[1]
(a)Quin, L.D. A Guide to Organophosphorus Chemistry; John Wiley & Sons: New York, 2000.
(b)Ojima, I. Catalytic Asymmetric Synthesis, 2nd ed; Wiley-VCH: New York, 2000.
(c)Börner, A. Phosphorus Ligands in Asymmetric Catalysis: Synthesis and Applications; Wiley-VCH: Weinheim, 2008.
(d)Henyecz, R.; Milen, M.; Kánai, K.; Keglevich, G. Organophosphorus Chemistry:Novel Developments; Walter de Gruyter GmbH & Co KG, 2018.
(e)Guo, H.; Fan, Y.C.; Sun, Z.; Wu, Y.; Kwon, O. Phosphine organocatalysis. Chem. Rev., 2018, 118, 10049-10293.
[2]
(a)Fest, C.; Schmidt, K.J. The Chemistry of Organophosphorus Pesticides; Spring-Verlag: Berlin Heidelberg New York, 1982.
(b)Bansal, R.K. Phosphorus Heterocycles II; Springer: Berlin, 2010.
(c)Nyulászi, L. Aromaticity of phosphorus heterocycles. Chem. Rev., 2001, 101, 1229-1246.
[3]
(a)Corbridge, D.E.C. Phosphorus: Chemistry, Biochemistry and Technology; 6th ed.; CRC Press: Taylor & Francis Group, 2013.
(b)Queffélec, C.; Petit, M.; Janvier, P.; Knight, D.A.; Bujoli, B. Surface modification using phosphonic acids and esters. Chem. Rev., 2012, 112, 3777-3807.
[4]
(a)Peruzzini, M.; Gonsalvi, L. Phosphorus Compounds: Advanced Tools in Catalysis and Material Sciences; Springer: Berlin, 2011.
(b)Matano, Y.; Imahoriab, H. Design and synthesis of phosphole-based π systems for novel organic materials. Org. Biomol. Chem., 2009, 7, 1258-1271.
(c)Baumgartner, T. Insights on the design and electron-acceptor properties of conjugated organophosphorus materials. Acc. Chem. Res., 2014, 47, 1613-1622.
[5]
(a)Dyker, G. Handbook of C−H Transformation; Wiley-VCH: Weinheim, 2005.
(b)Song, G.; Wang, F.; Li, X.C.C. C−O and C−N bond formation via rhodium(III)-catalyzed oxidative C−H activation. Chem. Soc. Rev., 2012, 41, 3651-3678.
(c)De Sarkar, S.; Liu, W.; Kozhushkov, S.I.; Ackermann, L. Weakly coordinating directing groups for ruthenium(II)-catalyzed C−H activation. Adv. Synth. Catal., 2014, 356, 1461-1479.
(d)Segawa, Y.; Maekawa, T.; Itami, K. Synthesis of extended π-systems through C−H activation. Angew. Chem. Int. Ed., 2015, 54, 66-81.
(e)Yu, J.G.; Wang, Z.H.; Liu, Q.; Chen, X.Q.; Jiang, X.Y.; Jiao, F.P. Current research and development of carbon-hydrogen (C-H) activations in catalyzing organic syntheses. Curr. Org. Synth., 2015, 12, 385-390.
(f)Gensch, T.; Hopkinson, M.N.; Glorius, F.; Wencel-Delord, J. Mild metal-catalyzed C−H activation: examples and concepts. Chem. Soc. Rev., 2016, 45, 2900-2936.
(g)He, J.; Wasa, M.; Chan, K.S.L.; Shao, Q.; Yu, J.Q. Palladium-catalyzed alkyl C-H bond activation. Chem. Rev., 2017, 117, 8754-8786.
[6]
(a)Colby, D.A.; Bergman, R.G.; Ellman, J.A. Rhodium-catalyzed C−C bond formation via heteroatom-directed C-H bond activation. Chem. Rev., 2010, 110, 624-655.
