Rhodium-catalyzed C−C bond formation via heteroatom-directed C-H bond activation. Chem. Rev., 2010, 110, 624-655.
(b)Chen, Z.; Wang, B.; Zhang, J.; Yu, W.; Liu, Z.; Zhang, Y. Transition metal-catalyzed C−H bond functionalizations by the use of diverse directing groups. Org. Chem. Front., 2015, 2, 1107-1295.
[7]
(a)Ma, Y.N.; Yang, S.D. Asymmetric synthesis of chiral atropisomeric bis-aryl organophosphorus from menthyl H-phosphinate. Chem. Rec., 2016, 16, 977-986.
(b)Cui, Y.M.; Lin, Y.; Xu, L.W. Catalytic synthesis of chiral organoheteroatom compounds of silicon, phosphorus, and sulfur via asymmetric transition metal-catalyzed C–H functionalization. Coord. Chem. Rev., 2017, 330, 37-52.
(c)Ma, Y.N.; Li, S.X.; Yang, S.D. New approaches for biaryl-based phosphine ligand synthesis via P=O directed C−H functionalizations. Acc. Chem. Res., 2017, 50, 1480-1492.
(d)Zhang, Z.; Dixneuf, P.H.; Soule, J.F. Late stage modifications of P-containing ligands using transition-metal-catalysed C−H bond functionalisation. Chem. Commun., 2018, 54, 7265-7280.
[8]
(a)Jia, C.; Kitamura, T.; Fujiwara, Y. Catalytic functionalization of arenes and alkanes via C−H bond activation. Acc. Chem. Res., 2001, 34, 633-639.
(b)Rossi, R.; Bellina, F.; Lessi, M. Alkenylation reactions of heteroarenes by transition-metal catalysts. Synthesis, 2010, 24, 4131-4153.
(c)Zhou, L.; Lu, W. Towards ideal synthesis: alkenylation of aryl C−H bonds by a Fujiwara-Moritani reaction. Chem. Eur. J., 2014, 20, 634-642.
[9]
Moritanl, I.; Fujiwara, Y. Aromatic substitution of styrene-palladium chloride complex. Tetrahedron Lett., 1967, 8, 1119-1122.
[10]
Fujiwara, Y.; Moritani, I.; Danno, S.; Asano, R.; Teranishi, S. J. Am. Chem. Soc., 1969, 91, 7166-7169.
[11]
Chan, L.Y.; Kim, S.; Ryu, T.; Lee, P.H. Palladium-catalyzed ortho-alkenylation of aryl hydrogen phosphates using a new mono-phosphoric acid directing group. Chem. Commun. , 2013, 49, 4682-4684.
[12]
(a)Maryanoff, B.E.; Reitz, A.B. The wittig olefination reaction and modifications involving phosphoryl stabilized carbanions. stereochemistry, mechanism, and selected synthetic aspects. Chem. Rev., 1989, 89, 863-927.
(b)Bisceglia, J.A.; Orelli, L.R. Recent progress in the Horner-Wadsworth-Emmons reaction. Curr. Org. Chem., 2015, 19, 744-775.
[13]
Meng, X.; Kim, S. Palladium(II)-catalyzed ortho-olefination of benzylic phosphonic monoesters. Org. Lett., 2013, 15, 1910-11913.
[14]
Unoh, Y.; Hashimoto, Y.; Takeda, D.; Hirano, K.; Satoh, T.; Miura, M. Rhodium(III)-catalyzed oxidative coupling through C-H bond cleavage directed by phosphinoxy groups. Org. Lett., 2013, 15, 3258-3261.
[15]
Mo, J.; Lim, S.; Park, S.; Ryu, T.; Kim, S.; Lee, P.H. Oxidative ortho-alkenylation of arylphosphine oxides by rhodium-catalyzed C−H bond twofold cleavage. RSC Adv, 2013, 3, 18296-18299.
[16]
Zhao, D.; Nimphius, C.; Lindale, M.; Glorius, F. Phosphoryl-related directing groups in rhodium(III) catalysis: a general strategy to diverse P-containing frameworks. Org. Lett., 2013, 15, 4504-4507.