(b)Chen, Z.; Wang, B.; Zhang, J.; Yu, W.; Liu, Z.; Zhang, Y. Transition metal-catalyzed C−H bond functionalizations by the use of diverse directing groups. Org. Chem. Front., 2015, 2, 1107-1295.
[7]
(a)Ma, Y.N.; Yang, S.D. Asymmetric synthesis of chiral atropisomeric bis-aryl organophosphorus from menthyl H-phosphinate. Chem. Rec., 2016, 16, 977-986.
(b)Cui, Y.M.; Lin, Y.; Xu, L.W. Catalytic synthesis of chiral organoheteroatom compounds of silicon, phosphorus, and sulfur via asymmetric transition metal-catalyzed C–H functionalization. Coord. Chem. Rev., 2017, 330, 37-52.
(c)Ma, Y.N.; Li, S.X.; Yang, S.D. New approaches for biaryl-based phosphine ligand synthesis via P=O directed C−H functionalizations. Acc. Chem. Res., 2017, 50, 1480-1492.
(d)Zhang, Z.; Dixneuf, P.H.; Soule, J.F. Late stage modifications of P-containing ligands using transition-metal-catalysed C−H bond functionalisation. Chem. Commun., 2018, 54, 7265-7280.
[8]
(a)Jia, C.; Kitamura, T.; Fujiwara, Y. Catalytic functionalization of arenes and alkanes via C−H bond activation. Acc. Chem. Res., 2001, 34, 633-639.
(b)Rossi, R.; Bellina, F.; Lessi, M. Alkenylation reactions of heteroarenes by transition-metal catalysts. Synthesis, 2010, 24, 4131-4153.
(c)Zhou, L.; Lu, W. Towards ideal synthesis: alkenylation of aryl C−H bonds by a Fujiwara-Moritani reaction. Chem. Eur. J., 2014, 20, 634-642.
[9]
Moritanl, I.; Fujiwara, Y. Aromatic substitution of styrene-palladium chloride complex. Tetrahedron Lett., 1967, 8, 1119-1122.
[10]
Fujiwara, Y.; Moritani, I.; Danno, S.; Asano, R.; Teranishi, S. J. Am. Chem. Soc., 1969, 91, 7166-7169.
[11]
Chan, L.Y.; Kim, S.; Ryu, T.; Lee, P.H. Palladium-catalyzed ortho-alkenylation of aryl hydrogen phosphates using a new mono-phosphoric acid directing group. Chem. Commun. , 2013, 49, 4682-4684.
[12]
(a)Maryanoff, B.E.; Reitz, A.B. The wittig olefination reaction and modifications involving phosphoryl stabilized carbanions. stereochemistry, mechanism, and selected synthetic aspects. Chem. Rev., 1989, 89, 863-927.
(b)Bisceglia, J.A.; Orelli, L.R. Recent progress in the Horner-Wadsworth-Emmons reaction. Curr. Org. Chem., 2015, 19, 744-775.
[13]
Meng, X.; Kim, S. Palladium(II)-catalyzed ortho-olefination of benzylic phosphonic monoesters. Org. Lett., 2013, 15, 1910-11913.
[14]
Unoh, Y.; Hashimoto, Y.; Takeda, D.; Hirano, K.; Satoh, T.; Miura, M. Rhodium(III)-catalyzed oxidative coupling through C-H bond cleavage directed by phosphinoxy groups. Org. Lett., 2013, 15, 3258-3261.
[15]
Mo, J.; Lim, S.; Park, S.; Ryu, T.; Kim, S.; Lee, P.H. Oxidative ortho-alkenylation of arylphosphine oxides by rhodium-catalyzed C−H bond twofold cleavage. RSC Adv, 2013, 3, 18296-18299.
[16]
Zhao, D.; Nimphius, C.; Lindale, M.; Glorius, F. Phosphoryl-related directing groups in rhodium(III) catalysis: a general strategy to diverse P-containing frameworks. Org. Lett., 2013, 15, 4504-4507.
[17]
Chary, B.C.; Kim, S. Rhodium(III)-catalyzed ortho-olefination of aryl phosphonates. Org. Biomol. Chem., 2013, 11, 6879-6882.
[18]
(a)Tang, W.; Zhang, X. New chiral phosphorus ligands for enantioselective hydrogenation. Chem. Rev., 2003, 103, 3029-3070.
(b)Kolodiazhnyi, O.I.; Kukhar, V.P.; Kolodiazhna, A.O. Asymmetric catalysis as a method for the synthesis of chiral organophosphorus compounds. Tetrahedron Asymmetry, 2014, 25, 865-922.
(c)Duan, W.L.; Iwamura, H.; Shintani, R.; Hayashi, T. Chiral phosphine-olefin ligands in the rhodium-catalyzed asymmetric 1,4-addition reactions. J. Am. Chem. Soc., 2007, 129, 2130-2138.
[19]
Wang, H.L.; Hu, R.B.; Zhang, H.; Zhou, A.X.; Yang, S.D. Pd(II)-catalyzed Ph2(O)P-directed C−H olefination toward phosphine alkene ligands. Org. Lett., 2013, 15, 5302-5305.
[20]
Yokoyama, Y.; Unoh, Y.; Hirano, K.; Satoh, T.; Miura, M. Rhodium(III)-catalyzed regioselective C−H alkenylation of phenylphosphine sulfides. J. Org. Chem., 2014, 79, 7649-7655.
[21]
Pellissier, H. In Chirality From Dynamic Kinetic Resolution; Royal Society of Chemistry: Cambridge, U.K., 2011.
[22]
Ma, Y.N.; Zhang, H.Y.; Yang, S.D. Pd(II)-catalyzed P(O)R1R2-directed asymmetric C−H activation and dynamic kinetic resolution for the synthesis of chiral biaryl phosphates. Org. Lett., 2015, 17, 2034-2037.
[23]
Haruhiko, F. Palladium-catalyzed synthesis of N- and O-heterocycles starting from enol phosphates. Synlett, 2011, 1, 6-29.
[24]
Hu, X-H.; Yang, X-F.; Loh, T-P. Selective alkenylation and hydroalkenylation of enol phosphates through direct C−H functionalization. Angew. Chem. Int. Ed., 2015, 54, 15535-15539.
[25]
Zhu, Y.Q.; Qin, L.; Song, Q.; Su, F.; Xu, Y.J.; Dong, L. Rhodium(III)-catalyzed ortho-alkenylation using a cyclic N-phosphoryl ketimine as the directing group. Org. Biomol. Chem., 2016, 14, 9472-9475.
[26]
Jiao, L.Y.; Ferreira, A.V.; Oestreich, M. Phosphinic amide as directing group enabling palladium(II)-catalyzed ortho C−H alkenylation of anilines without and with alkylation at the nitrogen atom. Chem. Asian J., 2016, 11, 367-370.
[27]
Wang, C.S.; Dixneuf, P.H.; Soulé, J.F. Ruthenium-catalyzed C−H bond alkylation of arylphosphine oxides with alkenes: a straightforward access to bifunctional phosphorous ligands with a pendent carboxylate. ChemCatChem, 2017, 9, 3117-3120.
[28]
Li, S.X.; Ma, Y.N.; Yang, S.D.P. (O)R2-directed enantioselective C−H olefination toward chiral atropoisomeric phosphine-olefin compounds. Org. Lett., 2017, 19, 1842-1845.
[29]
Seth, K.; Bera, M.; Brochetta, M.; Agasti, S.; Das, A.; Gandini, A.; Porta, A.; Zanoni, G.; Maiti, D. Incorporating unbiased, unactivated aliphatic alkenes in Pd(II)-catalyzed olefination of benzyl phosphonamide. ACS Catal., 2017, 7, 7732-7736.
[30]
Boyarskiy, V.P.; Ryabukhin, D.S.; Bokach, N.A.; Vasilyev, A.V. Alkenylation of arenes and heteroarenes with alkynes. Chem. Rev., 2016, 116, 5894-5986.