[17]
Chary, B.C.; Kim, S. Rhodium(III)-catalyzed ortho-olefination of aryl phosphonates. Org. Biomol. Chem., 2013, 11, 6879-6882.
[18]
(a)Tang, W.; Zhang, X. New chiral phosphorus ligands for enantioselective hydrogenation. Chem. Rev., 2003, 103, 3029-3070.
(b)Kolodiazhnyi, O.I.; Kukhar, V.P.; Kolodiazhna, A.O. Asymmetric catalysis as a method for the synthesis of chiral organophosphorus compounds. Tetrahedron Asymmetry, 2014, 25, 865-922.
(c)Duan, W.L.; Iwamura, H.; Shintani, R.; Hayashi, T. Chiral phosphine-olefin ligands in the rhodium-catalyzed asymmetric 1,4-addition reactions. J. Am. Chem. Soc., 2007, 129, 2130-2138.
[19]
Wang, H.L.; Hu, R.B.; Zhang, H.; Zhou, A.X.; Yang, S.D. Pd(II)-catalyzed Ph2(O)P-directed C−H olefination toward phosphine alkene ligands. Org. Lett., 2013, 15, 5302-5305.
[20]
Yokoyama, Y.; Unoh, Y.; Hirano, K.; Satoh, T.; Miura, M. Rhodium(III)-catalyzed regioselective C−H alkenylation of phenylphosphine sulfides. J. Org. Chem., 2014, 79, 7649-7655.
[21]
Pellissier, H. In Chirality From Dynamic Kinetic Resolution; Royal Society of Chemistry: Cambridge, U.K., 2011.
[22]
Ma, Y.N.; Zhang, H.Y.; Yang, S.D. Pd(II)-catalyzed P(O)R1R2-directed asymmetric C−H activation and dynamic kinetic resolution for the synthesis of chiral biaryl phosphates. Org. Lett., 2015, 17, 2034-2037.
[23]
Haruhiko, F. Palladium-catalyzed synthesis of N- and O-heterocycles starting from enol phosphates. Synlett, 2011, 1, 6-29.
[24]
Hu, X-H.; Yang, X-F.; Loh, T-P. Selective alkenylation and hydroalkenylation of enol phosphates through direct C−H functionalization. Angew. Chem. Int. Ed., 2015, 54, 15535-15539.
[25]
Zhu, Y.Q.; Qin, L.; Song, Q.; Su, F.; Xu, Y.J.; Dong, L. Rhodium(III)-catalyzed ortho-alkenylation using a cyclic N-phosphoryl ketimine as the directing group. Org. Biomol. Chem., 2016, 14, 9472-9475.
[26]
Jiao, L.Y.; Ferreira, A.V.; Oestreich, M. Phosphinic amide as directing group enabling palladium(II)-catalyzed ortho C−H alkenylation of anilines without and with alkylation at the nitrogen atom. Chem. Asian J., 2016, 11, 367-370.
[27]
Wang, C.S.; Dixneuf, P.H.; Soulé, J.F. Ruthenium-catalyzed C−H bond alkylation of arylphosphine oxides with alkenes: a straightforward access to bifunctional phosphorous ligands with a pendent carboxylate. ChemCatChem, 2017, 9, 3117-3120.
[28]
Li, S.X.; Ma, Y.N.; Yang, S.D.P. (O)R2-directed enantioselective C−H olefination toward chiral atropoisomeric phosphine-olefin compounds. Org. Lett., 2017, 19, 1842-1845.
[29]
Seth, K.; Bera, M.; Brochetta, M.; Agasti, S.; Das, A.; Gandini, A.; Porta, A.; Zanoni, G.; Maiti, D. Incorporating unbiased, unactivated aliphatic alkenes in Pd(II)-catalyzed olefination of benzyl phosphonamide. ACS Catal., 2017, 7, 7732-7736.