[31]
Kakiuchi, F.; Yamamoto, Y.; Chatani, N.; Murai, S. Catalytic addition of aromatic C−H bonds to acetylenes. Chem. Lett., 1995, •••, 681-682.
[32]
Itoh, M.; Hashimoto, Y.; Hirano, K.; Satoh, T.; Miura, M. Ruthenium-catalyzed ortho-alkenylation of phenylphosphine oxides through regio- and stereoselective alkyne insertion into C−H bonds. J. Org. Chem., 2013, 78, 8098-8104.
[33]
Shang, X.; Liu, Z.Q. Transition metal-catalyzed Cvinyl−Cvinyl bond formation via double Cvinyl−H bond activation. Chem. Soc. Rev., 2013, 42, 3253-3260.
[34]
(a)Glueck, D.S. Recent advances in metal-catalyzed C-P bond formation. Top. Organomet. Chem., 2010, 31, 65-100.
(b)Chen, Y.R.; Duan, W.L. Silver-mediated oxidative C−H/P−H functionalization: an efficient route for the synthesis of benzo[b]phosphole oxides. J. Am. Chem. Soc., 2013, 135, 16754-16757.
(c)Unoh, Y.; Hirano, K.; Satoh, T.; Miura, M. An approach to benzophosphole oxides through silver- or manganese-mediated dehydrogenative annulation involving C−C and C−P bond formation. Angew. Chem. Int. Ed., 2013, 52, 12975-12979.
[35]
(a)Stokes, B.J.; Driver, T.G. Transition metal-catalyzed formation of N-heterocycles via aryl-or vinyl C−H bond amination. Eur. J. Org. Chem., 2011, 4071-4088.
(b)Mei, T.S.; Kou, L.; Ma, S.; Engle, K.M.; Yu, J.Q. Heterocycle formation via palladium-catalyzed C−H functionalization. Synthesis, 2012, 44, 1778-1791.
(c)Yoshikai, N.; Wei, Y. Synthesis of pyrroles, indoles, and carbazoles through transition-metal-catalyzed C−H functionalization. Asian J. Org. Chem., 2013, 2, 466-478.
(d)Gulás, M.; Mascareñas, J.L. Metal-catalyzed annulations through activation and cleavage of C−H bonds. Angew. Chem. Int. Ed., 2016, 55, 11000-11019.
[36]
Ryu, T.; Kim, J.; Park, Y.; Kim, S.; Lee, P.H. Rhodium-catalyzed oxidative cyclization of arylphosphonic acid monoethyl esters with alkenes: efficient synthesis of benzoxaphosphole 1-oxides. Org. Lett., 2013, 15, 3986-3989.
[37]
Park, S.; Seo, B.; Shin, S.; Son, J.Y.; Lee, P.H. Rhodium-catalyzed oxidative coupling through C–H activation and annulation directed by phosphonamide and phosphinamide groups. Chem. Commun., 2013, 49, 8671-8673.
[38]
Jeon, W.H.; Son, J.Y.; Kim, S.E.; Lee, P.H. Phosphaannulation of aryl- and benzylphosphonic acids with unactivated alkenes via palladium-catalyzed C−H activation/oxidative cyclization reaction. Adv. Synth. Catal., 2015, 357, 811-817.
[39]
Nallagonda, R.; Thrimurtulu, N.; Volla, C.M.R. Cobalt-catalyzed diastereoselective [4+2] annulation of phosphinamides with heterobicyclic alkenes at room temperature. Adv. Synth. Catal., 2017, 360, 255-260.
[40]
Yao, X.; Jin, L.; Rao, Y. Synthesis of phosphaisoquinolin-1-one by annulation of aryl phosphinamides with allenes through a cobalt-promoted C−H functionalization. Asian J. Org. Chem., 2017, 6, 825-830.
[41]
Seo, J.; Park, Y.; Jeon, I.; Ryu, T.; Park, S.; Lee, P.H. Synthesis of phosphaisocoumarins through rhodium-catalyzed cyclization using alkynes and arylphosphonic acid monoesters. Org. Lett., 2013, 15, 3358-3361.
[42]
Park, Y.; Jeon, I.; Shin, S.; Min, J.; Lee, P.H. Ruthenium-catalyzed C−H activation/cyclization for the synthesis of phosphaisocoumarins. J. Org. Chem., 2013, 78, 10209-10220.
[43]
Li, S.S.; Wu, L.; Qin, L.; Zhu, Y.Q.; Su, F.; Xu, Y.J.; Dong, L. Iridium(III)-catalyzed tandem [3+2] annulation: synthesis of spirocyclic phosphoramide derivatives. Org. Lett., 2016, 18, 4214-4217.
[44]
Nguyen, T.T.; Grigorjeva, L.; Daugulis, O. Cobalt-catalyzed, aminoquinoline-directed functionalization of phosphinic amide sp2 C−H bonds. ACS Catal., 2016, 6, 551-554.
[45]
Sun, Y.; Cramer, N. Rhodium(III)-catalyzed enantiotopic C−H activation enables access to P-chiral cyclic phosphinamides. Angew. Chem. Int. Ed., 2017, 56, 364-367.
[46]
Chen, J.; Hu, X.Q.; Lu, L.Q.; Xiao, W.J. Formal [4+1] annulation reactions in the synthesis of carbocyclic and heterocyclic systems. Chem. Rev., 2015, 115, 5301-5365.
[47]
Shin, S.; Jeong, Y.; Jeon, W.H.; Lee, P.H. Phosphaannulation by palladium-catalyzed carbonylation of C−H bonds of phosphonic and phosphinic acids. Org. Lett., 2014, 16, 2930-2933.
[48]
Kuninobu, Y.; Yoshida, T.; Takai, K. Palladium-catalyzed synthesis of dibenzophosphole oxides via intramolecular dehydrogenative cyclization. J. Org. Chem., 2011, 76, 7370-7376.
[49]
Eom, D.; Jeong, Y.; Kim, Y.; Lee, E.; Choi, W.; Lee, P.H. Palladium-Catalyzed C(sp2 and sp3)−H activation/C-O bond formation: synthesis of benzoxaphosphole 1- and 2- oxides. Org. Lett., 2013, 15, 5210-5213.
[50]
Baba, K.; Tobisu, M.; Chatani, N. Palladium-catalyzed direct synthesis of phosphole derivatives from triarylphosphines through cleavage of carbon–hydrogen and carbon–phosphorus bonds. Angew. Chem. Int. Ed., 2013, 52, 11892-11895.
[51]
(a) Daugulis, O.; Do, H.Q.; Shabashov, D. Palladium- and copper-catalyzed arylation of carbon-hydrogen bonds. Acc. Chem. Res., 2009, 42, 1074-1086.
(b) Ackermann, L.; Vicente, R.; Kapdi, A.R. Transition-metal-catalyzed direct arylation of (hetero)arenes by C−H bond cleavage. Angew. Chem. Int. Ed., 2009, 48, 9792-9826.
(c) Yang, Y.; Lan, J.; You, J. Oxidative C−H/C−H coupling reactions between two (hetero)arenes. Chem. Rev., 2017, 117, 8787-8863.
[52]
(a) Zhdankin, V.V.; Stang, P.J. Recent developments in the chemistry of polyvalent iodine compounds. Chem. Rev., 2002, 102, 2523-2584.
(b) Zhdankin, V.V.; Stang, P.J. Chemistry of polyvalent iodine. Chem. Rev., 2008, 108, 5299-5358.
(c) Roscalesa, S.; Csákÿ, A.G. Transition-metal-free C−C bond forming reactions of aryl, alkenyl and alkynylboronic acids and their derivatives. Chem. Soc. Rev., 2014, 43, 8215-8225.
[53]
(a) Kalyani, D.; Deprez, N.R.; Desai, L.V.; Sanford, M.S. Oxidative C−H activation/C−C bond forming reactions: synthetic scope and mechanistic insights. J. Am. Chem. Soc., 2005, 127, 7330-7331.