[30]
Boyarskiy, V.P.; Ryabukhin, D.S.; Bokach, N.A.; Vasilyev, A.V. Alkenylation of arenes and heteroarenes with alkynes. Chem. Rev., 2016, 116, 5894-5986.
[31]
Kakiuchi, F.; Yamamoto, Y.; Chatani, N.; Murai, S. Catalytic addition of aromatic C−H bonds to acetylenes. Chem. Lett., 1995, •••, 681-682.
[32]
Itoh, M.; Hashimoto, Y.; Hirano, K.; Satoh, T.; Miura, M. Ruthenium-catalyzed ortho-alkenylation of phenylphosphine oxides through regio- and stereoselective alkyne insertion into C−H bonds. J. Org. Chem., 2013, 78, 8098-8104.
[33]
Shang, X.; Liu, Z.Q. Transition metal-catalyzed Cvinyl−Cvinyl bond formation via double Cvinyl−H bond activation. Chem. Soc. Rev., 2013, 42, 3253-3260.
[34]
(a)Glueck, D.S. Recent advances in metal-catalyzed C-P bond formation. Top. Organomet. Chem., 2010, 31, 65-100.
(b)Chen, Y.R.; Duan, W.L. Silver-mediated oxidative C−H/P−H functionalization: an efficient route for the synthesis of benzo[b]phosphole oxides. J. Am. Chem. Soc., 2013, 135, 16754-16757.
(c)Unoh, Y.; Hirano, K.; Satoh, T.; Miura, M. An approach to benzophosphole oxides through silver- or manganese-mediated dehydrogenative annulation involving C−C and C−P bond formation. Angew. Chem. Int. Ed., 2013, 52, 12975-12979.
[35]
(a)Stokes, B.J.; Driver, T.G. Transition metal-catalyzed formation of N-heterocycles via aryl-or vinyl C−H bond amination. Eur. J. Org. Chem., 2011, 4071-4088.
(b)Mei, T.S.; Kou, L.; Ma, S.; Engle, K.M.; Yu, J.Q. Heterocycle formation via palladium-catalyzed C−H functionalization. Synthesis, 2012, 44, 1778-1791.
(c)Yoshikai, N.; Wei, Y. Synthesis of pyrroles, indoles, and carbazoles through transition-metal-catalyzed C−H functionalization. Asian J. Org. Chem., 2013, 2, 466-478.
(d)Gulás, M.; Mascareñas, J.L. Metal-catalyzed annulations through activation and cleavage of C−H bonds. Angew. Chem. Int. Ed., 2016, 55, 11000-11019.
[36]
Ryu, T.; Kim, J.; Park, Y.; Kim, S.; Lee, P.H. Rhodium-catalyzed oxidative cyclization of arylphosphonic acid monoethyl esters with alkenes: efficient synthesis of benzoxaphosphole 1-oxides. Org. Lett., 2013, 15, 3986-3989.
[37]
Park, S.; Seo, B.; Shin, S.; Son, J.Y.; Lee, P.H. Rhodium-catalyzed oxidative coupling through C–H activation and annulation directed by phosphonamide and phosphinamide groups. Chem. Commun., 2013, 49, 8671-8673.
[38]
Jeon, W.H.; Son, J.Y.; Kim, S.E.; Lee, P.H. Phosphaannulation of aryl- and benzylphosphonic acids with unactivated alkenes via palladium-catalyzed C−H activation/oxidative cyclization reaction. Adv. Synth. Catal., 2015, 357, 811-817.
[39]
Nallagonda, R.; Thrimurtulu, N.; Volla, C.M.R. Cobalt-catalyzed diastereoselective [4+2] annulation of phosphinamides with heterobicyclic alkenes at room temperature. Adv. Synth. Catal., 2017, 360, 255-260.
[40]
Yao, X.; Jin, L.; Rao, Y. Synthesis of phosphaisoquinolin-1-one by annulation of aryl phosphinamides with allenes through a cobalt-promoted C−H functionalization. Asian J. Org. Chem., 2017, 6, 825-830.