(b) Dick, A.R.; Kampf, J.W.; Sanford, M.S. Unusually stable palladium(IV) complexes: detailed mechanistic investigation of C−O bond-forming reductive elimination. J. Am. Chem. Soc., 2005, 127, 12790-12791.
[54]
Chan, L.Y.; Cheong, L.; Kim, S. Pd(II)-catalyzed ortho-arylation of aryl phosphates and aryl hydrogen phosphates with diaryliodonium triflates. Org. Lett., 2013, 15, 2186-2189.
[55]
Jeon, W.H.; Lee, T.S.; Kim, E.J.; Moon, B.; Kang, J. Palladium(II)-catalyzed ortho-arylation via phosphate-group directed C−H activation. Tetrahedron, 2013, 69, 5152-5159.
[56]
Chary, B.C.; Kim, S.; Park, Y.; Kim, J.; Lee, P.H. Palladium-catalyzed C−H arylation using phosphoramidate as a directing group at room temperature. Org. Lett., 2013, 15, 2692-2695.
[57]
Hu, R.B.; Zhang, H.; Zhang, X.Y.; Yang, S.D. Palladium-catalyzed P(O)R2 directed C−H arylation to synthesize electron-rich polyaromatic monophosphorus ligands. Chem. Commun., 2014, 50, 2193-2195.
[58]
Meng, X.; Kim, S. Palladium(II)-catalyzed ortho-arylation of benzylic phosphonic monoesters using potassium aryltrifluoroborates. J. Org. Chem., 2013, 78, 11247-11254.
[59]
Guan, J.; Wu, G.J.; Han, F.S. PdII-catalyzed mild C−H ortho arylation and intramolecular amination oriented by a phosphinamide group. Chem. Eur. J., 2014, 20, 3301-3305.
[60]
Du, Z.J.; Guan, J.; Wu, G.J.; Xu, P.; Gao, L.X.; Han, F.S. Pd(II)-catalyzed enantioselective synthesis of p-stereogenic phosphinamides via desymmetric C−H arylation. J. Am. Chem. Soc., 2015, 137, 632-635.
[61]
Musaev, D.G.; Kaledin, A.; Shi, B.F.; Yu, J.Q. Key mechanistic features of enantioselective C–H bond activation reactions catalyzed by [(chiral mono-N-protected amino acid)-Pd(II)] complexes. J. Am. Chem. Soc., 2012, 134, 1690-1698.
[62]
Chen, Y.H.; Qin, X.L.; Guan, J.; Du, Z.J.; Han, F.S. Pd-catalyzed enantioselective C−H arylation of phosphinamides with boronic acids for the synthesis of P-stereogenic compounds. Tetrahedron Asymmetry, 2017, 28, 522-531.
[63]
Yang, Y.; Qiu, X.; Zhao, Y.; Mu, Y.; Shi, Z. Palladium-catalyzed C−H arylation of indoles at the C7 position. J. Am. Chem. Soc., 2016, 138, 495-498.
[64]
Unoh, Y.; Satoh, T.; Hirano, K.; Miura, M. Rhodium(III)-catalyzed direct coupling of arylphosphine derivatives with heterobicyclic alkenes: a concise route to biarylphosphines and dibenzophosphole derivatives. ACS Catal., 2015, 5, 6634-6639.
[65]
Liu, Z.; Wu, J.Q.; Yang, S.D. Ir(III)-catalyzed direct C−H functionalization of arylphosphine oxides: a strategy for mop-type ligands synthesis. Org. Lett., 2017, 19, 5434-5437.
[66]
Jang, Y.S.; Woźniak, Å.; Pedroni, J.; Cramer, N. Access to P- and axially chiral biaryl phosphine oxides by enantioselective Cp*IrIII-catalyzed C−H arylations. Angew. Chem. Int. Ed., 2018, 57, 12901-12905.