[41]
Seo, J.; Park, Y.; Jeon, I.; Ryu, T.; Park, S.; Lee, P.H. Synthesis of phosphaisocoumarins through rhodium-catalyzed cyclization using alkynes and arylphosphonic acid monoesters. Org. Lett., 2013, 15, 3358-3361.
[42]
Park, Y.; Jeon, I.; Shin, S.; Min, J.; Lee, P.H. Ruthenium-catalyzed C−H activation/cyclization for the synthesis of phosphaisocoumarins. J. Org. Chem., 2013, 78, 10209-10220.
[43]
Li, S.S.; Wu, L.; Qin, L.; Zhu, Y.Q.; Su, F.; Xu, Y.J.; Dong, L. Iridium(III)-catalyzed tandem [3+2] annulation: synthesis of spirocyclic phosphoramide derivatives. Org. Lett., 2016, 18, 4214-4217.
[44]
Nguyen, T.T.; Grigorjeva, L.; Daugulis, O. Cobalt-catalyzed, aminoquinoline-directed functionalization of phosphinic amide sp2 C−H bonds. ACS Catal., 2016, 6, 551-554.
[45]
Sun, Y.; Cramer, N. Rhodium(III)-catalyzed enantiotopic C−H activation enables access to P-chiral cyclic phosphinamides. Angew. Chem. Int. Ed., 2017, 56, 364-367.
[46]
Chen, J.; Hu, X.Q.; Lu, L.Q.; Xiao, W.J. Formal [4+1] annulation reactions in the synthesis of carbocyclic and heterocyclic systems. Chem. Rev., 2015, 115, 5301-5365.
[47]
Shin, S.; Jeong, Y.; Jeon, W.H.; Lee, P.H. Phosphaannulation by palladium-catalyzed carbonylation of C−H bonds of phosphonic and phosphinic acids. Org. Lett., 2014, 16, 2930-2933.
[48]
Kuninobu, Y.; Yoshida, T.; Takai, K. Palladium-catalyzed synthesis of dibenzophosphole oxides via intramolecular dehydrogenative cyclization. J. Org. Chem., 2011, 76, 7370-7376.
[49]
Eom, D.; Jeong, Y.; Kim, Y.; Lee, E.; Choi, W.; Lee, P.H. Palladium-Catalyzed C(sp2 and sp3)−H activation/C-O bond formation: synthesis of benzoxaphosphole 1- and 2- oxides. Org. Lett., 2013, 15, 5210-5213.
[50]
Baba, K.; Tobisu, M.; Chatani, N. Palladium-catalyzed direct synthesis of phosphole derivatives from triarylphosphines through cleavage of carbon–hydrogen and carbon–phosphorus bonds. Angew. Chem. Int. Ed., 2013, 52, 11892-11895.
[51]
(a) Daugulis, O.; Do, H.Q.; Shabashov, D. Palladium- and copper-catalyzed arylation of carbon-hydrogen bonds. Acc. Chem. Res., 2009, 42, 1074-1086.
(b) Ackermann, L.; Vicente, R.; Kapdi, A.R. Transition-metal-catalyzed direct arylation of (hetero)arenes by C−H bond cleavage. Angew. Chem. Int. Ed., 2009, 48, 9792-9826.
(c) Yang, Y.; Lan, J.; You, J. Oxidative C−H/C−H coupling reactions between two (hetero)arenes. Chem. Rev., 2017, 117, 8787-8863.
[52]
(a) Zhdankin, V.V.; Stang, P.J. Recent developments in the chemistry of polyvalent iodine compounds. Chem. Rev., 2002, 102, 2523-2584.
(b) Zhdankin, V.V.; Stang, P.J. Chemistry of polyvalent iodine. Chem. Rev., 2008, 108, 5299-5358.
(c) Roscalesa, S.; Csákÿ, A.G. Transition-metal-free C−C bond forming reactions of aryl, alkenyl and alkynylboronic acids and their derivatives. Chem. Soc. Rev., 2014, 43, 8215-8225.
[53]
(a) Kalyani, D.; Deprez, N.R.; Desai, L.V.; Sanford, M.S. Oxidative C−H activation/C−C bond forming reactions: synthetic scope and mechanistic insights. J. Am. Chem. Soc., 2005, 127, 7330-7331.
(b) Dick, A.R.; Kampf, J.W.; Sanford, M.S. Unusually stable palladium(IV) complexes: detailed mechanistic investigation of C−O bond-forming reductive elimination. J. Am. Chem. Soc., 2005, 127, 12790-12791.
[54]
Chan, L.Y.; Cheong, L.; Kim, S. Pd(II)-catalyzed ortho-arylation of aryl phosphates and aryl hydrogen phosphates with diaryliodonium triflates. Org. Lett., 2013, 15, 2186-2189.
[55]
Jeon, W.H.; Lee, T.S.; Kim, E.J.; Moon, B.; Kang, J. Palladium(II)-catalyzed ortho-arylation via phosphate-group directed C−H activation. Tetrahedron, 2013, 69, 5152-5159.
[56]
Chary, B.C.; Kim, S.; Park, Y.; Kim, J.; Lee, P.H. Palladium-catalyzed C−H arylation using phosphoramidate as a directing group at room temperature. Org. Lett., 2013, 15, 2692-2695.
[57]
Hu, R.B.; Zhang, H.; Zhang, X.Y.; Yang, S.D. Palladium-catalyzed P(O)R2 directed C−H arylation to synthesize electron-rich polyaromatic monophosphorus ligands. Chem. Commun., 2014, 50, 2193-2195.
[58]
Meng, X.; Kim, S. Palladium(II)-catalyzed ortho-arylation of benzylic phosphonic monoesters using potassium aryltrifluoroborates. J. Org. Chem., 2013, 78, 11247-11254.
[59]
Guan, J.; Wu, G.J.; Han, F.S. PdII-catalyzed mild C−H ortho arylation and intramolecular amination oriented by a phosphinamide group. Chem. Eur. J., 2014, 20, 3301-3305.
[60]
Du, Z.J.; Guan, J.; Wu, G.J.; Xu, P.; Gao, L.X.; Han, F.S. Pd(II)-catalyzed enantioselective synthesis of p-stereogenic phosphinamides via desymmetric C−H arylation. J. Am. Chem. Soc., 2015, 137, 632-635.
[61]
Musaev, D.G.; Kaledin, A.; Shi, B.F.; Yu, J.Q. Key mechanistic features of enantioselective C–H bond activation reactions catalyzed by [(chiral mono-N-protected amino acid)-Pd(II)] complexes. J. Am. Chem. Soc., 2012, 134, 1690-1698.
[62]
Chen, Y.H.; Qin, X.L.; Guan, J.; Du, Z.J.; Han, F.S. Pd-catalyzed enantioselective C−H arylation of phosphinamides with boronic acids for the synthesis of P-stereogenic compounds. Tetrahedron Asymmetry, 2017, 28, 522-531.
[63]
Yang, Y.; Qiu, X.; Zhao, Y.; Mu, Y.; Shi, Z. Palladium-catalyzed C−H arylation of indoles at the C7 position. J. Am. Chem. Soc., 2016, 138, 495-498.
[64]
Unoh, Y.; Satoh, T.; Hirano, K.; Miura, M. Rhodium(III)-catalyzed direct coupling of arylphosphine derivatives with heterobicyclic alkenes: a concise route to biarylphosphines and dibenzophosphole derivatives. ACS Catal., 2015, 5, 6634-6639.
[65]
Liu, Z.; Wu, J.Q.; Yang, S.D. Ir(III)-catalyzed direct C−H functionalization of arylphosphine oxides: a strategy for mop-type ligands synthesis. Org. Lett., 2017, 19, 5434-5437.
[66]
Jang, Y.S.; Woźniak, Å.; Pedroni, J.; Cramer, N. Access to P- and axially chiral biaryl phosphine oxides by enantioselective Cp*IrIII-catalyzed C−H arylations. Angew. Chem. Int. Ed., 2018, 57, 12901-12905.