[67]
Nguyen, T.T.; Daugulis, O. Palladium-catalyzed, aminoquinoline-directed arylation of phosphonamidate and phosphinic amide sp3 C−H bonds. Chem. Commun., 2017, 53, 4609-4611.
[68]
Amo, V.; Dubbaka, S.R.; Krasovskiy, A.; Knochel, P. General preparation of primary, secondary, and tertiary aryl amines by the oxidative coupling of polyfunctional aryl and heteroaryl amidocuprates. Angew. Chem. Int. Ed., 2006, 45, 7838-7842.
[69]
(a) Shin, K.; Kim, H.; Chang, S. Transition-metal-catalyzed C−N bond forming reactions using organic azides as the nitrogen source: a journey for the mild and versatile C−H amination. Acc. Chem. Res., 2015, 48, 1040-1052.
(b) Kim, H.; Chang, S. The use of ammonia as an ultimate amino source in the transition metal-catalyzed C−H amination. Acc. Chem. Res., 2017, 50, 482-486.
(c) Park, Y.; Kim, Y.; Chang, S. Transition metal-catalyzed C–H amination: scope, mechanism, and applications. Chem. Rev., 2017, 117, 9247-9301.
[70]
Guan, J.; Wu, G.J.; Han, F.S. PdII-catalyzed mild C−H ortho arylation and intramolecular amination oriented by a phosphinamide group. Chemistry, 2014, 20, 3301-3305.
[71]
Gwon, D.; Lee, D.; Kim, J.; Park, S.; Chang, S. Iridium(III)-catalyzed C−H amidation of arylphosphoryls leading to a p-stereogenic center. Chem. Eur. J., 2014, 20, 12421-12425.
[72]
Gwon, D.; Park, S.; Chang, S. Dual role of carboxylic acid additive: mechanistic studies and implication for the asymmetric C−H amidation. Tetrahedron, 2015, 71, 4504-4511.
[73]
Jang, Y.S.; Dieckmann, M.; Cramer, N. Cooperative effects between chiral Cpx–iridium(iii) catalysts and chiral carboxylic acids in enantioselective C−H amidations of phosphine oxides. Angew. Chem. Int. Ed., 2017, 56, 15088-15092.
[74]
Charest, M.G.; Lerner, C.D.; Brubaker, J.D.; Siegel, D.R.; Myers, A.G. A convergent enantioselective route to structurally diverse 6-deoxytetracycline antibiotics. Science, 2005, 308, 395-398.
[75]
Chan, L.Y.; Meng, X.; Kim, S. Ortho-Acetoxylation of phosphonic and phosphoric monoacids via Pd(II) catalysis. J. Org. Chem., 2013, 78, 8826-8832.
[76]
Zhang, H.Y.; Yi, H.M.; Wang, G.W.; Yang, B.; Yang, S.D. Pd(II)-catalyzed C(sp2)−H hydroxylation with R2(O)P-coordinating group. Org. Lett., 2013, 15, 6186-6189.
[77]
Zhang, H.; Hu, R.B.; Zhang, X.Y.; Li, S.X.; Yang, S.D. Palladium-catalyzed ortho-alkenylation of aryl hydrogen phosphates using a new mono-phosphoric acid directing group. Chem. Commun., 2014, 50, 4686-4689.
[78]
Ma, Y.N. Tian, Q.P.; Zhang, H.Y.; Zhou, A.X.; Yang, S.D. P(O)R2 directed Pd(II)-catalyzed C(sp2)–H acylation. Org. Chem. Front., 2014, 1, 284-288.
[79]
Gu, L.J.; Jin, C.; Wang, R.; Ding, H.Y. Rhodium catalyzed ortho-cyanation of arylphosphates with N-cyano-N-phenyl-p-toluenesulfonamide. ChemCatChem, 2014, 6, 1225-1228.
[80]
Crawford, K.M.; Ramseyer, T.R.; Daley, C.J.A.; Clark, T.B. Phosphine-directed C−H borylation reactions: facile and selective access to ambiphilic phosphine boronate esters. Angew. Chem. Int. Ed., 2014, 53, 7589-7593.