[67]
Nguyen, T.T.; Daugulis, O. Palladium-catalyzed, aminoquinoline-directed arylation of phosphonamidate and phosphinic amide sp3 C−H bonds. Chem. Commun., 2017, 53, 4609-4611.
[68]
Amo, V.; Dubbaka, S.R.; Krasovskiy, A.; Knochel, P. General preparation of primary, secondary, and tertiary aryl amines by the oxidative coupling of polyfunctional aryl and heteroaryl amidocuprates. Angew. Chem. Int. Ed., 2006, 45, 7838-7842.
[69]
(a) Shin, K.; Kim, H.; Chang, S. Transition-metal-catalyzed C−N bond forming reactions using organic azides as the nitrogen source: a journey for the mild and versatile C−H amination. Acc. Chem. Res., 2015, 48, 1040-1052.
(b) Kim, H.; Chang, S. The use of ammonia as an ultimate amino source in the transition metal-catalyzed C−H amination. Acc. Chem. Res., 2017, 50, 482-486.
(c) Park, Y.; Kim, Y.; Chang, S. Transition metal-catalyzed C–H amination: scope, mechanism, and applications. Chem. Rev., 2017, 117, 9247-9301.
[70]
Guan, J.; Wu, G.J.; Han, F.S. PdII-catalyzed mild C−H ortho arylation and intramolecular amination oriented by a phosphinamide group. Chemistry, 2014, 20, 3301-3305.
[71]
Gwon, D.; Lee, D.; Kim, J.; Park, S.; Chang, S. Iridium(III)-catalyzed C−H amidation of arylphosphoryls leading to a p-stereogenic center. Chem. Eur. J., 2014, 20, 12421-12425.
[72]
Gwon, D.; Park, S.; Chang, S. Dual role of carboxylic acid additive: mechanistic studies and implication for the asymmetric C−H amidation. Tetrahedron, 2015, 71, 4504-4511.
[73]
Jang, Y.S.; Dieckmann, M.; Cramer, N. Cooperative effects between chiral Cpx–iridium(iii) catalysts and chiral carboxylic acids in enantioselective C−H amidations of phosphine oxides. Angew. Chem. Int. Ed., 2017, 56, 15088-15092.
[74]
Charest, M.G.; Lerner, C.D.; Brubaker, J.D.; Siegel, D.R.; Myers, A.G. A convergent enantioselective route to structurally diverse 6-deoxytetracycline antibiotics. Science, 2005, 308, 395-398.
[75]
Chan, L.Y.; Meng, X.; Kim, S. Ortho-Acetoxylation of phosphonic and phosphoric monoacids via Pd(II) catalysis. J. Org. Chem., 2013, 78, 8826-8832.
[76]
Zhang, H.Y.; Yi, H.M.; Wang, G.W.; Yang, B.; Yang, S.D. Pd(II)-catalyzed C(sp2)−H hydroxylation with R2(O)P-coordinating group. Org. Lett., 2013, 15, 6186-6189.
[77]
Zhang, H.; Hu, R.B.; Zhang, X.Y.; Li, S.X.; Yang, S.D. Palladium-catalyzed ortho-alkenylation of aryl hydrogen phosphates using a new mono-phosphoric acid directing group. Chem. Commun., 2014, 50, 4686-4689.
[78]
Ma, Y.N. Tian, Q.P.; Zhang, H.Y.; Zhou, A.X.; Yang, S.D. P(O)R2 directed Pd(II)-catalyzed C(sp2)–H acylation. Org. Chem. Front., 2014, 1, 284-288.
[79]
Gu, L.J.; Jin, C.; Wang, R.; Ding, H.Y. Rhodium catalyzed ortho-cyanation of arylphosphates with N-cyano-N-phenyl-p-toluenesulfonamide. ChemCatChem, 2014, 6, 1225-1228.
[80]
Crawford, K.M.; Ramseyer, T.R.; Daley, C.J.A.; Clark, T.B. Phosphine-directed C−H borylation reactions: facile and selective access to ambiphilic phosphine boronate esters. Angew. Chem. Int. Ed., 2014, 53, 7589-7593.

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy